Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Functional cure of HIV: the scale of the challenge

Abstract

A variety of interventions to induce a functional cure of HIV are being explored, with the aim being to allow patients to cease antiretroviral therapy (ART) for prolonged periods of time or for life. These interventions share the goal of inducing ART-free remission from HIV pathogenesis and disease progression but achieve this in quite different ways, by reducing the size of the latent reservoir (for example, small-molecule stimulation of latently infected cells), reducing the number of target cells available for the virus (for example, gene therapy) or improving immune responses (for example, active or passive immunotherapy). Here, we consider a number of these alternative strategies for inducing post-treatment control of HIV and use mathematical modelling to predict the scale of the challenge inherent in these different approaches. For many approaches, over 99.9% efficacy will likely be required to induce durable ART-free remissions. The efficacy of individual approaches is currently far below what we predict will be necessary, and new technologies to achieve lifelong functional cure are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential effects of interventions to control latency.
Fig. 2: Predicting the effects of reducing the reservoir or the frequency of reactivation on the duration of remission.
Fig. 3: Modelling the impact of gene therapy on HIV remission.
Fig. 4: Effects of immune therapies on HIV remission.
Fig. 5: Predicting synergies from combination therapy.
Fig. 6: Predicting the potency of different latency interventions.

Similar content being viewed by others

References

  1. Pinkevych, M. et al. HIV reactivation from latency after treatment interruption occurs on average every 5–8 days—implications for HIV remission. PLOS Pathog. 11, e1005000 (2015).

    Article  Google Scholar 

  2. Bloch, M. T. et al. The role of hydroxyurea in enhancing the virologic control achieved through structured treatment interruption in primary HIV infection: final results from a randomized clinical trial (Pulse). J. Acquir. Immune Def. Syndr. 42, 192–202 (2006).

    Article  CAS  Google Scholar 

  3. Henrich, T. J. et al. Antiretroviral-rree HIV-1 remission and viral rebound after allogeneic stem cell transplantation. Ann. Intern. Med. 161, 319 (2014).

    Article  Google Scholar 

  4. Luzuriaga, K. et al. Viremic relapse after HIV-1 remission in a perinatally infected child. N. Engl. J. Med. 372, 786–788 (2015).

    Article  CAS  Google Scholar 

  5. Lisziewicz, J. et al. Control of HIV despite the discontinuation of antiretroviral therapy. N. Engl. J. Med. 340, 1683–1683 (1999).

    Article  CAS  Google Scholar 

  6. Cromer, D. et al. Modeling of antilatency treatment in HIV: what is the optimal duration of antiretroviral therapy-free HIV remission? J. Virol. 91, e01395-17 (2017).

    Article  CAS  Google Scholar 

  7. Henrich, T. J. et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: an observational study. PLOS Med. 14, e1002417 (2017).

    Article  Google Scholar 

  8. Colby, D. J. et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat. Med. 24, 923–926 (2018).

    Article  CAS  Google Scholar 

  9. Deeks, S. G. Shock and kill. Nature 487, 439 (2012).

    Article  CAS  Google Scholar 

  10. Elliott, J. H. et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLOS Pathog. 10, e1004473 (2014).

    Article  Google Scholar 

  11. Sogaard, O. S. et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLOS Pathog. 11, e1005142 (2015).

    Article  Google Scholar 

  12. Rasmussen, T. A. et al. Panobinostat, a histone deacetylase inhibitor, for latent- virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1, e13–e21 (2014).

    Article  Google Scholar 

  13. Petravic, J., Rasmussen, T. A., Lewin, S. R., Kent, S. J. & Davenport, M. P. Relationship between measures of HIV reactivation and decline of the latent reservoir under latency-reversing agents. J. Virol. 91, e02092-16 (2017).

    Article  CAS  Google Scholar 

  14. Hiener, B. et al. Identification of genetically intact HIV-1 proviruses in specific CD4+ T cells from effectively treated participants. Cell Rep 21, 813–822 (2017).

    Article  CAS  Google Scholar 

  15. Kaminski, R. et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. 23, 690–695 (2016).

    Article  CAS  Google Scholar 

  16. Kaminski, R. et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci. Rep. 6, 22555 (2016).

    Article  CAS  Google Scholar 

  17. Wang, G., Zhao, N., Berkhout, B. & Das, A. T. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol. Ther. 24, 522–526 (2016).

    Article  CAS  Google Scholar 

  18. Zhu, W. et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12, 22 (2015).

    Article  Google Scholar 

  19. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  Google Scholar 

  20. Hütter, G. et al. CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses 7, 4186–4203 (2015).

    Article  Google Scholar 

  21. Nowak, M. & May, R. M. in Virus Dynamics: Mathematical Principles of Immunology and Virology (Oxford Univ. Press, 2000).

  22. Ribeiro, R. M. et al. Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection. J. Virol. 84, 6096–6102 (2010).

    Article  CAS  Google Scholar 

  23. Matrajt, L., Younan, P. M., Kiem, H. P. & Schiffer, J. T. The majority of CD4+ T-cell depletion during acute simian-human immunodeficiency virus SHIV89.6P infection occurs in uninfected cells. J. Virol. 88, 3202–3212 (2014).

    Article  Google Scholar 

  24. Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808 (2008).

    Article  CAS  Google Scholar 

  25. Sáez-Cirión, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLOS Pathog. 9, e1003211 (2013).

    Article  Google Scholar 

  26. Sneller, M. C. et al. A randomized controlled safety/efficacy trial of therapeutic vaccination in HIV-infected individuals who initiated antiretroviral therapy early in infection. Sci. Transl Med. 9, eaan8848 (2017).

    Article  Google Scholar 

  27. Saez-Cirion, A., Jacquelin, B., Barré-Sinoussi, F. & Müller-Trutwin, M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Phil. Trans. R. Soc. Lond, B, Biol. Sci. 369, 20130436 (2014).

    Article  CAS  Google Scholar 

  28. Conway, J. M. & Perelson, A. S. Post-treatment control of HIV infection. Proc. Natl Acad. Sci. USA 112, 5467–5472 (2015).

    Article  CAS  Google Scholar 

  29. Gianella, S., Anderson, C. M., Richman, D. D., Smith, D. M. & Little, S. J. No evidence of post treatment control after early initiation of antiretroviral therapy in the San Diego primary infection cohort. AIDS 29, 2093–2097 (2015).

    Article  CAS  Google Scholar 

  30. Calin, R. et al. Treatment interruption in chronically HIV-infected patients with an ultralow HIV reservoir. AIDS 30, 761–769 (2016).

    Article  CAS  Google Scholar 

  31. de Souza, M. S. et al. Initiation of antiretroviral therapy during acute HIV-1 infection leads to a high rate of nonreactive HIV serology. Clin. Infect. Dis. 63, 555–561 (2016).

    Article  Google Scholar 

  32. Dong, K. L. et al. Detection and treatment of Fiebig stage I HIV-1 infection in young at-risk women in South Africa: a prospective cohort study. Lancet HIV 5, e35–e44 (2018).

    Article  Google Scholar 

  33. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T cell exhaustion and disease progression. Nature 443, 350 (2006).

    Article  CAS  Google Scholar 

  34. Mattapallil, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  Google Scholar 

  35. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  Google Scholar 

  36. Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).

    Article  CAS  Google Scholar 

  37. Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284–287 (2016).

    Article  CAS  Google Scholar 

  38. Barouch, D. H. et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228 (2014).

    Article  Google Scholar 

  39. Burton, S. L. et al. Breakthrough of SIV strain smE660 challenge in SIV strain mac239-vaccinated rhesus macaques despite potent autologous neutralizing antibody responses. Proc. Natl Acad. Sci. USA 112, 10780–10785 (2015).

    Article  CAS  Google Scholar 

  40. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    Article  CAS  Google Scholar 

  41. Hessell, A. J. et al. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 15, 951–954 (2009).

    Article  CAS  Google Scholar 

  42. Gautam, R. et al. A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat. Med. 24, 610–616 (2018).

    Article  CAS  Google Scholar 

  43. Bar, K. J., Sneller, M. & Harrison, L. J. Effect of HIV-specific antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050 (2016).

    Article  CAS  Google Scholar 

  44. Scheid, J. F. et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535, 556–560 (2016).

    Article  CAS  Google Scholar 

  45. Nishimura, Y. et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature 543, 559–563 (2017).

    Article  CAS  Google Scholar 

  46. Byrareddy, S. N. et al. Sustained virologic control in SIV+macaques after antiretroviral and α4β7 antibody therapy. Science 354, 197–202 (2016).

    Article  CAS  Google Scholar 

  47. Grijsen, M. L. et al. No treatment versus 24 or 60 weeks of antiretroviral treatment during primary HIV infection: the randomized Primo-SHM trial. PLOS Med. 9, e1001196 (2012).

    Article  Google Scholar 

  48. Davenport, M. P., Loh, L., Petravic, J. & Kent, S. J. Rates of HIV immune escape and reversion: implications for vaccination. Trends Microbiol. 16, 561–566 (2008).

    Article  CAS  Google Scholar 

  49. Namazi, G. et al. The control of HIV after antiretroviral medication pause (CHAMP) study: post-treatment controllers identified from 14 clinical studies. J. Infect. Dis. https://doi.org/10.1093/infdis/jiy479 (2018).

    Article  PubMed  Google Scholar 

  50. Bernal, E. et al. Low-level viremia is associated with clinical progression in HIV-infected patients receiving antiretroviral treatment. J. Acquir. Immune Def. Syndr. 78, 329–337 (2018).

    Article  Google Scholar 

  51. Bavinton, B. R. et al. Viral suppression and HIV transmission in serodiscordant male couples: an international, prospective, observational, cohort study. Lancet HIV 5, e438–e447 (2018).

    Article  Google Scholar 

  52. Rodger, A. J. et al. Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-positive partner is using suppressive antiretroviral therapy. JAMA 316, 171–181 (2016).

    Article  Google Scholar 

  53. Hill, A. L., Rosenbloom, D. I. S., Fu, F., Nowak, M. A. & Siliciano, R. F. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl Acad. Sci. USA 111, 13475–13480 (2014).

    Article  CAS  Google Scholar 

  54. Rong, L. & Perelson, A. S. Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol. 260, 308–331 (2009).

    Article  Google Scholar 

  55. Michor, F. & Beal, K. Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort. Cell 163, 1059–1063 (2015).

    Article  CAS  Google Scholar 

  56. Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).

    Article  Google Scholar 

  57. Sharaf, R. R. & Li, J. Z. The alphabet soup of HIV reservoir markers. Curr. HIV/AIDS Rep. 14, 72–81 (2017).

    Article  Google Scholar 

  58. Eriksson, S. et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLOS Pathog. 9, e1003174 (2013).

    Article  CAS  Google Scholar 

  59. Williams, J. P. et al. HIV-1 DNA predicts disease progression and post-treatment virological control. eLife 3, e03821 (2014).

    Article  Google Scholar 

  60. Li, J. Z. et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS 30, 343–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Reeves, D. B. et al. Anti-proliferative therapy for HIV cure: a compound interest approach. Sci. Rep. 7, 4011 (2017).

    Article  Google Scholar 

  62. Fennessey, C. M. et al. Genetically-barcoded SIV facilitates enumeration of rebound variants and estimation of reactivation rates in nonhuman primates following interruption of suppressive antiretroviral therapy. PLOS Pathog. 13, e1006359 (2017).

    Article  Google Scholar 

  63. Pennings, P. S. Standing genetic variation and the evolution of drug resistance in HIV. PLOS Comput. Biol. 8, e1002527 (2012).

    Article  CAS  Google Scholar 

  64. Pinkevych, M. et al. Modeling of experimental data supports HIV reactivation from latency after treatment interruption on average once every 5–8 days. PLOS Pathog. 12, e1005740 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors receive funding support in the form of research grants and fellowships from the National Health and Medical Research Council (NHMRC) of Australia, the Australian Research Council and the National Institutes of Health (NIH). S.R.L. receives additional research funding support from The American Foundation for AIDS Research (amFAR).

Competing interests

The authors declare potential competing interests: S.R.L. receives investigator-initiated grant funding from ViiV, Merck and Gilead Sciences. She has provided paid consultancies to AbbVie and received honoraria for chairing meetings from Gilead, ViiV, Merck and BMS. A.D.K. receives non-financial support from Merck and Cytognos for the conduct of clinical trials outside this work and grants from Calimmune and Celgene. S.J.K. reports grants and personal fees from ViiV HealthCare and Gilead Sciences and grants from Johnson and Johnson and Sanofi Pasteur. M.P.D., D.S.K. and D.C. declare no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

M.P.D., D.S.K. and D.C. researched data for the article. M.P.D., D.S.K., D.C., S.R.L., A.D.K. and S.J.K. reviewed and edited the manuscript before submission, made substantial contributions to the discussion of content and wrote the manuscript.

Corresponding author

Correspondence to Miles P. Davenport.

Ethics declarations

Reviewer information

Nature Reviews Immunology thanks N. Goonetilleke and other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davenport, M.P., Khoury, D.S., Cromer, D. et al. Functional cure of HIV: the scale of the challenge. Nat Rev Immunol 19, 45–54 (2019). https://doi.org/10.1038/s41577-018-0085-4

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-018-0085-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research