Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cell regeneration after immunological injury

Abstract

Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the dynamics and determinants of T cell reconstitution after haematopoietic cell transplantation.
Fig. 2: Simplified overview of T cell generation with regenerative strategies after immune injury.

Similar content being viewed by others

References

  1. Nikolich-Žugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004). This review provides an overview of the diversity of TCRαβ T cells in relation to the maintenance of an optimal immune response.

    PubMed  Google Scholar 

  2. Čičin-Šain, L. et al. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J. Immunol. 184, 6739–6745 (2010).

    PubMed  Google Scholar 

  3. Yager, E. J. et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205, 711–723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yew, P. Y. et al. Quantitative characterization of T-cell repertoire in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transpl. 50, 1227–1234 (2015).

    CAS  Google Scholar 

  5. Van Heijst, J. W. J. et al. Quantitative assessment of T cell repertoire recovery after hematopoietic stem cell transplantation. Nat. Med. 19, 372–377 (2013). This study analyses changes in the TCRβ chain diversity following HSCT and their association with infections, GVHD and age.

    PubMed  PubMed Central  Google Scholar 

  6. Takahama, Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat. Rev. Immunol. 6, 127–135 (2006).

    CAS  PubMed  Google Scholar 

  7. Toubert, A., Glauzy, S., Douay, C. & Clave, E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens 79, 83–89 (2012). This is a detailed review of the role of the thymus in allogeneic HSCT recipients and the use of TRECs to quantify its function.

    CAS  PubMed  Google Scholar 

  8. Admiraal, R. et al. Leukemia-free survival in myeloid leukemia, but not in lymphoid leukemia, is predicted by early CD4+ reconstitution following unrelated cord blood transplantation in children: a multicenter retrospective cohort analysis. Bone Marrow Transpl. 51, 1376–1378 (2016).

    CAS  Google Scholar 

  9. Small, T. N. et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 93, 467–480 (1999).

    CAS  PubMed  Google Scholar 

  10. Goldberg, J. D. et al. Early recovery of T-cell function predicts improved survival after T-cell depleted allogeneic transplant. Leuk. Lymphoma 58, 1859–1871 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fedele, R. et al. The impact of early CD4+ lymphocyte recovery on the outcome of patients who undergo allogeneic bone marrow or peripheral blood stem cell transplantation. Blood Transfus. 10, 174–180 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Storek, J., Gooley, T., Witherspoon, R. P., Sullivan, K. M. & Storb, R. Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am. J. Hematol. 54, 131–138 (1997).

    CAS  PubMed  Google Scholar 

  13. Powles, R. et al. Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 91, 3481–3486 (1998).

    CAS  PubMed  Google Scholar 

  14. Le Blanc, K. et al. Lymphocyte recovery is a major determinant of outcome after matched unrelated myeloablative transplantation for myelogenous malignancies. Biol. Blood Marrow Transplant. 15, 1108–1115 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Maury, S. et al. Prolonged immune deficiency following allogeneic stem cell transplantation: risk factors and complications in adult patients. Br. J. Haematol. 115, 630–641 (2001).

    CAS  PubMed  Google Scholar 

  16. Hopkins, A. C. et al. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3, e122092 (2018).

    PubMed Central  Google Scholar 

  17. Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 14, e1002309 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Arakawa, A. et al. Clonality of CD4+ blood T cells predicts longer survival with CTLA4 or PD-1 checkpoint inhibition in advanced melanoma. Front. Immunol. 10, 1336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Postow, M. A. et al. Peripheral T cell receptor diversity is associated with clinical outcomes following ipilimumab treatment in metastatic melanoma. J. Immunother. Cancer 3, 23 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Nixon, A. B. et al. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J. Immunother. Cancer 7, 325 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Baldridge, M. T., King, K. Y. & Goodell, M. A. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 32, 57–65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ueda, Y., Kondo, M. & Kelsoe, G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J. Exp. Med. 201, 1771–1780 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kong, Y. et al. Sepsis-induced thymic atrophy is associated with defects in early lymphopoiesis. Stem Cell 34, 2902–2915 (2016).

    CAS  Google Scholar 

  24. Savino, W. The thymus is a common target organ in infectious diseases. PLoS Pathog. 2, e62 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Chen, W. et al. Low dose aerosol infection of mice with virulent type A Francisella tularensis induces severe thymus atrophy and CD4+CD8+ thymocyte depletion. Microb. Pathog. 39, 189–196 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Majumdar, S. et al. Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma. Sci. Rep. 7, 40793 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Majumdar, S. & Nandi, D. Thymic atrophy: experimental studies and therapeutic interventions. Scand. J. Immunol. 87, 4–14 (2018). This review provides an overview of the numerous factors linked to the atrophy of the thymus.

    CAS  PubMed  Google Scholar 

  28. Berki, T., Palinkas, L., Boldizsar, F. & Nemeth, P. Glucocorticoid (GC) sensitivity and GC receptor expression differ in thymocyte subpopulations. Int. Immunol. 14, 463–469 (2002).

    CAS  PubMed  Google Scholar 

  29. Linhares-Lacerda, L. et al. Differential expression of microRNAs in thymic epithelial cells from Trypanosoma cruzi acutely infected mice: putative role in thymic atrophy. Front. Immunol. 6, 428 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Autran, B. et al. Thymocyte and thymic microenvironment alterations during a systemic HIV infection in a severe combined immunodeficient mouse model. AIDS 10, 717–727 (1996).

    CAS  PubMed  Google Scholar 

  31. Valentin, H. et al. Measles virus infection induces terminal differentiation of human thymic epithelial cells. J. Virol. 73, 2212–2221 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Messias, C. V. et al. Zika virus targets the human thymic epithelium. Sci. Rep. 10, 1378 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Savino, W., Leite-de-Moraes, M. C., Hontebeyrie-Joskowicz, M. & Dardenne, M. Studies on the thymus in Chagas’ disease. I. Changes in the thymic microenvironment in mice acutely infected with Trypanosoma cruzi. Eur. J. Immunol. 19, 1727–1733 (1989).

    CAS  PubMed  Google Scholar 

  34. Cotta-de-Almeida, V., Bertho, A. L., Villa-Verde, D. M. & Savino, W. Phenotypic and functional alterations of thymic nurse cells following acute Trypanosoma cruzi infection. Clin. Immunol. Immunopathol. 82, 125–132 (1997).

    CAS  PubMed  Google Scholar 

  35. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sempowski, G. D. et al. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J. Immunol. 164, 2180–2187 (2000).

    CAS  PubMed  Google Scholar 

  37. Carbajosa, S. et al. Altered bone marrow lymphopoiesis and interleukin-6-dependent inhibition of thymocyte differentiation contribute to thymic atrophy during Trypanosoma cruzi infection. Oncotarget 8, 17551–17561 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Liepinsh, D. J. et al. Accelerated thymic atrophy as a result of elevated homeostatic expression of the genes encoded by the TNF/lymphotoxin cytokine locus. Eur. J. Immunol. 39, 2906–2915 (2009).

    CAS  PubMed  Google Scholar 

  39. Zhang, X. et al. Viral and host factors related to the clinical outcome of COVID-19. Nature 583, 437–440 (2020).

    CAS  PubMed  Google Scholar 

  40. Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).

    CAS  PubMed  Google Scholar 

  41. Ross, E. A. et al. Thymic function is maintained during Salmonella-induced atrophy and recovery. J. Immunol. 189, 4266–4274 (2012).

    CAS  PubMed  Google Scholar 

  42. Anz, D. et al. Activation of melanoma differentiation-associated gene 5 causes rapid involution of the thymus. J. Immunol. 182, 6044–6050 (2009).

    CAS  PubMed  Google Scholar 

  43. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    CAS  PubMed  Google Scholar 

  44. Dion, M. L. et al. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21, 757–768 (2004).

    CAS  PubMed  Google Scholar 

  45. Kalayjian, R. C. et al. Age-related immune dysfunction in health and in human immunodeficiency virus (HIV) disease: association of age and HIV infection with naive CD8+ cell depletion, reduced expression of CD28 on CD8+ cells, and reduced thymic volumes. J. Infect. Dis. 187, 1924–1933 (2003).

    PubMed  Google Scholar 

  46. Deeks, S. G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med. 62, 141–155 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mackall, C. L. et al. Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84, 2221–2228 (1994).

    CAS  PubMed  Google Scholar 

  48. Meng, A., Wang, Y., Van Zant, G. & Zhou, D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res. 63, 5414–5419 (2003).

    CAS  PubMed  Google Scholar 

  49. Wang, Y., Schulte, B. A., LaRue, A. C., Ogawa, M. & Zhou, D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107, 358–366 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, V. W. et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J. Exp. Med. 212, 759–774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao, S. et al. Sublethal total body irradiation causes long-term deficits in thymus function by reducing lymphoid progenitors. J. Immunol. 199, 2701–2712 (2017).

    CAS  PubMed  Google Scholar 

  53. Ito, R. et al. Late effects of exposure to ionizing radiation and age on human thymus morphology and function. Radiat. Res. 187, 589–598 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Choyke, P. L. et al. Thymic atrophy and regrowth in response to chemotherapy: CT evaluation. Am. J. Roentgenol. 149, 269–272 (1987).

    CAS  Google Scholar 

  55. Heng, T. S. et al. Effects of castration on thymocyte development in two different models of thymic involution. J. Immunol. 175, 2982–2993 (2005).

    CAS  PubMed  Google Scholar 

  56. Gentil Dit Maurin, A. et al. Developmental regulation of p53-dependent radiation-induced thymocyte apoptosis in mice. Clin. Exp. Immunol. 179, 30–38 (2015).

    CAS  PubMed  Google Scholar 

  57. Gray, D. H. et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108, 3777–3785 (2006).

    CAS  PubMed  Google Scholar 

  58. Fletcher, A. L. et al. Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J. Immunol. 183, 823–831 (2009).

    CAS  PubMed  Google Scholar 

  59. Williams, K. M. et al. Single cell analysis of complex thymus stromal cell populations: rapid thymic epithelia preparation characterizes radiation injury. Clin. Transl. Sci. 2, 279–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sano, S. et al. Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity 15, 261–273 (2001).

    CAS  PubMed  Google Scholar 

  61. Lomada, D. et al. Stat3 signaling promotes survival and maintenance of medullary thymic epithelial cells. PLoS Genet. 12, e1005777 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Satoh, R. et al. Requirement of Stat3 signaling in the postnatal development of thymic medullary epithelial cells. PLoS Genet. 12, e1005776 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Gray, D., Abramson, J., Benoist, C. & Mathis, D. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J. Exp. Med. 204, 2521–2528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dudakov, J. A. et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science 336, 91–95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wertheimer, T. et al. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci. Immunol. 3, eaal2736 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Sfikakis, P. P. et al. Age-related thymic activity in adults following chemotherapy-induced lymphopenia. Eur. J. Clin. Invest. 35, 380–387 (2005).

    CAS  PubMed  Google Scholar 

  67. Mackall, C. L. T-cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cell 18, 10–18 (2000).

    CAS  Google Scholar 

  68. Mackall, C. L. et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N. Engl. J. Med. 332, 143–149 (1995).

    CAS  PubMed  Google Scholar 

  69. Hakim, F. T. et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest. 115, 930–939 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mackall, C. L. et al. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89, 3700–3707 (1997).

    CAS  PubMed  Google Scholar 

  71. Fagnoni, F. F. et al. T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology 106, 27–37 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, S. J., Chen, A. T. & Welsh, R. M. Immune system derived from homeostatic proliferation generates normal CD8 T-cell memory but altered repertoires and diminished heterologous immune responses. Blood 112, 680–689 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeiser, R. Introduction to a review series on pathophysiology and treatment of acute GVHD. Blood 136, 375–376 (2020).

    CAS  PubMed  Google Scholar 

  74. Arnold, R. et al. Hemopoietic reconstitution after bone marrow transplantation. Exp. Hematol. 14, 271–277 (1986).

    CAS  PubMed  Google Scholar 

  75. Krenger, W. & Hollander, G. A. The immunopathology of thymic GVHD. Semin. Immunopathol. 30, 439–456 (2008).

    PubMed  Google Scholar 

  76. Shono, Y. et al. Bone marrow graft-versus-host disease: early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood 115, 5401–5411 (2010).

    CAS  PubMed  Google Scholar 

  77. Mensen, A. et al. Bone marrow T-cell infiltration during acute GVHD is associated with delayed B-cell recovery and function after HSCT. Blood 124, 963–972 (2014).

    CAS  PubMed  Google Scholar 

  78. Krenger, W., Rossi, S. & Hollander, G. A. Apoptosis of thymocytes during acute graft-versus-host disease is independent of glucocorticoids. Transplantation 69, 2190–2193 (2000).

    CAS  PubMed  Google Scholar 

  79. Hauri-Hohl, M. M. et al. Donor T-cell alloreactivity against host thymic epithelium limits T-cell development after bone marrow transplantation. Blood 109, 4080–4088 (2007). This study investigates the molecular and cellular mechanisms underlying the impact of GVHD on TEC function.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dudakov, J. A. et al. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood 130, 933–942 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, T. et al. Thymic damage, impaired negative selection, and development of chronic graft-versus-host disease caused by donor CD4+ and CD8+ T cells. J. Immunol. 191, 488–499 (2013).

    CAS  PubMed  Google Scholar 

  82. Dertschnig, S., Hauri-Hohl, M. M., Vollmer, M., Hollander, G. A. & Krenger, W. Impaired thymic expression of tissue-restricted antigens licenses the de novo generation of autoreactive CD4+ T cells in acute GVHD. Blood 125, 2720–2723 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Przybylski, G. K., Kreuzer, K. A., Siegert, W. & Schmidt, C. A. No recovery of T-cell receptor excision circles (TRECs) after non-myeloablative allogeneic hematopoietic stem cell transplantation is correlated with the onset of GvHD. J. Appl. Genet. 48, 397–404 (2007).

    PubMed  Google Scholar 

  84. Link-Rachner, C. S. et al. T-cell receptor-alpha repertoire of CD8+ T cells following allogeneic stem cell transplantation using next-generation sequencing. Haematologica 104, 622–631 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Meyer, E. H. et al. A distinct evolution of the T-cell repertoire categorizes treatment refractory gastrointestinal acute graft-versus-host disease. Blood 121, 4955–4962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Clave, E. et al. Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood 113, 6477–6484 (2009).

    CAS  PubMed  Google Scholar 

  87. Blazar, B. R., Murphy, W. J. & Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 12, 443–458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    CAS  PubMed  Google Scholar 

  89. Weinberger, B., Herndler-Brandstetter, D., Schwanninger, A., Weiskopf, D. & Grubeck-Loebenstein, B. Biology of immune responses to vaccines in elderly persons. Clin. Infect. Dis. 46, 1078–1084 (2008).

    PubMed  Google Scholar 

  90. McElhaney, J. E. & Effros, R. B. Immunosenescence: what does it mean to health outcomes in older adults? Curr. Opin. Immunol. 21, 418–424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Thompson, W. W. et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186 (2003).

    PubMed  Google Scholar 

  92. Tsutsumi, Y. et al. Monitoring of T-cell repertoire was useful for predicting graft-versus-host disease prognosis in a patient with chronic myelogeneous leukemia after allogeneic bone marrow transplantation. Transplant. Proc. 36, 3200–3202 (2004).

    CAS  PubMed  Google Scholar 

  93. Kamminga, L. M. et al. Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cell 23, 82–92 (2005).

    CAS  Google Scholar 

  94. Zediak, V. P., Maillard, I. & Bhandoola, A. Multiple prethymic defects underlie age-related loss of T progenitor competence. Blood 110, 1161–1167 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Beerman, I., Maloney, W. J., Weissmann, I. L. & Rossi, D. J. Stem cells and the aging hematopoietic system. Curr. Opin. Immunol. 22, 500–506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gonzalez-Vicent, M. et al. Donor age matters in T-cell depleted haploidentical hematopoietic stem cell transplantation in pediatric patients: Faster immune reconstitution using younger donors. Leuk. Res. 57, 60–64 (2017).

    PubMed  Google Scholar 

  97. Montecino-Rodriguez, E. et al. Lymphoid-biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny. Stem Cell Rep. 12, 584–596 (2019). This study shows that the lymphoid-biased HSCs do not decline in number with age but exhibit changes in gene expression and acquire a myeloid-biased genetic profile.

    CAS  Google Scholar 

  98. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007).

    CAS  PubMed  Google Scholar 

  100. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    CAS  PubMed  Google Scholar 

  101. Fraga, M. F. Genetic and epigenetic regulation of aging. Curr. Opin. Immunol. 21, 446–453 (2009).

    CAS  PubMed  Google Scholar 

  102. Florian, M. C. et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 16, e2003389 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell. Biol. 20, 303–320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Donnini, A., Re, F., Orlando, F. & Provinciali, M. Intrinsic and microenvironmental defects are involved in the age-related changes of Lin- c-kit+ hematopoietic progenitor cells. Rejuvenation Res. 10, 459–472 (2007).

    CAS  PubMed  Google Scholar 

  105. Ergen, A. V., Boles, N. C. & Goodell, M. A. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119, 2500–2509 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J. Immunol. 173, 245–250 (2004).

    CAS  PubMed  Google Scholar 

  107. Hakim, F. T. & Gress, R. E. Immunosenescence: deficits in adaptive immunity in the elderly. Tissue Antigens 70, 179–189 (2007).

    CAS  PubMed  Google Scholar 

  108. Flores, K. G., Li, J., Sempowski, G. D., Haynes, B. F. & Hale, L. P. Analysis of the human thymic perivascular space during aging. J. Clin. Invest. 104, 1031–1039 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mackall, C. L., Punt, J. A., Morgan, P., Farr, A. G. & Gress, R. E. Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution. Eur. J. Immunol. 28, 1886–1893 (1998).

    CAS  PubMed  Google Scholar 

  110. Kim, M. J., Miller, C. M., Shadrach, J. L., Wagers, A. J. & Serwold, T. Young, proliferative thymic epithelial cells engraft and function in aging thymuses. J. Immunol. 194, 4784–4795 (2015).

    CAS  PubMed  Google Scholar 

  111. Zhu, X. et al. Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell 6, 663–672 (2007).

    CAS  PubMed  Google Scholar 

  112. Wu, H., Qin, X., Dai, H. & Zhang, Y. Time-course transcriptome analysis of medullary thymic epithelial cells in the early phase of thymic involution. Mol. Immunol. 99, 87–94 (2018).

    CAS  PubMed  Google Scholar 

  113. Ki, S. et al. Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution. Cell Rep. 9, 402–415 (2014). This work analyses age-associated transcriptional changes of thymic stromal cells and provides an intuitive online tool to visualize the data.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ferrando-Martinez, S. et al. WNT signaling suppression in the senescent human thymus. J. Gerontol. A. Biol. Sci. Med. Sci. 70, 273–281 (2015).

    CAS  PubMed  Google Scholar 

  115. Lynch, H. E. et al. Thymic involution and immune reconstitution. Trends Immunol. 30, 366–373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jamieson, B. D. et al. Generation of functional thymocytes in the human adult. Immunity 10, 569–575 (1999).

    CAS  PubMed  Google Scholar 

  117. Drabkin, M. J. et al. Age-stratified patterns of thymic involution on multidetector CT. J. Thorac. Imaging 33, 409–416 (2018).

    PubMed  Google Scholar 

  118. den Braber, I. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012).

    Google Scholar 

  119. Mold, J. E. et al. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLoS Biol. 17, e3000383 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Murray, J. M. et al. Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol. Cell. Biol. 81, 487–495 (2003).

    PubMed  Google Scholar 

  121. Nikolich-Zugich, J. & Rudd, B. D. Immune memory and aging: an infinite or finite resource? Curr. Opin. Immunol. 22, 535–540 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Britanova, O. V. et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).

    CAS  PubMed  Google Scholar 

  123. Palmer, S., Albergante, L., Blackburn, C. C. & Newman, T. J. Thymic involution and rising disease incidence with age. Proc. Natl Acad. Sci. USA 115, 1883–1888 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nikolich-Zugich, J. et al. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience 42, 505–514 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Small, T. N. et al. Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and posttransplant graft rejection prophylaxis. Biol. Blood Marrow Transpl. 3, 65–75 (1997).

    CAS  Google Scholar 

  126. Wils, E. J. et al. Insufficient recovery of thymopoiesis predicts for opportunistic infections in allogeneic hematopoietic stem cell transplant recipients. Haematologica 96, 1846–1854 (2011).

    PubMed  PubMed Central  Google Scholar 

  127. Kim, D. H. et al. Rapid helper T-cell recovery above 200 × 106/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transpl. 37, 1119–1128 (2006).

    CAS  Google Scholar 

  128. Mackall, C. L., Fry, T. J. & Gress, R. E. Harnessing the biology of IL-7 for therapeutic application. Nat. Rev. Immunol. 11, 330–342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    CAS  PubMed  Google Scholar 

  130. Onder, L. et al. IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120, 4675–4683 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Laky, K. et al. Enterocyte expression of interleukin 7 induces development of gammadelta T cells and Peyer’s patches. J. Exp. Med. 191, 1569–1580 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in T-B+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    CAS  PubMed  Google Scholar 

  133. Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    CAS  PubMed  Google Scholar 

  134. Fischer, A., Notarangelo, L. D., Neven, B., Cavazzana, M. & Puck, J. M. Severe combined immunodeficiencies and related disorders. Nat. Rev. Dis. Prim. 1, 15061 (2015).

    PubMed  Google Scholar 

  135. Fry, T. J. et al. A potential role for interleukin-7 in T-cell homeostasis. Blood 97, 2983–2990 (2001).

    CAS  PubMed  Google Scholar 

  136. Alpdogan, O. et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J. Clin. Invest. 112, 1095–1107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Alpdogan, O. et al. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood 98, 2256–2265 (2001).

    CAS  PubMed  Google Scholar 

  138. Perales, M. A. et al. Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation. Blood 120, 4882–4891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Abdul-Hai, A. et al. Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp. Hematol. 24, 1416–1422 (1996).

    CAS  PubMed  Google Scholar 

  140. Levy, Y. et al. Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin. Infect. Dis. 55, 291–300 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sportes, C. et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. 205, 1701–1714 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rosenberg, S. A. et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother. 29, 313–319 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tredan, O. et al. ELYPSE-7: a randomized placebo-controlled phase IIa trial with CYT107 exploring the restoration of CD4+ lymphocyte count in lymphopenic metastatic breast cancer patients. Ann. Oncol. 26, 1353–1362 (2015).

    CAS  PubMed  Google Scholar 

  144. Sheikh, V. et al. Administration of interleukin-7 increases CD4 T cells in idiopathic CD4 lymphocytopenia. Blood 127, 977–988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, H. K. et al. Distinct IL-7 signaling in recent thymic emigrants versus mature naive T cells controls T-cell homeostasis. Eur. J. Immunol. 46, 1669–1680 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Azevedo, R. I. et al. IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner. Blood 113, 2999–3007 (2009).

    CAS  PubMed  Google Scholar 

  147. Chu, Y. W. et al. Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 104, 1110–1119 (2004).

    CAS  PubMed  Google Scholar 

  148. Okoye, A. A. et al. Effect of IL-7 therapy on naive and memory T cell homeostasis in aged rhesus macaques. J. Immunol. 195, 4292–4305 (2015).

    CAS  PubMed  Google Scholar 

  149. Finch, P. W. & Rubin, J. S. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv. Cancer. Res. 91, 69–136 (2004).

    CAS  PubMed  Google Scholar 

  150. Rossi, S. W. et al. Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 109, 3803–3811 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Erickson, M. et al. Regulation of thymic epithelium by keratinocyte growth factor. Blood 100, 3269–3278 (2002).

    CAS  PubMed  Google Scholar 

  152. Rossi, S. et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100, 682–691 (2002).

    CAS  PubMed  Google Scholar 

  153. Alpdogan, O. et al. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 107, 2453–2460 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Min, D. et al. Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99, 4592–4600 (2002).

    CAS  PubMed  Google Scholar 

  155. Wang, Y. et al. Keratinocyte growth factor enhanced immune reconstitution in murine allogeneic umbilical cord blood cell transplant. Leuk. Lymphoma 52, 1556–1566 (2011).

    CAS  PubMed  Google Scholar 

  156. Min, D. et al. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109, 2529–2537 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Wils, E. J. et al. Keratinocyte growth factor and stem cell factor to improve thymopoiesis after autologous CD34+ cell transplantation in rhesus macaques. Biol. Blood Marrow Transpl. 18, 55–65 (2012).

    CAS  Google Scholar 

  158. Kelly, R. M. et al. Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution after murine bone marrow transplantation. Blood 111, 5734–5744 (2008). This article shows that the combination of sex steroid ablation and KGF results in the preservation of thymic architecture, enhancement of T cell development and improvement of the T cell repertoire.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Coles, A. J. et al. Keratinocyte growth factor impairs human thymic recovery from lymphopenia. JCI Insight 4, e125377 (2019).

    PubMed Central  Google Scholar 

  160. Goldstein, A. L., Guha, A., Zatz, M. M., Hardy, M. A. & White, A. Purification and biological activity of thymosin, a hormone of the thymus gland. Proc. Natl Acad. Sci. USA 69, 1800–1803 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hirokawa, K., McClure, J. E. & Goldstein, A. L. Age-related changes in localization of thymosin in the human thymus. Thymus 4, 19–29 (1982).

    CAS  PubMed  Google Scholar 

  162. Wang, F., Yu, T., Zheng, H. & Lao, X. Thymosin alpha1-Fc modulates the immune system and down-regulates the progression of melanoma and breast cancer with a prolonged half-life. Sci. Rep. 8, 12351 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Knutsen, A. P., Freeman, J. J., Mueller, K. R., Roodman, S. T. & Bouhasin, J. D. Thymosin-alpha1 stimulates maturation of CD34+ stem cells into CD3+4+ cells in an in vitro thymic epithelia organ coculture model. Int. J. Immunopharmacol. 21, 15–26 (1999).

    CAS  PubMed  Google Scholar 

  164. Perruccio, K. et al. Thymosin alpha1 to harness immunity to pathogens after haploidentical hematopoietic transplantation. Ann. N. Y. Acad. Sci. 1194, 153–161 (2010).

    CAS  PubMed  Google Scholar 

  165. Liu, Y. et al. Thymosin alpha 1 (Talpha1) reduces the mortality of severe COVID-19 by restoration of lymphocytopenia and reversion of exhausted T cells. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa630 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Calzolari, A. Recherches experimentales sur un rapport probable entre la function du thymus et celle des testicules. Arch. Ital. Biol. 30, 71–77 (1898). This article presents one of the very first observations suggesting a relationship between sex steroids and thymic function.

    Google Scholar 

  167. Velardi, E. et al. Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. J. Exp. Med. 211, 2341–2349 (2014). This study demonstrates that androgens suppress thymic function through the direct negative regulation of DLL4 expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Zoller, A. L. & Kersh, G. J. Estrogen induces thymic atrophy by eliminating early thymic progenitors and inhibiting proliferation of beta-selected thymocytes. J. Immunol. 176, 7371–7378 (2006).

    CAS  PubMed  Google Scholar 

  169. Khong, D. M. et al. Enhanced hematopoietic stem cell function mediates immune regeneration following sex steroid blockade. Stem Cell Rep. 4, 445–458 (2015).

    CAS  Google Scholar 

  170. Dudakov, J. A. et al. Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. J. Immunol. 183, 7084–7094 (2009).

    CAS  PubMed  Google Scholar 

  171. Dudakov, J. A., Goldberg, G. L., Reiseger, J. J., Chidgey, A. P. & Boyd, R. L. Withdrawal of sex steroids reverses age- and chemotherapy-related defects in bone marrow lymphopoiesis. J. Immunol. 182, 6247–6260 (2009).

    CAS  PubMed  Google Scholar 

  172. Goldberg, G. L. et al. Luteinizing hormone-releasing hormone enhances T cell recovery following allogeneic bone marrow transplantation. J. Immunol. 182, 5846–5854 (2009).

    CAS  PubMed  Google Scholar 

  173. Sutherland, J. S. et al. Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 175, 2741–2753 (2005).

    CAS  PubMed  Google Scholar 

  174. Windmill, K. F. & Lee, V. W. Effects of castration on the lymphocytes of the thymus, spleen and lymph nodes. Tissue Cell 30, 104–111 (1998).

    CAS  PubMed  Google Scholar 

  175. Williams, K. M. et al. CCL25 increases thymopoiesis after androgen withdrawal. Blood 112, 3255–3263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sutherland, J. S. et al. Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade. Clin. Cancer Res. 14, 1138–1149 (2008). This is the first observation showing that pharmacological ablation of sex steroids enhances immune recovery in HCT recipients.

    CAS  PubMed  Google Scholar 

  177. Griffith, A. V., Fallahi, M., Venables, T. & Petrie, H. T. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11, 169–177 (2012).

    CAS  PubMed  Google Scholar 

  178. Taub, D. D., Murphy, W. J. & Longo, D. L. Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr. Opin. Pharmacol. 10, 408–424 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Hattori, N. Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm. IGF Res. 19, 187–197 (2009).

    CAS  PubMed  Google Scholar 

  180. Napolitano, L. A. et al. Growth hormone enhances thymic function in HIV-1-infected adults. J. Clin. Invest. 118, 1085–1098 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Napolitano, L. A. et al. Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16, 1103–1111 (2002).

    CAS  PubMed  Google Scholar 

  182. Chen, B. J., Cui, X., Sempowski, G. D. & Chao, N. J. Growth hormone accelerates immune recovery following allogeneic T-cell-depleted bone marrow transplantation in mice. Exp. Hematol. 31, 953–958 (2003).

    CAS  PubMed  Google Scholar 

  183. Morrhaye, G. et al. Impact of growth hormone (GH) deficiency and GH replacement upon thymus function in adult patients. PLoS ONE 4, e5668 (2009).

    PubMed  PubMed Central  Google Scholar 

  184. Fahy, G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen, T. et al. IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. Exp. Hematol. 35, 203–213 (2007).

    CAS  PubMed  Google Scholar 

  186. Li, L. et al. IL-12 inhibits thymic involution by enhancing IL-7- and IL-2-induced thymocyte proliferation. J. Immunol. 172, 2909–2916 (2004).

    CAS  PubMed  Google Scholar 

  187. Bailey, C. P. et al. New interleukin-15 superagonist (IL-15SA) significantly enhances graft-versus-tumor activity. Oncotarget 8, 44366–44378 (2017).

    PubMed  PubMed Central  Google Scholar 

  188. Alpdogan, O. et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 105, 865–873 (2005).

    CAS  PubMed  Google Scholar 

  189. Sauter, C. T. et al. Interleukin-15 administration increases graft-versus-tumor activity in recipients of haploidentical hematopoietic SCT. Bone Marrow Transpl. 48, 1237–1242 (2013).

    CAS  Google Scholar 

  190. Rafei, M., Dumont-Lagace, M., Rouette, A. & Perreault, C. Interleukin-21 accelerates thymic recovery from glucocorticoid-induced atrophy. PLoS ONE 8, e72801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Tormo, A. et al. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J. Hematol. Oncol. 10, 120 (2017).

    PubMed  PubMed Central  Google Scholar 

  192. Al-Chami, E. et al. Interleukin-21 administration to aged mice rejuvenates their peripheral T-cell pool by triggering de novo thymopoiesis. Aging Cell 15, 349–360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Pan, B. et al. Donor T-cell-derived interleukin-22 promotes thymus regeneration and alleviates chronic graft-versus-host disease in murine allogeneic hematopoietic cell transplant. Int. Immunopharmacol. 67, 194–201 (2019).

    CAS  PubMed  Google Scholar 

  194. Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

    CAS  PubMed  Google Scholar 

  195. Roberts, N. A. et al. Rank signaling links the development of invariant γδ T cell progenitors and Aire+ medullary epithelium. Immunity 36, 427–437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Rossi, S. W. et al. RANK signals from CD4+3- inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 204, 1267–1272 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Lopes, N., Vachon, H., Marie, J. & Irla, M. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol. Med. 9, 835–851 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Tumanov, A. V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 44–53 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat+ innate lymphocytes. Immunity 33, 736–751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17, 823–833 (2002).

    CAS  PubMed  Google Scholar 

  202. Gendron, S., Boisvert, M., Chetoui, N. & Aoudjit, F. Alpha1beta1 integrin and interleukin-7 receptor up-regulate the expression of RANKL in human T cells and enhance their osteoclastogenic function. Immunology 125, 359–369 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Gordon, J., Patel, S. R., Mishina, Y. & Manley, N. R. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev. Biol. 339, 141–154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Bleul, C. C. & Boehm, T. BMP signaling is required for normal thymus development. J. Immunol. 175, 5213–5221 (2005).

    CAS  PubMed  Google Scholar 

  205. Tsai, P. T., Lee, R. A. & Wu, H. BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 102, 3947–3953 (2003).

    CAS  PubMed  Google Scholar 

  206. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  209. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Thompson, H. L. et al. Lymph nodes as barriers to T-cell rejuvenation in aging mice and nonhuman primates. Aging Cell 18, e12865 (2019).

    PubMed  Google Scholar 

  211. Clise-Dwyer, K., Huston, G. E., Buck, A. L., Duso, D. K. & Swain, S. L. Environmental and intrinsic factors lead to antigen unresponsiveness in CD4+ recent thymic emigrants from aged mice. J. Immunol. 178, 1321–1331 (2007).

    CAS  PubMed  Google Scholar 

  212. Becklund, B. R. et al. The aged lymphoid tissue environment fails to support naive T cell homeostasis. Sci. Rep. 6, 30842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 10, 617 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Palchaudhuri, R. et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat. Biotechnol. 34, 738–745 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Czechowicz, A., Kraft, D., Weissman, I. L. & Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007). Together with the articles by Czechowicz et al. (2019) and Palchaudhuri et al. (2016), this article documents the use of non-genotoxic conditioning approaches to deplete host haematopoietic cells in the BM niche and allow donor HSC engraftment.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Mackall, C. L. et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97, 1491–1497 (2001).

    CAS  PubMed  Google Scholar 

  217. Fry, T. J. et al. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101, 2294–2299 (2003).

    CAS  PubMed  Google Scholar 

  218. Montero-Herradon, S., Garcia-Ceca, J. & Zapata, A. G. altered maturation of medullary TEC in EphB-deficient thymi is recovered by RANK signaling stimulation. Front. Immunol. 9, 1020 (2018).

    PubMed  PubMed Central  Google Scholar 

  219. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    CAS  PubMed  Google Scholar 

  220. Rizwan, R. et al. Peritransplant palifermin use and lymphocyte recovery after T-cell replete, matched related allogeneic hematopoietic cell transplantation. Am. J. Hematol. 86, 879–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Seggewiss, R. et al. Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 110, 441–449 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Goldberg, J. D. et al. Palifermin is efficacious in recipients of TBI-based but not chemotherapy-based allogeneic hematopoietic stem cell transplants. Bone Marrow Transpl. 48, 99–104 (2013).

    CAS  Google Scholar 

  223. Jacobson, J. M. et al. A randomized controlled trial of palifermin (recombinant human keratinocyte growth factor) for the treatment of inadequate CD4+ T-lymphocyte recovery in patients with HIV-1 infection on antiretroviral therapy. J. Acquir. Immune. Defic. Syndr. 66, 399–406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Fry, T. J. et al. Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood 104, 2794–2800 (2004).

    CAS  PubMed  Google Scholar 

  225. Wils, E. J. et al. Flt3 ligand expands lymphoid progenitors prior to recovery of thymopoiesis and accelerates T cell reconstitution after bone marrow transplantation. J. Immunol. 178, 3551–3557 (2007).

    CAS  PubMed  Google Scholar 

  226. Williams, K. M. et al. FLT3 ligand regulates thymic precursor cells and hematopoietic stem cells through interactions with CXCR4 and the marrow niche. Exp. Hematol. 52, 40–49 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Alpdogan, O. et al. Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation 75, 1977–1983 (2003).

    CAS  PubMed  Google Scholar 

  228. Chu, Y. W. et al. Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 112, 2836–2846 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Patchen, M. L., Fischer, R., Schmauder-Chock, E. A. & Williams, D. E. Mast cell growth factor enhances multilineage hematopoietic recovery in vivo following radiation-induced aplasia. Exp. Hematol. 22, 31–39 (1994).

    CAS  PubMed  Google Scholar 

  230. Chung, B. et al. Combined effects of interleukin-7 and stem cell factor administration on lymphopoiesis after murine bone marrow transplantation. Biol. Blood Marrow Transpl. 17, 48–60 (2011).

    CAS  Google Scholar 

  231. Wils, E. J. et al. Stem cell factor consistently improves thymopoiesis after experimental transplantation of murine or human hematopoietic stem cells in immunodeficient mice. J. Immunol. 187, 2974–2981 (2011).

    CAS  PubMed  Google Scholar 

  232. Ding, J.-H. et al. The role of Tα1 on the infective patients after hematopoietic stem cell transplantation. Int. J. Hematol. 97, 280–283 (2013).

    CAS  PubMed  Google Scholar 

  233. Sirohi, B. et al. Use of physiological doses of human growth hormone in haematological patients receiving intensive chemotherapy promotes haematopoietic recovery: a double-blind randomized, placebo-controlled study. Bone Marrow Transpl. 39, 115–120 (2007).

    CAS  Google Scholar 

  234. Carlo-Stella, C. et al. Age- and irradiation-associated loss of bone marrow hematopoietic function in mice is reversed by recombinant human growth hormone. Exp. Hematol. 32, 171–178 (2004).

    CAS  PubMed  Google Scholar 

  235. Dixit, V. D. et al. Ghrelin promotes thymopoiesis during aging. J. Clin. Invest. 117, 2778–2790 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Lai, K. P. et al. Targeting thymic epithelia AR enhances T-cell reconstitution and bone marrow transplant grafting efficacy. Mol. Endocrinol. 27, 25–37 (2013).

    CAS  PubMed  Google Scholar 

  237. Heng, T. S. et al. Impact of sex steroid ablation on viral, tumour and vaccine responses in aged mice. PLoS ONE 7, e42677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Goldberg, G. L. et al. Sex steroid ablation enhances immune reconstitution following cytotoxic antineoplastic therapy in young mice. J. Immunol. 184, 6014–6024 (2010).

    CAS  PubMed  Google Scholar 

  239. Goldberg, G. L. et al. Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J. Immunol. 178, 7473–7484 (2007).

    CAS  PubMed  Google Scholar 

  240. Velardi, E. et al. Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nat. Med. 24, 239–246 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Zakrzewski, J. L. et al. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat. Biotechnol. 26, 453–461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Holland, A. M., Zakrzewski, J. L., Goldberg, G. L., Ghosh, A. & van den Brink, M. R. Adoptive precursor cell therapy to enhance immune reconstitution after hematopoietic stem cell transplantation in mouse and man. Semin. Immunopathol. 30, 479–487 (2008).

    PubMed  PubMed Central  Google Scholar 

  243. Zakrzewski, J. L. et al. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat. Med. 12, 1039–1047 (2006).

    CAS  PubMed  Google Scholar 

  244. Dallas, M. H., Varnum-Finney, B., Martin, P. J. & Bernstein, I. D. Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1. Blood 109, 3579–3587 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Awong, G. et al. Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 122, 4210–4219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Smith, M. J. et al. T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2, e92056 (2017).

    PubMed Central  Google Scholar 

  247. Batorov, E. V. et al. Mesenchymal stromal cells improve early lymphocyte recovery and T cell reconstitution after autologous hematopoietic stem cell transplantation in patients with malignant lymphomas. Cell Immunol. 297, 80–86 (2015).

    CAS  PubMed  Google Scholar 

  248. Choi, D. W. et al. Cotransplantation of tonsil derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning. Int. J. Mol. Med. 46, 1166–1174 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Su, M. et al. Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci. Rep. 5, 9882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Bredenkamp, N. et al. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat. Cell. Biol. 16, 902–908 (2014). This study demonstrates that enforced expression of FOXN1 is sufficient to reprogramme fibroblasts into functional TECs capable of supporting T cell differentiation when transferred in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Lai, L. et al. Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation. Blood 118, 3410–3418 (2011).

    CAS  PubMed  Google Scholar 

  252. Parent, A. V. et al. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem. Cell 13, 219–229 (2013).

    CAS  PubMed  Google Scholar 

  253. Bortolomai, I. et al. Gene modification and three-dimensional scaffolds as novel tools to allow the use of postnatal thymic epithelial cells for thymus regeneration approaches. Stem Cell Transl. Med. 8, 1107–1122 (2019).

    CAS  Google Scholar 

  254. Otsuka, R. et al. Efficient generation of thymic epithelium from induced pluripotent stem cells that prolongs allograft survival. Sci. Rep. 10, 224 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Shah, N. J. et al. An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat. Biotechnol. 7, 293–302 (2019). This work shows that the injection of an engineered BM-like scaffold enhances T cell neogenesis and diversification of TCRs in mouse models of HCT.

    Google Scholar 

  256. Chung, B. et al. Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cell 32, 2386–2396 (2014).

    Google Scholar 

  257. Fan, Y. et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol. Ther. 23, 1262–1277 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. van der Maas, N. G., Berghuis, D., van der Burg, M. & Lankester, A. C. B cell reconstitution and influencing factors after hematopoietic stem cell transplantation in children. Front. Immunol. 10, 782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Abdel-Azim, H., Elshoury, A., Mahadeo, K. M., Parkman, R. & Kapoor, N. Humoral immune reconstitution kinetics after allogeneic hematopoietic stem cell transplantation in children: a maturation block of IgM memory B cells may lead to impaired antibody immune reconstitution. Biol. Blood Marrow Transpl. 23, 1437–1446 (2017).

    CAS  Google Scholar 

  260. Sarantopoulos, S., Blazar, B. R., Cutler, C. & Ritz, J. B cells in chronic graft-versus-host disease. Biol. Blood Marrow Transpl. 21, 16–23 (2015).

    CAS  Google Scholar 

  261. Park, B. G. et al. Reconstitution of lymphocyte subpopulations after hematopoietic stem cell transplantation: comparison of hematologic malignancies and donor types in event-free patients. Leuk. Res. 39, 1334–1341 (2015).

    PubMed  Google Scholar 

  262. Marie-Cardine, A. et al. Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. Clin. Immunol. 127, 14–25 (2008).

    CAS  PubMed  Google Scholar 

  263. Buser, A. et al. Impaired B-cell reconstitution in lymphoma patients undergoing allogeneic HSCT: an effect of pretreatment with rituximab? Bone Marrow Transpl. 42, 483–487 (2008).

    CAS  Google Scholar 

  264. Scarselli, A. et al. Longitudinal evaluation of immune reconstitution and B-cell function after hematopoietic cell transplantation for primary immunodeficiency. J. Clin. Immunol. 35, 373–383 (2015).

    CAS  PubMed  Google Scholar 

  265. Small, T. N. et al. B-cell differentiation following autologous, conventional, or T-cell depleted bone marrow transplantation: a recapitulation of normal B-cell ontogeny. Blood 76, 1647–1656 (1990).

    CAS  PubMed  Google Scholar 

  266. Pao, M. et al. Response to pneumococcal (PNCRM7) and haemophilus influenzae conjugate vaccines (HIB) in pediatric and adult recipients of an allogeneic hematopoietic cell transplantation (alloHCT). Biol. Blood Marrow Transpl. 14, 1022–1030 (2008).

    CAS  Google Scholar 

  267. Omazic, B., Lundkvist, I., Mattsson, J., Permert, J. & Näsman-Björk, I. Memory B lymphocytes determine repertoire oligoclonality early after haematopoietic stem cell transplantation. Clin. Exp. Immunol. 134, 159–166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Glas, A. M. et al. B-cell-autonomous somatic mutation deficit following bone marrow transplant. Blood 96, 1064–1069 (2000).

    CAS  PubMed  Google Scholar 

  269. Sethi, M. K. et al. VH1 family immunoglobulin repertoire sequencing after allogeneic hematopoietic stem cell transplantation. PLoS ONE 12, e0168096 (2017).

    PubMed  PubMed Central  Google Scholar 

  270. Lakshmikanth, T. et al. Mass cytometry and topological data analysis reveal immune parameters associated with complications after allogeneic stem cell transplantation. Cell Rep. 20, 2238–2250 (2017).

    CAS  PubMed  Google Scholar 

  271. van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18, 363–373 (2018).

    PubMed  Google Scholar 

  272. Haines, C. J. et al. Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J. Exp. Med. 206, 275–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. McFarland, R. D., Douek, D. C., Koup, R. A. & Picker, L. J. Identification of a human recent thymic emigrant phenotype. Proc. Natl Acad. Sci. USA 97, 4215–4220 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Brezinschek, R. I., Oppenheimer-Marks, N. & Lipsky, P. E. Activated T cells acquire endothelial cell surface determinants during transendothelial migration. J. Immunol. 162, 1677–1684 (1999).

    CAS  PubMed  Google Scholar 

  275. Pekalski, M. L. et al. Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight 2, e93739 (2017).

    PubMed Central  Google Scholar 

  276. Kimmig, S. et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J. Exp. Med. 195, 789–794 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. van den Beemd, R. et al. Flow cytometric analysis of the Vbeta repertoire in healthy controls. Cytometry 40, 336–345 (2000).

    PubMed  Google Scholar 

  278. Verfuerth, S. et al. Longitudinal monitoring of immune reconstitution by CDR3 size spectratyping after T-cell-depleted allogeneic bone marrow transplant and the effect of donor lymphocyte infusions on T-cell repertoire. Blood 95, 3990–3995 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the US National Cancer Institute (R01-CA228358, R01-CA228308, R01-HL147584, P30-CA008748 Memorial Sloan Kettering Cancer Center Support Grant/Core Grant and Project 2 of P01-CA023766), the US National Heart, Lung, and Blood Institute (R01-HL125571 and R01-HL123340), the US National Institute on Aging (Project 2 of P01-AG052359), the Tri-Institutional Stem Cell Initiative (2016-013) and the US National Institute of Allergy and Infectious Diseases (U01-AI124275) to M.R.M.v.d.B., the Amy Strelzer Manasevit Research Program, the Italian Association for Cancer Research and the Italian Ministry of Health (Ricerca Corrente programme) to E.V. and a Society of Memorial Sloan Kettering Cancer Center Scholars Award to J.J.T. Additional funding was received from The Lymphoma Foundation, the Susan and Peter Solomon Divisional Genomics Program and the Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center and Seres Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Enrico Velardi or Marcel R. M. van den Brink.

Ethics declarations

Competing interests

M.R.M.v.d.B. has received research support and stock options from Seres Therapeutics, has received royalties from Wolters Kluwer, has consulted for, received honoraria from or participated in advisory boards for Seres Therapeutics, Jazz Pharmaceuticals, Rheos, Therakos, WindMIL Therapeutics, Amgen, Merck & Co. Inc., Magenta Therapeutics, DKMS Medical Council (board), Forty Seven Inc. (spouse), Pharmacyclics (spouse) and Kite Pharmaceuticals (spouse) and has intellectual property licensing agreements with Seres Therapeutics and Juno Therapeutics. E.V. has acted as a consultant for and received honoraria from Ferring Pharmaceuticals. M.R.M.v.d.B. is an inventor on a patent application (US2015/058095) submitted by Memorial Sloan Kettering Cancer Center. Two provisional patent applications have been filed (US 15/033,178 and US 62/566,897) with E.V. and M.R.M.v.d.B. listed as inventors. J.J.T. declares no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks K. Weinberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Thymic epithelial cells

(TECs). The major component of thymic stroma that supports all stages of thymocyte development. They are further divided into cortical and medullary TECs on the basis of their localization within the thymus and are crucial for the positive and negative selection of thymocytes, respectively.

Graft-versus-host disease

(GVHD). Following allogeneic bone marrow transplantation, donor-derived T cells can be activated by residual host-derived antigen-presenting cells. The resulting T cell reactivity can escalate into the life-threatening condition known as GVHD, which targets mainly the skin, liver and intestines. Acute GVHD is a rapid response against recipient tissues that usually manifests itself within 100 days following haematopoietic cell transplantation, whereas chronic GVHD is reactions that occur after 100 days.

Sepsis

A severe, life-threatening form of infection characterized by systemic inflammatory response with resultant multi-organ failure followed by immunosuppression.

Glucocorticoids

A group of compounds that belong to the corticosteroid family. These compounds can be either naturally produced (hormones) or synthetic. They affect metabolism and have anti-inflammatory and immunosuppressive effects. Many synthetic glucocorticoids (for example, dexamethasone) are used in clinical medicine as anti-inflammatory drugs.

Conditioning regimens

Also known as preparative regimens. A combination of chemotherapy, radiotherapy and/or immunosuppressive medications that is designed not only to destroy residual malignant cells but also to provide space for donor stem cell engraftment and to provide immunosuppression to prevent host rejection of the donor stem cells.

TCR excision circles

(TRECs). Non-replicative DNA episomes that are normally produced as by-products during T cell receptor (TCR) rearrangement in thymocytes. They are therefore expressed only in T cells of thymic origin and provide a useful tool to assess thymic function and recovery of the T cell pool.

Common lymphoid progenitors

Progenitors of lymphoid cell lineages, which include B cells, T cells, natural killer cells and innate lymphoid cells. Bone marrow common lymphoid progenitors are defined by their expression of the interleukin-7 receptor, FMS-related tyrosine kinase 3 (FLT3) and KIT, and the absence of all conventional lineage markers.

Innate lymphoid cells

(ILCs). A group of innate immune cells that are lymphoid in morphology and developmental origin but lack properties of adaptive B cells and T cells such as recombined antigen-specific receptors. They function in the regulation of immunity, tissue homeostasis and inflammation in response to cytokine stimulation.

Allogeneic HCT

Transplantation approach involving transfer of haematopoietic cells from a healthy donor to a patient after conditioning with high-intensity chemotherapy or irradiation. This approach can be used to treat either malignant or non-malignant disorders. Mismatches between the histocompatibility antigens of the donor and the patient can lead to adverse events, such as rejection of the transplanted graft or pathological immune responses to normal tissues in the patient.

Cytokine receptor common subunit-γ

A chain common to type I cytokine receptors. It was first discovered as the γ-chain of the interleukin-2 (IL-2) receptor and was subsequently shown also to be present in the receptors for IL-4, IL-7, IL-9, IL-15 and IL-21. Gene mutations affecting this γ-chain in humans result in absence of T cells and natural killer cells, a condition termed X-linked severe combined immunodeficiency.

Recent thymic emigrants

(RTEs). Semimature T cells that have left the thymus but have yet to undergo the final stages of maturation. Typically a window of around 2 weeks after thymic maturation is used to differentiate between RTEs and fully mature T cells.

Lymphoid tissue inducer (LTi) cells

Cells that are present in developing lymph nodes, Peyer’s patches and nasopharynx-associated lymphoid tissue. They are required for the development of these lymphoid organs and are characterized by expression of the transcription factor RORγt, interleukin-7 receptor-α and lymphotoxin-α1β2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velardi, E., Tsai, J.J. & van den Brink, M.R.M. T cell regeneration after immunological injury. Nat Rev Immunol 21, 277–291 (2021). https://doi.org/10.1038/s41577-020-00457-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-020-00457-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing