Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary causes and consequences of gene duplication

Abstract

Gene duplication is the primary mechanism by which new genes emerge. Models and empirical studies have shown that paralogous genes are maintained because of dosage benefits, the partitioning of ancestral functions or the acquisition of new functions. However, the underlying molecular mechanisms and the relative importance of the factors driving evolution towards one fate or another have remained difficult to quantify. Recent advances in experimental and computational methods, such as gene editing, deep mutational scanning and ancestral sequence reconstruction, have enabled molecular analyses of duplicated gene evolution across timescales. Combined, these approaches are revealing how adaptive and non-adaptive evolutionary forces shape the modern fates of gene duplicates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The fitness effect of gene duplication and thus the fixation probability of new paralogues depends on the gene’s fitness function.
Fig. 2: Absolute dosage subfunctionalization (ADS) constrains the evolution of paralogues.
Fig. 3: Role of chance and contingency in the evolution of novel specificity.
Fig. 4: Evolution of paralogues derived from duplications of genes encoding homomeric proteins.

Similar content being viewed by others

References

  1. Kuzmin, E., Taylor, J. S. & Boone, C. Retention of duplicated genes in evolution. Trends Genet. 38, 59–72 (2022).

    Article  PubMed  CAS  Google Scholar 

  2. Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. Cold Spring Harb. Perspect. Biol. 7, a016592 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561–588 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, Z. et al. Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc. Natl Acad. Sci. USA 115, 4713–4718 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Fernández, R. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ohno, S. Evolution by Gene Duplication (Springer, 1970).

  8. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Gibson, T. A. & Goldberg, D. S. Questioning the ubiquity of neofunctionalization. PLoS Comput. Biol. 5, e1000252 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gout, J.-F. & Lynch, M. Maintenance and loss of duplicated genes by dosage subfunctionalization. Mol. Biol. Evol. 32, 2141–2148 (2015). This study finds that specific genes can be lost if their expression levels become too low and their paralogues assume most of the contribution to fitness, leading the study’s authors to propose the model of ADS, which postulates that the expression levels of paralogues diverge while their total expression remains constant.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. McKeown, A. N. et al. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159, 58–68 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Harms, M. J. & Thornton, J. W. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512, 203–207 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Cortez-Romero, C. R., Lyu, J., Pillai, A. S., Langanowsky, A. & Thornton, J. W. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. Proc. Natl Acad. Sci. USA 122, e2414756122 (2025). Using ancestral sequence reconstruction, the authors identify the mutations that promoted the transition of haemoglobin from a homodimer to a homotetramer, and later to a selective heterotetramer of paralogues.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Pillai, A. S. et al. Origin of complexity in haemoglobin evolution. Nature 581, 480–485 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Katju, V. & Lynch, M. The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome. Genetics 165, 1793–1803 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

  19. Papp, B., Pál, C. & Hurst, L. D. Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194–197 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Veitia, R. A. Gene dosage balance: deletions, duplications and dominance. Trends Genet. 21, 33–35 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. Ascencio, D. et al. Expression attenuation as a mechanism of robustness against gene duplication. Proc. Natl Acad. Sci. USA 118, e2014345118 (2021). By introducing a second copy of around 800 essential genes in yeast, the authors show the immediate fitness effects of duplications and observe attenuation mechanisms by which the expression of the second copy is reduced.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Stoebel, D. M., Dean, A. & Dykhuizen, D. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products. Genetics 178, 1653–1660 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Kafri, M., Metzl-Raz, E., Jona, G. & Barkai, N. The cost of protein production. Cell Rep. 14, 22–31 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Fujita, Y., Namba, S., Kamada, Y. & Moriya, H. Impact of maximal overexpression of a non-toxic protein on yeast cell physiology. eLife 13, RP99572 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Bhattacharyya, S. et al. Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity. eLife 5, e20309 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Prelich, G. Gene overexpression: uses, mechanisms, and interpretation. Genetics 190, 841–854 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Youn, J.-Y. et al. Functional analysis of kinases and transcription factors in Saccharomyces cerevisiae using an integrated overexpression library. G3 Genes Genomes Genet. 7, 911–921 (2017).

    Article  CAS  Google Scholar 

  29. Shen, W. et al. The regulatory mechanism of the yeast osmoresponse under different glucose concentrations. iScience 26, 105809 (2023).

    Article  PubMed  CAS  Google Scholar 

  30. Kondrashov, F. A. & Kondrashov, A. S. Role of selection in fixation of gene duplications. J. Theor. Biol. 239, 141–151 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Hardwick, R. J. et al. Haptoglobin (HP) and Haptoglobin-related protein (HPR) copy number variation, natural selection, and trypanosomiasis. Hum. Genet. 133, 69–83 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Robinson, D. et al. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 Genes Genomes Genet. 13, jkad159 (2023).

    Article  CAS  Google Scholar 

  34. Sionov, E., Lee, H., Chang, Y. C. & Kwon-Chung, K. J. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6, e1000848 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Selmecki, A., Gerami-Nejad, M., Paulson, C., Forche, A. & Berman, J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. Bergin, S. et al. Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. Antimicrob. Agents Chemother. 68, e0161923 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Iantorno, S. A. et al. Gene expression in Leishmania is regulated predominantly by gene dosage. mBio 8, e01393-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Robinson, D., Place, M., Hose, J., Jochem, A. & Gasch, A. P. Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories. eLife 10, e70564 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Naseeb, S., Ames, R. M., Delneri, D. & Lovell, S. C. Rapid functional and evolutionary changes follow gene duplication in yeast. Proc. R. Soc. B 284, 20171393 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bautista, C. et al. Hybrid adaptation is hampered by Haldane’s sieve. Nat. Commun. 15, 10319 (2024).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Todd, R. T. & Selmecki, A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 9, e58349 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Zhang, Z. & Ren, Q. Why are essential genes essential? — The essentiality of Saccharomyces genes. Microb. Cell 2, 280–287 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Hausser, J., Mayo, A., Keren, L. & Alon, U. Central dogma rates and the trade-off between precision and economy in gene expression. Nat. Commun. 10, 68 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Keren, L. et al. Massively parallel interrogation of the effects of gene expression levels on fitness. Cell 166, 1282–1294.e18 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Gelperin, D. M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21, 319–330 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. Arita, Y. et al. A genome-scale yeast library with inducible expression of individual genes. Mol. Syst. Biol. 17, e10207 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Hawkins, J. S. et al. Mismatch-CRISPRi reveals the co-varying expression-fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. Cell Syst. 11, 523–535.e9 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Otto, R. M., Turska-Nowak, A., Brown, P. M. & Reynolds, K. A. A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment. Cell Syst. 15, 134–148.e7 (2024). The authors use CRISPR interference to modulate the expression of pairs of genes participating in metabolic pathways and show how epistasis can result from changes in expression of the two genes.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Clark, T. et al. CRISPR activation screens: navigating technologies and applications. Trends Biotechnol. 42, 1017–1034 (2024).

    Article  PubMed  CAS  Google Scholar 

  52. Siddiq, M. A., Duveau, F. & Wittkopp, P. J. Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae. Nat. Ecol. Evol. 8, 2184–2194 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Moreno, P. et al. Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 50, D129–D140 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Huang, Q., Szklarczyk, D., Wang, M., Simonovic, M. & von Mering, C. PaxDb 5.0: curated protein quantification data suggests adaptive proteome changes in yeasts. Mol. Cell. Proteom. 22, 100640 (2023).

    Article  CAS  Google Scholar 

  55. Rice, A. M., Li, Y., Donnelly, P. & McLysaght, A. Evolution of dosage-sensitive genes by tissue-restricted expression changes. Genome Biol. Evol. 17, evaf132 (2025).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Qian, W., Ma, D., Xiao, C., Wang, Z. & Zhang, J. The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep. 2, 1399–1410 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Rogers, R. L., Shao, L. & Thornton, K. R. Tandem duplications lead to novel expression patterns through exon shuffling in Drosophila yakuba. PLoS Genet. 13, e1006795 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Loehlin, D. W. & Carroll, S. B. Expression of tandem gene duplicates is often greater than twofold. Proc. Natl Acad. Sci. USA 113, 5988–5992 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Song, M. J., Potter, B. I., Doyle, J. J. & Coate, J. E. Gene balance predicts transcriptional responses immediately following ploidy change in Arabidopsis thaliana. Plant Cell 32, 1434–1448 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Semple, J. I., Vavouri, T. & Lehner, B. A simple principle concerning the robustness of protein complex activity to changes in gene expression. BMC Syst. Biol. 2, 1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dephoure, N. et al. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3, e03023 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, Y. et al. Overdosage of balanced protein complexes reduces proliferation rate in aneuploid cells. Cell Syst. 9, 129–142.e5 (2019).

    Article  PubMed  CAS  Google Scholar 

  63. Ishikawa, K., Makanae, K., Iwasaki, S., Ingolia, N. T. & Moriya, H. Post-translational dosage compensation buffers genetic perturbations to stoichiometry of protein complexes. PLoS Genet. 13, e1006554 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Spealman, P., de Santana, C., De, T. & Gresham, D. Multilevel gene expression changes in lineages containing adaptive copy number variants. Mol. Biol. Evol. 42, msaf005 (2025). This study shows how adaptive duplications during experimental evolution can become subject to post-transcriptional and post-translational regulatory mechanisms that further tune total gene expression.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Qian, W., Liao, B.-Y., Chang, A. Y.-F. & Zhang, J. Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet. 26, 425–430 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Edger, P. P. et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29, 2150–2167 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Liang, Z. & Schnable, J. C. Functional divergence between subgenomes and gene pairs after whole genome duplications. Mol. Plant 11, 388–397 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Bird, K. A. et al. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. New Phytol. 230, 354–371 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Schnable, J. C., Wang, X., Pires, J. C. & Freeling, M. Escape from preferential retention following repeated whole genome duplications in plants. Front. Plant Sci. 3, 94 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Gillard, G. B. et al. Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biol. 22, 103 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Thompson, A., Vo, D., Comfort, C. & Zakon, H. H. Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene. Mol. Biol. Evol. 31, 1941–1955 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Thompson, A., Zakon, H. H. & Kirkpatrick, M. Compensatory drift and the evolutionary dynamics of dosage-sensitive duplicate genes. Genetics 202, 765–774 (2016).

    Article  PubMed  CAS  Google Scholar 

  73. Gout, J.-F. et al. Dynamics of gene loss following ancient whole-genome duplication in the cryptic Paramecium complex. Mol. Biol. Evol. 40, msad107 (2023).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Peñalba, J. V. et al. The role of hybridization in species formation and persistence. Cold Spring Harb. Perspect. Biol. 16, a041445 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chang, A. Y.-F. & Liao, B.-Y. Reduced translational efficiency of eukaryotic genes after duplication events. Mol. Biol. Evol. 37, 1452–1461 (2020).

    Article  PubMed  CAS  Google Scholar 

  76. Nguyen Ba, A. N. et al. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. PLoS Comput. Biol. 10, e1003977 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Johri, P., Gout, J.-F., Doak, T. G. & Lynch, M. A population-genetic lens into the process of gene loss following whole-genome duplication. Mol. Biol. Evol. 39, msac118 (2022). The authors find that expression reduction and the accumulation of coding mutations in one of two paralogues both predate its loss, leading them to extend the ADS model showing that the cumulative activity of paralogous proteins is also under selection; results also highlight that evolutionary fates are determined early on.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Ganko, E. W., Meyers, B. C. & Vision, T. J. Divergence in expression between duplicated genes in Arabidopsis. Mol. Biol. Evol. 24, 2298–2309 (2007).

    Article  PubMed  CAS  Google Scholar 

  79. Evans-Yamamoto, D. et al. Parallel nonfunctionalization of CK1δ/ε kinase ohnologs following a whole-genome duplication event. Mol. Biol. Evol. 40, msad246 (2023).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Shi, T., Gao, Z., Chen, J. & Van de Peer, Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. Plant Cell 36, 4323–4337 (2024).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 102, 14338–14343 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Serohijos, A. W. R., Rimas, Z. & Shakhnovich, E. I. Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep. 2, 249–256 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. DeLuna, A. et al. Exposing the fitness contribution of duplicated genes. Nat. Genet. 40, 676–681 (2008).

    Article  PubMed  CAS  Google Scholar 

  84. VanderSluis, B. et al. Genetic interactions reveal the evolutionary trajectories of duplicate genes. Mol. Syst. Biol. 6, 429 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Kuzmin, E. et al. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science 368, eaaz5667 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Kolodrubetz, D., Kruppa, M. & Burgum, A. Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 272, 93–101 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. DeLuna, A., Springer, M., Kirschner, M. W. & Kishony, R. Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol. 8, e1000347 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Iohannes, S. D. & Jackson, D. Tackling redundancy: genetic mechanisms underlying paralog compensation in plants. New Phytol. 240, 1381–1389 (2023).

    Article  PubMed  Google Scholar 

  89. Diss, G., Ascencio, D., DeLuna, A. & Landry, C. R. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool. B Mol. Dev. Evol. 322, 488–499 (2014).

    Article  PubMed  Google Scholar 

  90. Kafri, R., Bar-Even, A. & Pilpel, Y. Transcription control reprogramming in genetic backup circuits. Nat. Genet. 37, 295–299 (2005).

    Article  PubMed  CAS  Google Scholar 

  91. Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl Acad. Sci. USA 103, 11653–11658 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Loker, R. & Mann, R. S. Divergent expression of paralogous genes by modification of shared enhancer activity through a promoter-proximal silencer. Curr. Biol. 32, 3545–3555.e4 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Vande Zande, P., Siddiq, M. A., Hodgins-Davis, A., Kim, L. & Wittkopp, P. J. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. PLoS Genet. 19, e1011078 (2023). This study presents the regulatory mechanisms that mediate the upregulation of TDH2 in response to the deletion of its paralogue TDH3 in yeast, providing a clear demonstration that active compensation between paralogues can arise from shared regulation.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Springer, M., Weissman, J. S. & Kirschner, M. W. A general lack of compensation for gene dosage in yeast. Mol. Syst. Biol. 6, 368 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dandage, R. et al. Single-cell imaging of protein dynamics of paralogs reveals sources of gene retention. iScience 28, 112771 (2025).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Teufel, A. I., Liu, L. & Liberles, D. A. Models for gene duplication when dosage balance works as a transition state to subsequent neo- or sub-functionalization. BMC Evol. Biol. 16, 45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wilson, A. E. & Liberles, D. A. Dosage balance acts as a time-dependent selective barrier to subfunctionalization. BMC Ecol. Evol. 23, 14 (2023).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Mihajlovic, L. et al. A direct experimental test of Ohno’s hypothesis. eLife 13, RP97216 (2025). By evolving Escherichia coli cells with one or two copies of a fluorescent protein, the authors experimentally validate the fact that although gene duplication leads to relaxed selection, the rate of phenotypic evolution remains unchanged if one of the two copies is inactivated.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Conant, G. C. & Wagner, A. Asymmetric sequence divergence of duplicate genes. Genome Res. 13, 2052–2058 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Zhang, P., Gu, Z. & Li, W.-H. Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol. 4, R56 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Qiu, Y., Liu, S.-L. & Adams, K. L. Concerted divergence after gene duplication in polycomb repressive complexes. Plant Physiol. 174, 1192–1204 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Ascencio, D., Ochoa, S., Delaye, L. & DeLuna, A. Increased rates of protein evolution and asymmetric deceleration after the whole-genome duplication in yeasts. BMC Evol. Biol. 17, 40 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gagnon-Arsenault, I. et al. Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene duplication. J. Proteom. 81, 112–125 (2013).

    Article  CAS  Google Scholar 

  104. Mattenberger, F., Sabater-Muñoz, B., Toft, C. & Fares, M. A. The phenotypic plasticity of duplicated genes in Saccharomyces cerevisiae and the origin of adaptations. G3 Genes Genomes Genet. 7, 63–75 (2017).

    Article  CAS  Google Scholar 

  105. Li, J.-T. et al. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio). Sci. Rep. 5, 8199 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  106. Lien, S. et al. The Atlantic salmon genome provides insights into rediploidization. Nature 533, 200–205 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. Tissue-specificity of gene expression diverges slowly between orthologs, and rapidly between paralogs. PLoS Comput. Biol. 12, e1005274 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hoffmeier, A. et al. A dead gene walking: convergent degeneration of a clade of MADS-box genes in crucifers. Mol. Biol. Evol. 35, 2618–2638 (2018).

    PubMed  CAS  Google Scholar 

  109. Dibyachintan, S. et al. Cryptic genetic variation shapes the fate of gene duplicates in a protein interaction network. Nat. Commun. 16, 1530 (2025). This study shows how the effects of new mutations on protein–protein interactions of two paralogous proteins are contingent on the cryptic genetic variation accumulated following duplication, and dictate which mutations can subfunctionalize the paralogues.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Sane, M., Diwan, G. D., Bhat, B. A., Wahl, L. M. & Agashe, D. Shifts in mutation spectra enhance access to beneficial mutations. Proc. Natl Acad. Sci. USA 120, e2207355120 (2023).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Sane, M., Parveen, S. & Agashe, D. Mutation bias alters the distribution of fitness effects of mutations. PLoS Biol. 23, e3003282 (2025).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Cope, A. L., Schraiber, J. G. & Pennell, M. Macroevolutionary divergence of gene expression driven by selection on protein abundance. Science 387, 1063–1068 (2025).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Aubé, S., Nielly-Thibault, L. & Landry, C. R. Evolutionary trade-off and mutational bias could favor transcriptional over translational divergence within paralog pairs. PLoS Genet. 19, e1010756 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang, S. & Chen, Y. Fine-tuning the expression of duplicate genes by translational regulation in Arabidopsis and maize. Front. Plant Sci. 10, 534 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  PubMed  CAS  Google Scholar 

  116. Chapal, M., Mintzer, S., Brodsky, S., Carmi, M. & Barkai, N. Resolving noise–control conflict by gene duplication. PLoS Biol. 17, e3000289 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. David, K. T. et al. Convergent expansions of keystone gene families drive metabolic innovation in Saccharomycotina yeasts. Proc. Natl Acad. Sci. USA 122, e2500165122 (2025).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Nocedal, I. & Laub, M. T. Ancestral reconstruction of duplicated signaling proteins reveals the evolution of signaling specificity. eLife 11, e77346 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Ukken, F. P., Dowell, N. L., Hajra, M. & Carroll, S. B. A novel broad spectrum venom metalloproteinase autoinhibitor in the rattlesnake Crotalus atrox evolved via a shift in paralog function. Proc. Natl Acad. Sci. USA 119, e2214880119 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Harms, M. J. et al. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc. Natl Acad. Sci. USA 110, 11475–11480 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Grassi, L. et al. Identity and divergence of protein domain architectures after the yeast whole-genome duplication event. Mol. BioSyst. 6, 2305–2315 (2010).

    Article  PubMed  CAS  Google Scholar 

  122. Mallik, S., Tawfik, D. S. & Levy, E. D. How gene duplication diversifies the landscape of protein oligomeric state and function. Curr. Opin. Genet. Dev. 76, 101966 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164, 805–817 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  124. Baker, M. E. Steroid receptors and vertebrate evolution. Mol. Cell. Endocrinol. 496, 110526 (2019).

    Article  PubMed  CAS  Google Scholar 

  125. Thornton, J. W. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc. Natl Acad. Sci. USA 98, 5671–5676 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  127. Bridgham, J. T., Brown, J. E., Rodríguez-Marí, A., Catchen, J. M. & Thornton, J. W. Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet. 4, e1000191 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Anderson, D. W., McKeown, A. N. & Thornton, J. W. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 4, e07864 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549, 409–413 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Muiño, J. M. et al. Evolution of DNA-binding sites of a floral master regulatory transcription factor. Mol. Biol. Evol. 33, 185–200 (2016).

    Article  PubMed  Google Scholar 

  131. Pougach, K. et al. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network. Nat. Commun. 5, 4868 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Gera, T., Jonas, F., More, R. & Barkai, N. Evolution of binding preferences among whole-genome duplicated transcription factors. eLife 11, e73225 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Siggers, T., Reddy, J., Barron, B. & Bulyk, M. L. Diversification of transcription factor paralogs via noncanonical modularity in C2H2 zinc finger DNA binding. Mol. Cell 55, 640–648 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  134. Hudson, W. H. et al. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc. Natl Acad. Sci. USA 113, 326–331 (2016).

    Article  PubMed  CAS  Google Scholar 

  135. Shen, N. et al. Divergence in DNA specificity among paralogous transcription factors contributes to their differential in vivo binding. Cell Syst. 6, 470–483.e8 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Casewell, N. R., Wagstaff, S. C., Harrison, R. A., Renjifo, C. & Wüster, W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol. Biol. Evol. 28, 2637–2649 (2011).

    Article  PubMed  CAS  Google Scholar 

  137. Li, Z. et al. A tale of two copies: evolutionary trajectories of moth pheromone receptors. Proc. Natl Acad. Sci. USA 120, e2221166120 (2023).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. Lavy, T., Yanagida, H. & Tawfik, D. S. Gal3 binds Gal80 tighter than Gal1 indicating adaptive protein changes following duplication. Mol. Biol. Evol. 33, 472–477 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Park, Y., Metzger, B. P. H. & Thornton, J. W. Epistatic drift causes gradual decay of predictability in protein evolution. Science 376, 823–830 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  140. Capra, E. J. & Laub, M. T. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66, 325–347 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  141. Capra, E. J., Perchuk, B. S., Skerker, J. M. & Laub, M. T. Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. Cell 150, 222–232 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  142. Ghose, D. A., Przydzial, K. E., Mahoney, E. M., Keating, A. E. & Laub, M. T. Marginal specificity in protein interactions constrains evolution of a paralogous family. Proc. Natl Acad. Sci. USA 120, e2221163120 (2023). Using deep mutational scanning, the authors show that single mutations can lead to the loss of specificity within paralogues that have diversified to mediate different signalling pathways.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  143. Smith, J. M. Natural selection and the concept of a protein space. Nature 225, 563–564(1970).

    Article  PubMed  CAS  Google Scholar 

  144. DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6, 678–687 (2005).

    Article  PubMed  CAS  Google Scholar 

  145. Xie, V. C., Pu, J., Metzger, B. P., Thornton, J. W. & Dickinson, B. C. Contingency and chance erase necessity in the experimental evolution of ancestral proteins. eLife 10, e67336 (2021). Using phage-assisted continuous evolution, the authors show that, although the starting genotype constrains the group of accessible outcomes (contingency), the observed outcome in different replicates derived from the same starting genotype might vary (chance).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  146. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  147. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    Article  PubMed  CAS  Google Scholar 

  148. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  PubMed  CAS  Google Scholar 

  149. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zheng, J., Guo, N. & Wagner, A. Selection enhances protein evolvability by increasing mutational robustness and foldability. Science 370, eabb5962 (2020).

    Article  PubMed  CAS  Google Scholar 

  151. Metzger, B. P. H., Park, Y., Starr, T. N. & Thornton, J. W. Epistasis facilitates functional evolution in an ancient transcription factor. eLife 12, RP88737 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Herrera-Álvarez, S., Patton, J. E. J. & Thornton, J. W. The structure of an ancient genotype–phenotype map shaped the functional evolution of a protein family. Nat. Ecol. Evol. 9, 1656–1669 (2025). Using combinatorial mutagenesis on the reconstructed ancestors of paralogous steroid receptor and high-throughput binding assays with DNA motifs, the authors find that some DNA motifs are bound by more genotypes, which can influence which DNA motif specificity is likely to fix during evolution.

    Article  PubMed  Google Scholar 

  153. Tuckey, A. J. et al. Structural and functional characterisation of a reconstructed ancestral strigolactone receptor. Preprint at bioRxiv https://doi.org/10.1101/2025.08.03.668049 (2025).

  154. Ikezaki, Y. et al. Molecular evolution of terpene synthase underlying the diversification of isoprene emission in Fagaceae. Preprint at bioRxiv https://doi.org/10.1101/2025.07.31.667835 (2025).

  155. Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006).

    Article  PubMed  CAS  Google Scholar 

  156. Horowitz, N. H. On the evolution of biochemical syntheses. Proc. Natl Acad. Sci. USA 31, 153–157 (1945).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Light, S. & Kraulis, P. Network analysis of metabolic enzyme evolution in Escherichia coli. BMC Bioinform. 5, 15 (2004).

    Article  Google Scholar 

  158. Carroll, S., Bridgham, J. & Thornton, J. W. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Mol. Biol. Evol. 25, 2643–2652 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  159. Steube, N. et al. Fortuitously compatible protein surfaces primed allosteric control in cyanobacterial photoprotection. Nat. Ecol. Evol. 7, 756–767 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Copley, S. D., Newton, M. S. & Widney, K. A. How to recruit a promiscuous enzyme to serve a new function. Biochemistry 62, 300–308 (2023).

    Article  PubMed  CAS  Google Scholar 

  161. Lemieux, P., Bradley, D., Dubé, A. K., Dionne, U. & Landry, C. R. Dissection of the role of a Src homology 3 domain in the evolution of binding preference of paralogous proteins. Genetics 226, iyad175 (2023).

    Article  Google Scholar 

  162. Lynch, M. The evolution of multimeric protein assemblages. Mol. Biol. Evol. 29, 1353–1366 (2012).

    Article  PubMed  CAS  Google Scholar 

  163. Levy, E. D. & Teichmann, S. in Progress in Molecular Biology and Translational Science Vol. 117 (eds Giraldo, J. & Ciruela, F.) 25–51 (Academic Press, 2013).

  164. Schweke, H. et al. An atlas of protein homo-oligomerization across domains of life. Cell 187, 999–1010 (2024).

    Article  PubMed  CAS  Google Scholar 

  165. Pereira-Leal, J. B., Levy, E. D., Kamp, C. & Teichmann, S. A. Evolution of protein complexes by duplication of homomeric interactions. Genome Biol. 8, R51 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kaltenegger, E. & Ober, D. Paralogue interference affects the dynamics after gene duplication. Trends Plant Sci. 20, 814–821 (2015).

    Article  PubMed  CAS  Google Scholar 

  167. Dandage, R. et al. Frequent assembly of chimeric complexes in the protein interaction network of an interspecies yeast hybrid. Mol. Biol. Evol. 38, 1384–1401 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  168. Leducq, J.-B. et al. Evidence for the robustness of protein complexes to inter-species hybridization. PLoS Genet. 8, e1003161 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  169. Ng, D. W.-K., Chen, H. H. Y. & Chen, Z. J. Heterologous protein-DNA interactions lead to biased allelic expression of circadian clock genes in interspecific hybrids. Sci. Rep. 7, 45087 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  170. Bergendahl, L. T. et al. The role of protein complexes in human genetic disease. Protein Sci. 28, 1400–1411 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  171. Hochberg, G. K. A. et al. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 359, 930–935 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  172. Cisneros, A. F., Nielly-Thibault, L., Mallik, S., Levy, E. D. & Landry, C. R. Mutational biases favor complexity increases in protein interaction networks after gene duplication. Mol. Syst. Biol. 20, 549–572 (2024).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  173. Cisneros, A. F. et al. Paralog interference preserves genetic redundancy. Preprint at bioRxiv https://doi.org/10.1101/2025.06.13.659495 (2025).

  174. Herskowitz, I. Functional inactivation of genes by dominant negative mutations. Nature 329, 219–222 (1987).

    Article  PubMed  CAS  Google Scholar 

  175. Gerasimavicius, L., Livesey, B. J. & Marsh, J. A. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat. Commun. 13, 3895 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  176. Badonyi, M. & Marsh, J. A. Prevalence of loss-of-function, gain-of-function and dominant-negative mechanisms across genetic disease phenotypes. Nat. Commun. 16, 8392 (2025).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  177. Pal, T., Dibyachintan, S., Cisneros, A. F. & Landry, C. R. Phenotypic dominance emerges from activity fitness functions and molecular interactions. Genetics https://doi.org/10.1093/genetics/iyaf254 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wente, S. R. & Schachman, H. K. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Proc. Natl Acad. Sci. USA 84, 31–35 (1987).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  179. Ringel, A. E. et al. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination. PLoS Genet. 9, e1003871 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Pérez-Bercoff, A., Makino, T. & McLysaght, A. Duplicability of self-interacting human genes. BMC Evol. Biol. 10, 160 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Diss, G. et al. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 355, 630–634 (2017).

    Article  PubMed  CAS  Google Scholar 

  182. Marchant, A. et al. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 8, e46754 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Singh, P. P. et al. On the expansion of ‘dangerous’ gene repertoires by whole-genome duplications in early vertebrates. Cell Rep. 2, 1387–1398 (2012).

    Article  PubMed  CAS  Google Scholar 

  184. Malaguti, G., Singh, P. P. & Isambert, H. On the retention of gene duplicates prone to dominant deleterious mutations. Theor. Popul. Biol. 93, 38–51 (2014).

    Article  PubMed  Google Scholar 

  185. Baker, C. R., Hanson-Smith, V. & Johnson, A. D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342, 104–108 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  186. Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  187. Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  188. Marques, A. C., Vinckenbosch, N., Brawand, D. & Kaessmann, H. Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol. 9, R54 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bruno, L. et al. Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Nat. Immunol. 20, 1372–1380 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  190. Yeh, C.-W. et al. Altered assembly paths mitigate interference among paralogous complexes. Nat. Commun. 15, 7169 (2024).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  191. Mallik, S. & Tawfik, D. S. Determining the interaction status and evolutionary fate of duplicated homomeric proteins. PLoS Comput. Biol. 16, e1008145 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  192. Mallik, S., Cisneros, A. F., Landry, C. R. & Levy, E. D. Co-translational assembly promotes functional diversification of paralogous proteins. Preprint at bioRxiv https://doi.org/10.1101/2025.01.22.634331 (2025). This preprint shows that homomeric paralogues typically emerge due to barriers against heteromerization and have a higher functional divergence than heteromeric ones, with co-translational assembly acting as a strong barrier against heteromerization.

  193. Hsiao, T.-L. & Vitkup, D. Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet. 4, e1000014 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Dean, E. J., Davis, J. C., Davis, R. W. & Petrov, D. A. Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genet. 4, e1000113 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Dandage, R. & Landry, C. R. Paralog dependency indirectly affects the robustness of human cells. Mol. Syst. Biol. 15, e8871 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  196. Greco, B. M. et al. PARPAL: PARalog Protein Redistribution using Abundance and Localization in yeast database. G3 Genes Genomes Genet. https://doi.org/10.1093/g3journal/jkaf148 (2025).

    Article  Google Scholar 

  197. Després, P. C. et al. Compensatory mutations potentiate constructive neutral evolution by gene duplication. Science 385, 770–775 (2024). Using deep mutational scanning libraries, this study identifies more than 200 pairs of loss-of-function alleles that complement each other when forming heteromers, representing direct examples of subfunctionalization and dependency between duplicates.

    Article  PubMed  Google Scholar 

  198. Boncoeur, E. et al. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry 51, 7755–7765 (2012).

    Article  PubMed  CAS  Google Scholar 

  199. Emlaw, J. R. et al. A single historical substitution drives an increase in acetylcholine receptor complexity. Proc. Natl Acad. Sci. USA 118, e2018731118 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  200. Ashenberg, O., Rozen-Gagnon, K., Laub, M. T. & Keating, A. E. Determinants of homodimerization specificity in histidine kinases. J. Mol. Biol. 413, 222–235 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  201. Finnigan, G. C., Hanson-Smith, V., Stevens, T. H. & Thornton, J. W. Evolution of increased complexity in a molecular machine. Nature 481, 360–364 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  202. Hochberg, G. K. A. et al. A hydrophobic ratchet entrenches molecular complexes. Nature 588, 503–508 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  203. Kim, T.-Y., Ha, C. W. & Huh, W.-K. Differential subcellular localization of ribosomal protein L7 paralogs in Saccharomyces cerevisiae. Mol. Cell 27, 539–546 (2009).

    Article  CAS  Google Scholar 

  204. Natan, E., Wells, J. N., Teichmann, S. A. & Marsh, J. A. Regulation, evolution and consequences of cotranslational protein complex assembly. Curr. Opin. Struct. Biol. 42, 90–97 (2017).

    Article  PubMed  CAS  Google Scholar 

  205. Natan, E. et al. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nat. Struct. Mol. Biol. 25, 279–288 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  206. Shiber, A. et al. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561, 268–272 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  207. Mallik, S. et al. Structural determinants of co-translational protein complex assembly. Cell 188, 764–777.e22 (2025).

    Article  PubMed  CAS  Google Scholar 

  208. Bertolini, M. et al. Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. Science 371, 57–64 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  209. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    Article  PubMed  CAS  Google Scholar 

  210. Keeling, D. M., Garza, P., Nartey, C. M. & Carvunis, A.-R. The meanings of ‘function’ in biology and the problematic case of de novo gene emergence. eLife 8, e47014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Stoltzfus, A. On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181 (1999).

    Article  PubMed  CAS  Google Scholar 

  212. Assis, R. et al. Models for the retention of duplicate genes and their biological underpinnings. F1000Research 12, 1400 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Presser, A., Elowitz, M. B., Kellis, M. & Kishony, R. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication. Proc. Natl Acad. Sci. USA 105, 950–954 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  214. Sandve, S. R., Rohlfs, R. V. & Hvidsten, T. R. Subfunctionalization versus neofunctionalization after whole-genome duplication. Nat. Genet. 50, 908–909 (2018).

    Article  PubMed  CAS  Google Scholar 

  215. Assis, R. & Bachtrog, D. Neofunctionalization of young duplicate genes in Drosophila. Proc. Natl Acad. Sci. USA 110, 17409–17414 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  216. Braasch, I. et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427–437 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  217. Fitch, W. M. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406–416 (1971).

    Article  Google Scholar 

  218. Pauling, L. & Zuckerkandl, E. Chemical paleogenetics: molecular “restoration studies” of extinct forms of life. Acta Chem. Scand. 17, S9–S16 (1963).

    Article  CAS  Google Scholar 

  219. Vialle, R. A., Tamuri, A. U. & Goldman, N. Alignment modulates ancestral sequence reconstruction accuracy. Mol. Biol. Evol. 35, 1783–1797 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  220. Hochberg, G. K. A. & Thornton, J. W. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys. 46, 247–269 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  221. Schulz, L. et al. Evolution of increased complexity and specificity at the dawn of form I Rubiscos. Science 378, 155–160 (2022).

    Article  PubMed  CAS  Google Scholar 

  222. Ng, J. Z. Y. et al. Origin of chaperone dependence and assembly complexity in Rubisco’s biogenesis. Preprint at bioRxiv https://doi.org/10.1101/2025.09.22.677769 (2025).

  223. Merkl, R. & Sterner, R. Ancestral protein reconstruction: techniques and applications. Biol. Chem. 397, 1–21 (2016).

    Article  PubMed  CAS  Google Scholar 

  224. Cano, A. et al. Misrepresenting biases in arrival: a comment on Svensson. Preprint at EcoEvoRxiv https://doi.org/10.32942/X2SG6V (2022).

  225. Stoltzfus, A. & Norris, R. W. On the causes of evolutionary transition:transversion bias. Mol. Biol. Evol. 33, 595–602 (2016).

    Article  PubMed  CAS  Google Scholar 

  226. Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl Acad. Sci. USA 109, E2774–E2783 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  227. Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate and spectrum in yeast. Proc. Natl Acad. Sci. USA 111, E2310–E2318 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  228. Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  229. Petrov, D. A. & Hartl, D. L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc. Natl Acad. Sci. USA 96, 1475–1479 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  230. Hershberg, R. & Petrov, D. A. Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet. 6, e1001115 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Lynch, M. R. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  232. Matsushita, T. & Kano-Sueoka, T. Non-random codon usage of synonymous and non-synonymous mutations in the human HLA-A gene. J. Mol. Evol. 91, 169–191 (2023).

    Article  PubMed  CAS  Google Scholar 

  233. Fryxell, K. J. & Moon, W.-J. CpG mutation rates in the human genome are highly dependent on local GC content. Mol. Biol. Evol. 22, 650–658 (2005).

    Article  PubMed  CAS  Google Scholar 

  234. Wojciechowski, M., Czapinska, H. & Bochtler, M. CpG underrepresentation and the bacterial CpG-specific DNA methyltransferase M.MpeI. Proc. Natl Acad. Sci. USA 110, 105–110 (2013).

    Article  PubMed  CAS  Google Scholar 

  235. Cano, A. V., Rozhoňová, H., Stoltzfus, A., McCandlish, D. M. & Payne, J. L. Mutation bias shapes the spectrum of adaptive substitutions. Proc. Natl Acad. Sci. USA 119, e2119720119 (2022).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  236. Horton, J. S. & Taylor, T. B. Mutation bias and adaptation in bacteria. Microbiology 169, 001404 (2023).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  237. Mendez, R., Fritsche, M., Porto, M. & Bastolla, U. Mutation bias favors protein folding stability in the evolution of small populations. PLoS Comput. Biol. 6, e1000767 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Levy, E. D. A simple definition of structural regions in proteins and its use in analyzing interface evolution. J. Mol. Biol. 403, 660–670 (2010).

    Article  PubMed  CAS  Google Scholar 

  239. Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244–247 (2017).

    Article  PubMed  CAS  Google Scholar 

  240. Yampolsky, L. Y. & Stoltzfus, A. Bias in the introduction of variation as an orienting factor in evolution. Evol. Dev. 3, 73–83 (2001).

    Article  PubMed  CAS  Google Scholar 

  241. Cano, A. V. & Payne, J. L. Mutation bias interacts with composition bias to influence adaptive evolution. PLoS Comput. Biol. 16, e1008296 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  242. Gitschlag, B. L., Stoltzfus, A. & McCandlish, D. M. Molecular adaptation reflects taxon-specific mutational biases. Preprint at bioRxiv https://doi.org/10.1101/2025.09.03.674101 (2025).

  243. McShea, H. et al. The effectiveness of selection in a species affects the direction of amino acid frequency evolution. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526552 (2025).

  244. Schaper, S. & Louis, A. A. The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PLoS One 9, e86635 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Sung, W., Ackerman, M. S., Miller, S. F., Doak, T. G. & Lynch, M. Drift-barrier hypothesis and mutation-rate evolution. Proc. Natl Acad. Sci. USA 109, 18488–18492 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Landry lab members for discussions during the project and thank G. Bernal Astrain and P. Venkataraman for their comments on the manuscript. C.R.L. holds the Canada Research Chair in Cellular Systems and Synthetic Biology.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Christian R. Landry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Absolute dosage subfunctionalization

(ADS). A model proposing that selection acts jointly on two duplicate genes to maintain their cumulative abundance close to an optimum.

Active compensation

The modulation of the expression level of a gene in response to a change in expression or loss of function of its paralogue.

Arrival biases

The preferential fixations of genotypes because they were the first to appear out of a group of equally beneficial genotypes.

Compensatory drift

The evolution of the expression levels of paralogous genes under relaxed selection, as long as the total expression stays relatively constant.

Co-translational assembly

The formation of protein complexes during the translation of at least one the subunits, typically driven by nascent N-terminal interfaces.

Deep mutational scanning

A saturation mutagenesis technique that systematically generates every possible amino acid substitution and/or indels at every position in a sequence.

Dominant-negative mutations

Mutations that cause the loss of function of a gene and are dominant over wild-type alleles, for example, because they negatively affect function by forming inactive heteromers.

Evolutionary contingencies

Referring to the sensitivity of evolution to previous states, often resulting from the fact that mutations modify the effects of subsequent mutations.

Expression levels

The amounts of functional products produced from gene copies, resulting from the combination of transcription, translation, post-transcriptional regulation and degradation.

Expression noise

Variation in gene expression among genetically identical cells in the same environment.

Fitness function

The relationship between fitness and expression level for a gene of interest, with every point along the curve indicating the fitness value corresponding to a given expression level.

Fixation

The increase in frequency of an allele in a population to 100%.

Global epistasis

Epistasis occurring at the level of biological effects even though the substitutions behave additively with respect to the physical properties of a protein, because of a nonlinear relationship between the physical properties and the biological effects, such as fitness.

Homomers

Protein complexes composed of multiple copies of a protein produced from the same locus or allelic loci. By contrast, heteromers are protein complexes composed of protein subunits produced from different loci.

Interaction specificity

The property of a protein to selectively interact with one partner and not with others.

Neofunctionalization

Process by which one gene of a duplicate pair acquires a new function.

Paralogue interference

A phenomenon by which the binding of a protein to its paralogue alters its function and thus the effects of mutations at its locus.

Permissive mutations

Mutations that reduce the deleterious effects of other mutations. Also called compensatory mutations.

Relaxed selection

The decrease in magnitude of the fitness effects of mutations in a sequence of interest, allowing it to accumulate mutations that would have otherwise been deleterious.

Specific epistasis

Epistasis occurring because the effects of two substitutions on a phenotype combine non-additively due to local interactions.

Subfunctionalization

Process by which two duplicates partition the functions of their ancestral gene.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cisneros, A.F., Dibyachintan, S., Bédard, F. et al. Evolutionary causes and consequences of gene duplication. Nat Rev Genet (2026). https://doi.org/10.1038/s41576-026-00935-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41576-026-00935-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing