Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cGAS–STING pathway as a therapeutic target in inflammatory diseases

Abstract

The cGAS–STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS–STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS–STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS–STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS–STING signalling cascade and discuss the general mechanisms underlying the association of cGAS–STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the cGAS–STING signalling pathway.
Fig. 2: cGAS–STING effector mechanisms and intercellular cGAMP transmission.
Fig. 3: Mechanisms underlying cGAS–STING activity in sterile inflammatory conditions.
Fig. 4: Mechanisms of action of inhibitors targeting cGAS and STING.

Similar content being viewed by others

References

  1. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013). Together with references 3–5, this study demonstrates that cGAS produces a non-canonical cyclic dinucleotide second messenger molecule.

    Article  CAS  PubMed  Google Scholar 

  7. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013). Together with reference 7, this study identifies cGAS as a cytosolic DNA sensor inducing type I interferon signalling by producing the second messenger cGAMP.

    Article  CAS  PubMed  Google Scholar 

  9. Ablasser, A. & Hur, S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat. Immunol. 21, 17–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, D. et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Morehouse, B. R. et al. STING cyclic dinucleotide sensing originated in bacteria. Nature 586, 429–433 (2020). Together with reference 10, this study identifies a role for cGAMP signalling and STING in anti-phage immunity in bacteria, indicating that the eukaryotic cGAS–STING system arose from an ancient bacterial defence mechanism against phages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vincent, J. et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat. Commun. 8, 750 (2017). This study identifies the first class of small-molecule inhibitors of cGAS.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018). This study identifies the first covalent small-molecule inhibitors of STING.

    Article  CAS  PubMed  Google Scholar 

  14. Yum, S., Li, M., Frankel, A. E. & Chen, Z. J. Roles of the cGAS-STING pathway in cancer immunosurveillance and immunotherapy. Annu. Rev. Cancer Biol. 3, 323–344 (2019).

    Article  Google Scholar 

  15. Motedayen Aval, L., Pease, J. E., Sharma, R. & Pinato, D. J. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J. Clin. Med. 9, 3323 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  16. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kranzusch, P. J., Lee, A. S., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, X. et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39, 1019–1031 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6, 421–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie, W. et al. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc. Natl Acad. Sci. USA 116, 11946–11955 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andreeva, L. et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549, 394–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Luecke, S. et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1707–1715 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008). This work identifies STING as a key mediator of DNA sensing and antiviral immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, Y. H., Liu, X. Y., Du, X. X., Jiang, Z. F. & Su, X. D. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat. Struct. Mol. Biol. 19, 728–730 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19, 725–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Shu, C., Yi, G., Watts, T., Kao, C. C. & Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19, 722–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ergun, S. L., Fernandez, D., Weiss, T. M. & Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178, 290–301 e210 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Shang, G., Zhang, C., Chen, Z. J., Bai, X. C. & Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567, 389–393 (2019). This study provides the first cryo-EM structure of full-length STING.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Srikanth, S. et al. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat. Immunol. 20, 152–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, B.-C. et al. STEEP mediates STING ER exit and activation of signaling. Nat. Immunol. 21, 868–879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deng, Z. et al. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 217, e20201045 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mukai, K. et al. Homeostatic regulation of STING by Golgi-to-ER membrane traffic. Preprint at bioRxiv https://doi.org/10.1101/2020.05.20.107664 (2020).

    Article  Google Scholar 

  39. Gonugunta, V. K. et al. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep. 21, 3234–3242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kranzusch, P. J. et al. Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol. Cell 59, 891–903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Margolis, S. R., Wilson, S. C. & Vance, R. E. Evolutionary origins of cGAS-STING signaling. Trends Immunol. 38, 733–743 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, B. et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature 569, 718–722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Wu, J., Dobbs, N., Yang, K. & Yan, N. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion. Immunity 53, 115–126.e115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamashiro, L. H. et al. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat. Commun. 11, 3382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cerboni, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Oliveira Mann, C. C. et al. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation. Cell Rep. 27, 1165–1175.e1165 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Balka, K. R. et al. TBK1 and IKKepsilon act redundantly to mediate STING-induced NF-kappaB responses in myeloid cells. Cell Rep. 31, 107492 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018). This study describes how tumour cells can subvert the cGAS–STING-mediated immune response to promote tumour metastasis and cancer spread to distant organs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hou, Y. et al. Non-canonical NF-kappaB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490–503.e494 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Prabakaran, T. et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM 1-dependent autophagy pathway activated by TBK1. EMBO J. 37, e97858 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Liu, D. et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 26, 1735–1749 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017). Together with references 155 and 156, this study delineates the cGAS-dependent mechanisms underlying cellular senescence and senescence-associated secretory phenotype.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Petrasek, J. et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zierhut, C. et al. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178, 302–315 e323 (2019). This study describes how prolonged mitotic arrest induces cGAS-mediated cell death independently of transcription induction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brault, M., Olsen, T. M., Martinez, J., Stetson, D. B. & Oberst, A. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. J. Immunol. 200, 2748–2756 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Tang, C. H. et al. Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res. 76, 2137–2152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124 e1118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013). This study establishes that cGAMP can be transferred between cells to promote in trans STING activation and antiviral immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schadt, L. et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248 e1237 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Luther, J. et al. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc. Natl Acad. Sci. USA 117, 11667–11673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bridgeman, A. et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349, 1228–1232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gentili, M. et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349, 1232–1236 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell 33, 862–873.e865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell 75, 372–381 e375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lahey, L. J. et al. The LRRC8A:C heteromeric channel is a cGAMP transporter and the dominant cGAMP importer in human vasculature cells. Preprint at bioRxiv https://doi.org/10.1101/2020.02.13.948273 (2020).

    Article  Google Scholar 

  77. Zhou, C. et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. Immunity 52, 767–781 e766 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, Y. et al. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. Immunity 52, 357–373.e359 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Kranzusch, P. J. cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Curr. Opin. Struct. Biol. 59, 178–187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17, 996–1002 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kawane, K. et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl Acad. Sci. USA 108, 17396–17401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441 e416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015). This study establishes mitochondrial DNA release as a cell-intrinsic trigger of antiviral signalling via cGAS–STING signalling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Aguirre, S. et al. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2, 17037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wiens, K. E. & Ernst, J. D. The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog. 12, e1005809 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Aarreberg, L. D. et al. Interleukin-1β induces mtDNA release to activate innate immune signaling via cGAS-STING. Mol. Cell 74, 801–815.e806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, Z. et al. Mitochondrial DNA stress signalling protects the nuclear genome. Nat. Metab. 1, 1209–1218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  CAS  Google Scholar 

  99. Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, C. H. et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183, 636–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stetson, D. B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006). This study links the presence of cytosolic DNA to the production of type I interferons.

    Article  CAS  PubMed  Google Scholar 

  103. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008). This study identifies TREX1 as a key regulator of cytosolic DNA levels through degradation of accumulating retroelements in the cytosol and reveals a mechanistic link to the autoinflammatory AGS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319–331.e318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hartlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

    Article  PubMed  CAS  Google Scholar 

  107. Coquel, F. et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017). These two studies unveil the role of micronuclei in cell-intrinsic immune surveillance by cGAS to detect genomic instability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202, 129–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Crow, Y. J. & Manel, N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Uggenti, C., Lepelley, A. & Crow, Y. J. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu. Rev. Immunol. 37, 247–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin, B. et al. A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). J. Allergy Clin. Immunol. 146, 1204–1208 e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Melki, I. et al. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J. Allergy Clin. Immunol. 140, 543–552 e545 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Konno, H. et al. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. Cell Rep. 23, 1112–1123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Saldanha, R. G. et al. A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy. Front. Immunol. 9, 1535 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Keskitalo, S. et al. Novel TMEM173 mutation and the role of disease modifying alleles. Front. Immunol. 10, 2770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Warner, J. D. et al. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. 214, 3279–3292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bouis, D. et al. Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. J. Allergy Clin. Immunol. 143, 712–725 e715 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Motwani, M. et al. Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models. Proc. Natl Acad. Sci. USA 116, 7941–7950 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Siedel, H., Roers, A., Rosen-Wolff, A. & Luksch, H. Type I interferon-independent T cell impairment in a Tmem173 N153S/WT mouse model of STING associated vasculopathy with onset in infancy (SAVI). Clin. Immunol. 216, 108466 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Bennion, B. G. et al. STING gain-of-function disrupts lymph node organogenesis and innate lymphoid cell development in mice. Cell Rep. 31, 107771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl Acad. Sci. USA 112, E5699–E5705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gray, E. E., Treuting, P. M., Woodward, J. J. & Stetson, D. B. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutieres syndrome. J. Immunol. 195, 1939–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Rodero, M. P. et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8, 2176 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Watkin, L. B. et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47, 654–660 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vece, T. J. et al. Copa syndrome: a novel autosomal dominant immune dysregulatory disease. J. Clin. Immunol. 36, 377–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lepelley, A. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. 217, e20200600 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Steiner, A. et al. Activation of STING due to COPI-deficiency. Preprint at bioRxiv https://doi.org/10.1101/2020.07.09.194399 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. An, J. et al. Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. Arthritis Rheumatol. 69, 800–807 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Kato, Y. et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann. Rheum. Dis. 77, 1507–1515 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sharma, S. et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl Acad. Sci. USA 112, E710–E717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thim-uam, A. et al. STING mediates lupus via the activation of conventional dendritic cell maturation and plasmacytoid dendritic cell differentiation. iScience 23, 101530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mavragani, C. P. et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 68, 2686–2696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gestermann, N. et al. Netting neutrophils activate autoreactive B cells in lupus. J. Immunol. 200, 3364–3371 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McCauley, M. E. et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 585, 96–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Su, M.-Y., Fromm, S. A., Zoncu, R. & Hurley, J. H. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature 585, 251–255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sharma, M., Rajendrarao, S., Shahani, N., Ramírez-Jarquín, U. N. & Subramaniam, S. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proc. Natl Acad. Sci. USA 117, 15989–15999 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Nazmi, A. et al. Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia 67, 1254–1276 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Liu, H. et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885 e875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  PubMed  CAS  Google Scholar 

  160. Hall, J. et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS ONE 12, e0184843 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Lama, L. et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat. Commun. 10, 2261 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Padilla-Salinas, R. et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors. J. Org. Chem. 85, 1579–1600 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Zhao, W. et al. In silico screening-based discovery of novel inhibitors of human cyclic GMP–AMP synthase: a cross-validation study of molecular docking and experimental testing. J. Chem. Inf. Model. 60, 3265–3276 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. An, J., Woodward, J. J., Sasaki, T., Minie, M. & Elkon, K. B. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J. Immunol. 194, 4089–4093 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. An, J., Minie, M., Sasaki, T., Woodward, J. J. & Elkon, K. B. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu. Rev. Med. 68, 317–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. An, J. et al. Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in trex1-deficient mice. Arthritis Rheumatol. 70, 1807–1819 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Steinhagen, F. et al. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes. Eur. J. Immunol. 48, 605–611 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, M., Sooreshjani, M. A., Mikek, C., Opoku-Temeng, C. & Sintim, H. O. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Med. Chem. 10, 1301–1317 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Ehsanian, R., Van Waes, C. & Feller, S. M. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun. Signal. 9, 13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gursel, I. et al. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J. Immunol. 171, 1393–1400 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Kaminski, J. J. et al. Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation. J. Immunol. 191, 3876–3883 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Siu, T. et al. Discovery of a novel cGAMP competitive ligand of the inactive form of sting. ACS Med. Chem. Lett. 10, 92–97 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Li, S. et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING. Cell Rep. 25, 3405–3421.e3407 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Hansen, A. L. et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc. Natl Acad. Sci. USA 115, E7768–E7775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Vinogradova, E. V. et al. An activity-guided map of electrophile-cysteine interactions in primary human T cells. Cell 182, 1009–1026.e1029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huffman, B. J. et al. Electronic complementarity permits hindered butenolide heterodimerization and discovery of novel cGAS/STING pathway antagonists. Nat. Chem. 12, 310–317 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Orzalli, M. H. et al. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc. Natl Acad. Sci. USA 112, E1773–E1781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gentili, M. et al. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep. 26, 3798 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Volkman, H. E., Cambier, S., Gray, E. E. & Stetson, D. B. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 8, e47491 (2019). This study shows that cGAS is predominantly a nuclear protein and that cGAS is tethered to chromatin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Guey, B. et al. BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 369, 823–828 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Boyer, J. A. et al. Structural basis of nucleosome-dependent cGAS inhibition. Science 370, 450–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kujirai, T. et al. Structural basis for the inhibition of cGAS by nucleosomes. Science 370, 455–458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Michalski, S. et al. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature 587, 678–682 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Pathare, G. R. et al. Structural mechanism of cGAS inhibition by the nucleosome. Nature 587, 668–672 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Zhao, B. et al. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587, 673–677 (2020). These five studies report the cryo-EM structure of cGAS tethered to nucleosomes and identify how cGAS is inactivated when bound to the nucleosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Uggenti, C. et al. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat. Genet. 52, 1364–1372 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Yi, G. et al. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLoS ONE 8, e77846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Patel, S. et al. The common R71H-G230A-R293Q human TMEM173 is a null allele. J. Immunol. 198, 776–787 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Sivick, K. E. et al. Comment on “The common R71H-G230A-R293Q human TMEM173 is a null allele”. J. Immunol. 198, 4183–4185 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Patel, S. & Jin, L. TMEM173 variants and potential importance to human biology and disease. Genes. Immun. 20, 82–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Zhou, W. et al. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174, 300–311 e311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rice, G. I. et al. Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12, 1159–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mackenzie, K. J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J. 35, 831–844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pokatayev, V. et al. RNase H2 catalytic core Aicardi-Goutieres syndrome-related mutant invokes cGAS- STING innate immune-sensing pathway in mice. J. Exp. Med. 213, 329–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Konig, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    Article  PubMed  CAS  Google Scholar 

  196. Wang, J. et al. Accumulation of cytosolic dsDNA contributes to fibroblast-like synoviocytes-mediated rheumatoid arthritis synovial inflammation. Int. Immunopharmacol. 76, 105791 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Li, Q. et al. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol. Med. 12, e11002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kerur, N. et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24, 50–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Yu, Y. et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J. Clin. Invest. 129, 546–555 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Zhao, Q., Wei, Y., Pandol, S. J., Li, L. & Habtezion, A. STING signaling promotes inflammation in experimental acute pancreatitis. Gastroenterology 154, 1822–1835 e1822 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Benmerzoug, S. et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat. Commun. 9, 1–19 (2018).

    Article  CAS  Google Scholar 

  202. Heipertz, E. L., Harper, J. & Walker, W. E. STING and TRIF contribute to mouse sepsis, depending on severity of the disease model. Shock 47, 621–631 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Zeng, L. et al. ALK is a therapeutic target for lethal sepsis. Sci. Transl Med. 9, eaan5689 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Cao, D. et al. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation 137, 2613–2634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hu, D. et al. Cytosolic DNA sensor cGAS plays an essential pathogenetic role in pressure overload-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 318, H1525–H1537 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Zhu, Q. et al. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J. Immunol. 193, 4779–4782 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Abdullah, A. et al. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. J. Neuroinflammation 15, 323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank W. R. Roush and H. M. Seidel for advice during the preparation of this document. A.A. acknowledges support from the SNF (31003A-159836) and the European Research Council (ERC-StG: 804933).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Andrea Ablasser.

Ethics declarations

Competing interests

A.A. is a member of the scientific advisory board of IFM Therapeutics and scientific co-founder of IFM Due. J.D.K. and S.V. are employees of IFM Therapeutics. A.D. declares no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks P. Li and N. Yan for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decout, A., Katz, J.D., Venkatraman, S. et al. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21, 548–569 (2021). https://doi.org/10.1038/s41577-021-00524-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-021-00524-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing