Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity

Abstract

Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They are implicated in the regulation of immune responses in many pathological conditions and are closely associated with poor clinical outcomes in cancer. Recent studies have indicated key distinctions between MDSCs and classical neutrophils and monocytes, and, in this Review, we discuss new data on the major genomic and metabolic characteristics of MDSCs. We explain how these characteristics shape MDSC function and could facilitate therapeutic targeting of these cells, particularly in cancer and in autoimmune diseases. Additionally, we briefly discuss emerging data on MDSC involvement in pregnancy, neonatal biology and COVID-19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinguishing MDSCs from classical neutrophils and monocytes.
Fig. 2: Metabolic characteristics of MDSCs.
Fig. 3: Contribution of MDSCs to the formation of the premetastatic niche.
Fig. 4: Targeting MDSCs in cancer and autoimmune diseases.

Similar content being viewed by others

References

  1. Gabrilovich, D. I. et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67, 425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dorhoi, A. et al. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. J. Clin. Invest. 130, 2789–2799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Condamine, T., Mastio, J. & Gabrilovich, D. I. Transcriptional regulation of myeloid-derived suppressor cells. J. Leukoc. Biol. 98, 913–922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, W., Xia, X., Mao, L. & Wang, S. The CCAAT/enhancer-binding protein family: its roles in MDSC expansion and function. Front. Immunol. 10, 1804 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ostrand-Rosenberg, S., Beury, D. W., Parker, K. H. & Horn, L. A. Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol. Immunother. 69, 215–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mastio, J. et al. Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. J. Exp. Med. 216, 2150–2169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, aaf8943 (2016). This study describes, for the first time, that gene expression profiles of PMN-MDSCs and neutrophils from the same patient were vastly different. It also identified LOX1 as a specific marker of PMN-MDSCs in patients with cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nan, J. et al. Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology 154, 144–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, H. R. et al. The ratio of peripheral regulatory T cells to Lox-1+ polymorphonuclear myeloid-derived suppressor cells predicts the early response to anti-PD-1 therapy in patients with non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 199, 243–246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chai, E., Zhang, L. & Li, C. LOX-1+ PMN-MDSC enhances immune suppression which promotes glioblastoma multiforme progression. Cancer Manag. Res. 11, 7307–7315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Si, Y. et al. Multidimensional imaging provides evidence for down-regulation of T cell effector function by MDSC in human cancer tissue. Sci. Immunol. 4, eaaw9159 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Tavukcuoglu, E. et al. Human splenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) are strategically-located immune regulatory cells in cancer. Eur. J. Immunol. 50, 2067–2074 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fridlender, Z. G. et al. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7, e31524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mishalian, I., Granot, Z. & Fridlender, Z. G. The diversity of circulating neutrophils in cancer. Immunobiology 222, 82–88 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Youn, J. I., Collazo, M., Shalova, I. N., Biswas, S. K. & Gabrilovich, D. I. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol. 91, 167–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Condamine, T. & Gabrilovich, D. I. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32, 19–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Trovato, R. et al. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J. Immunother. Cancer 7, 255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020). This study confirmed that PMN-MDSCs and M-MDSCs isolated from tumour-bearing hosts have a gene signature that strongly differs from neutrophils and monocytes, respectively, and identified CD84 as new marker of MDSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, Q. et al. Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq. Cancer Med. 8, 3072–3085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez, C. et al. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood 136, 199–209 (2020).

    Article  PubMed  Google Scholar 

  25. Dinh, H. Q. et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. Immunity 53, 319–334.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sasidharan Nair, V., Saleh, R., Toor, S. M., Alajez, N. M. & Elkord, E. Transcriptomic analyses of myeloid-derived suppressor cell subsets in the circulation of colorectal cancer patients. Front. Oncol. 10, 1530 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bader, J. E., Voss, K. & Rathmell, J. C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 78, 1019–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan, D. et al. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur. J. Immunol. 43, 2943–2955 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Turbitt, W. J., Collins, S. D., Meng, H. & Rogers, C. J. Increased adiposity enhances the accumulation of MDSCs in the tumor microenvironment and adipose tissue of pancreatic tumor-bearing mice and in immune organs of tumor-free hosts. Nutrients 11, 3012 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  30. Al-Khami, A. A. et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology 6, e1344804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hossain, F. et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol. Res. 3, 1236–1247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019). This study identified FATP2 as a regulator of the suppressive functions of PMN-MDSCs and as a new specific therapeutic target for the functional reprogramming of PMN-MDSCs in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ugolini, A. et al. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insight 5, e138581 (2020).

    Article  PubMed Central  Google Scholar 

  34. Zhou, J., Nefedova, Y., Lei, A. & Gabrilovich, D. Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Semin. Immunol. 35, 19–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Cai, T. T. et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathog. 13, e1006503 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Goffaux, G., Hammami, I. & Jolicoeur, M. A dynamic metabolic flux analysis of myeloid-derived suppressor cells confirms immunosuppression-related metabolic plasticity. Sci. Rep. 7, 9850 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patel, S. et al. Unique pattern of neutrophil migration and function during tumor progression. Nat. Immunol. 19, 1236–1247 (2018). This study elucidates the dynamic changes that neutrophils undergo in cancer and demonstrate the mechanism of neutrophil contribution to early tumour dissemination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jian, S. L. et al. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis. 8, e2779 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. LaGory, E. L. & Giaccia, A. J. The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol. 18, 356–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, G. et al. SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. Cancer Res. 74, 727–737 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar, V. et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44, 303–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baumann, T. et al. Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal. Nat. Immunol. 21, 555–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Raber, P. L. et al. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int. J. Cancer 134, 2853–2864 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Lu, T. et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest. 121, 4015–4029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Sanctis, F. et al. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front. Immunol. 5, 69 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Smith, C. et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2, 722–735 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, J. et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J. Immunol. 190, 3783–3797 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Platten, M., Nollen, E. A. A., Rohrig, U. F., Fallarino, F. & Opitz, C. A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 18, 379–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, D., Sun, H., Wei, J., Cen, B. & DuBois, R. N. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77, 3655–3665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seubert, B. et al. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology 61, 238–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y., Ding, Y., Guo, N. & Wang, S. MDSCs: key criminals of tumor pre-metastatic niche formation. Front. Immunol. 10, 172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, P. et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat. Immunol. 21, 1444–1455 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rayes, R. F. et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight 5, e128008 (2019).

    Article  Google Scholar 

  58. Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl Med. 8, 361ra138 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lee, W. et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J. Exp. Med. 216, 176–194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Najmeh, S. et al. Neutrophil extracellular traps sequester circulating tumor cells via beta1-integrin mediated interactions. Int. J. Cancer 140, 2321–2330 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123, 3446–3458 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  62. Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 133–138 (2020). This study describes a transmembrane DNA receptor that mediates NET-dependent metastasis and suggests that its targeting could be an appealing therapeutic strategy for the prevention of cancer metastasis.

    Article  CAS  PubMed  Google Scholar 

  63. Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 19, 553–567 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019). This study reveals that the association between neutrophils and CTCs expands the metastatic potential of CTCs. This finding provides a rationale for targeting this interaction in the treatment of breast cancer.

    Article  CAS  PubMed  Google Scholar 

  65. Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Spiegel, A. et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 6, 630–649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stadtmann, A. & Zarbock, A. CXCR2: from bench to bedside. Front. Immunol. 3, 263 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Highfill, S. L. et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl Med. 6, 237ra67 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Greene, S. et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin. Cancer Res. 26, 1420–1431 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 579, 284–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Welters, M. J. et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci. Transl Med. 8, 334ra52 (2016).

    Article  PubMed  CAS  Google Scholar 

  77. Dijkgraaf, E. M. et al. A phase 1/2 study combining gemcitabine, pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget 6, 32228–32243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fultang, L. et al. MDSC targeting with gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine 47, 235–246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lancet, J. E. et al. A phase 2 study of ATRA, arsenic trioxide, and gemtuzumab ozogamicin in patients with high-risk APL (SWOG 0535). Blood Adv. 4, 1683–1689 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Appelbaum, F. R. & Bernstein, I. D. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood 130, 2373–2376 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Fournier, E. et al. Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. Blood 135, 542–546 (2020).

    Article  PubMed  Google Scholar 

  82. Vallera, D. A. et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sarhan, D. et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2, 1459–1469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Condamine, T. et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J. Clin. Invest. 124, 2626–2639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dominguez, G. A. et al. Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin. Cancer Res. 23, 2942–2950 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Tavazoie, M. F. et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell 172, 825–840.e18 (2018). This study demonstrated the novel mechanism of MDSC regulation and suggested a new therapeutic option.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nefedova, Y. et al. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67, 11021–11028 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kusmartsev, S. et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449 (2003).

    CAS  PubMed  Google Scholar 

  89. Iclozan, C., Antonia, S., Chiappori, A., Chen, D. T. & Gabrilovich, D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol. Immunother. 62, 909–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bauer, R. et al. Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic therapy. Cancer Res. 78, 3220–3232 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Tobin, R. P. et al. Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. Int. Immunopharmacol. 63, 282–291 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fujita, M. et al. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71, 2664–2674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rodriguez, P. C. et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202, 931–939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Veltman, J. D. et al. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10, 464 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. He, Y. M. et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. Nat. Med. 24, 224–231 (2018). This study demonstrated the mechanism and biological role of temporal accumulation of MDSCs in newborns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mohamed, E. et al. The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immunity 52, 668–682.e7 (2020). Recent study demonstrating the role of ER stress, specifically PERK, in regulation of MDSC function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Y., Lee, C., Geng, S. & Li, L. Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. JCI Insight 4, e122939 (2019).

    Article  PubMed Central  Google Scholar 

  99. Iacobaeus, E. et al. Phenotypic and functional alterations of myeloid-derived suppressor cells during the disease course of multiple sclerosis. Immunol. Cell Biol. 96, 820–830 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Jiao, Z. et al. Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. Scand. J. Rheumatol. 42, 85–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Guo, C. et al. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann. Rheum. Dis. 75, 278–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Rahman, S. et al. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann. Rheum. Dis. 78, 957–966 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, Z. et al. Increased CD14+HLA-DR-/low myeloid-derived suppressor cells correlate with disease severity in systemic lupus erythematosus patients in an iNOS-dependent manner. Front. Immunol. 10, 1202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Florez-Pollack, S. et al. Expansion of myeloid-derived suppressor cells in the peripheral blood and lesional skin of cutaneous lupus patients. J. Invest. Dermatol. 139, 478–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Glenn, J. D., Liu, C. & Whartenby, K. A. Frontline science: induction of experimental autoimmune encephalomyelitis mobilizes Th17-promoting myeloid derived suppressor cells to the lung. J. Leukoc. Biol. 105, 829–841 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Xue, F. et al. Elevated granulocytic myeloid-derived suppressor cells are closely related with elevation of Th17 cells in mice with experimental asthma. Int. J. Biol. Sci. 16, 2072–2083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pang, B. et al. Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway. Clin. Sci. 134, 2209–2222 (2020).

    Article  CAS  Google Scholar 

  108. Geng, Z., Ming, B., Hu, S., Dong, L. & Ye, C. α-Difluoromethylornithine suppresses inflammatory arthritis by impairing myeloid-derived suppressor cells. Int. Immunopharmacol. 71, 251–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Knier, B. et al. Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat. Immunol. 19, 1341–1351 (2018). New evidence supporting the important role of MDSCs in the suppression of B cells and describing the critical contribution of this mechanism to autoimmune disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Elliott, D. M., Singh, N., Nagarkatti, M. & Nagarkatti, P. S. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front. Immunol. 9, 1782 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Melero-Jerez, C. et al. The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon-β treatment in a murine model of multiple sclerosis. Neurobiol. Dis. 127, 13–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Cao, Y. et al. Polymorphonuclear myeloid-derived suppressor cells attenuate allergic airway inflammation by negatively regulating group 2 innate lymphoid cells. Immunology 156, 402–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, Y. et al. Tumor-derived MDSCs inhibit airway remodeling in asthmatic mice through regulating IL-10 and IL-12. Am. J. Transl. Res. 11, 4192–4202 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tian, J. et al. Increased GITRL impairs the function of myeloid-derived suppressor cells and exacerbates primary Sjogren syndrome. J. Immunol. 202, 1693–1703 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Nishimura, K. et al. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates arthritis in SKG mice. Arthritis Rheumatol. 67, 893–902 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Sendo, S., Saegusa, J., Yamada, H., Nishimura, K. & Morinobu, A. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates interstitial lung disease in SKG mice. Arthritis Res. Ther. 21, 184 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Zhou, J. et al. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat. Commun. 10, 2427 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Shi, G. et al. mTOR inhibitor INK128 attenuates dextran sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. J. Cell Physiol. 234, 1618–1629 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. van der Touw, W. et al. Glatiramer acetate enhances myeloid-derived suppressor cell function via recognition of paired Ig-like receptor B. J. Immunol. 201, 1727–1734 (2018).

    Article  PubMed  CAS  Google Scholar 

  120. Zhang, H. et al. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clin. Immunol. 157, 175–186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, Y. et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J. Clin. Invest. 129, 4261–4275 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ostrand-Rosenberg, S. et al. Frontline science: myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. J. Leukoc. Biol. 101, 1091–1101 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Ghaebi, M. et al. Immune regulatory network in successful pregnancy and reproductive failures. Biomed. Pharmacother. 88, 61–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Zhao, A. M., Xu, H. J., Kang, X. M., Zhao, A. M. & Lu, L. M. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk. J. Reprod. Immunol. 113, 35–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Pan, T. et al. Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice. J. Leukoc. Biol. 100, 499–511 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Ostrand-Rosenberg, S. et al. Frontline science: myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. J. Leukoc. Biol. 101, 1091–1101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ren, J. et al. Myeloid-derived suppressor cells depletion may cause pregnancy loss via upregulating the cytotoxicity of decidual natural killer cells. Am. J. Reprod. Immunol. 81, e13099 (2019).

    Article  PubMed  CAS  Google Scholar 

  128. Gervassi, A. et al. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses. PLoS ONE 9, e107816 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Leiber, A. et al. Neonatal myeloid derived suppressor cells show reduced apoptosis and immunosuppressive activity upon infection with Escherichia coli. Eur. J. Immunol. 47, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Schwarz, J. et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) accumulate in cord blood of preterm infants and remain elevated during the neonatal period. Clin. Exp. Immunol. 191, 328–337 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Reyes, M. et al. Induction of a regulatory myeloid program in bacterial sepsis and severe COVID-19. Preprint at bioRxiv https://doi.org/10.1101/2020.09.02.280180 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Agrati, C. et al. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19). Cell Death Differ. 27, 3196–3207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thompson, E. et al. Mitochondrial induced T cell apoptosis and aberrant myeloid metabolic programs define distinct immune cell subsets during acute and recovered SARS-CoV-2 infection. Preprint at medRxiv https://doi.org/10.1101/2020.09.10.20186064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Silvin, A. et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 182, 1401–1418.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Janols, H. et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J. Leukoc. Biol. 96, 685–693 (2014).

    Article  PubMed  CAS  Google Scholar 

  137. Mathias, B. et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann. Surg. 265, 827–834 (2017).

    Article  PubMed  Google Scholar 

  138. Darcy, C. J. et al. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Crit. Care 18, R163 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bost, P. et al. Deciphering the state of immune silence in fatal COVID-19 patients. Preprint at medRxiv https://doi.org/10.1101/2020.08.10.20170894 (2020).

    Article  Google Scholar 

  140. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Li, A., Song, N. J., Riesenberg, B. P. & Li, Z. The emerging roles of endoplasmic reticulum stress in balancing immunity and tolerance in health and diseases: mechanisms and opportunities. Front. Immunol. 10, 3154 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Grootjans, J., Kaser, A., Kaufman, R. J. & Blumberg, R. S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Thevenot, P. T. et al. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 41, 389–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Gabrilovich, Rutgers New Jersey Medical School, for help with editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Dmitry I. Gabrilovich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks the anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Monocyte-like precursor of granulocytes

Recently identified population of monocytic precursors of granulocytes (primarily polymorphonuclear myeloid-derived suppressor cells (MDSCs)) accumulated in tumour-bearing hosts.

S100A8/A9

Heterodimer, calcium binding pro-inflammatory protein that presents in neutrophils and monocytes and greatly accumulates in MDSCs; it is considered as one of the hallmarks of these cells.

M1/M2 polarized macrophages

‘M1’ and ‘M2’ are classifications historically used to define macrophages activated in vitro as pro-inflammatory (when ‘classically’ activated with IFNγ and lipopolysaccharides) or anti-inflammatory (when ‘alternatively’ activated with IL-4 or IL-10), respectively. However, in vivo macrophages are highly specialized, transcriptomically dynamic and extremely heterogeneous with regards to their phenotypes and functions, which are continuously shaped by their tissue microenvironment. Therefore, the M1 or M2 classification is too simplistic to explain the true nature of in vivo macrophages, although these terms are still often used to indicate whether the macrophages in question are more pro-inflammatory or anti-inflammatory.

Methylglyoxal

CH3C(O)CHO is a reduced derivative of pyruvic acid involved in the formation of advanced glycation end products.

STING

Stimulator of interferon genes (STING) induces type I interferon production.

Lactoferrin

A globular glycoprotein from the transferrin family widely expressed in various secretory fluids such as milk, saliva, tears and nasal secretions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veglia, F., Sanseviero, E. & Gabrilovich, D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 21, 485–498 (2021). https://doi.org/10.1038/s41577-020-00490-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-020-00490-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer