Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy

Abstract

A paradigm shift has recently occurred in the field of cancer therapeutics. Traditional anticancer agents, such as chemotherapy, radiotherapy and small-molecule drugs targeting specific signalling pathways, have been joined by cellular immunotherapies based on T cell engineering. The rapid adoption of novel, patient-specific cellular therapies builds on scientific developments in tumour immunology, genetic engineering and cell manufacturing, best illustrated by the curative potential of chimeric antigen receptor (CAR) T cell therapy targeting CD19-expressing malignancies. However, the clinical benefit observed in many patients may come at a cost. In up to one-third of patients, significant toxicities occur that are directly associated with the induction of powerful immune effector responses. The most frequently observed immune-mediated toxicities are cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This Review discusses our current understanding of their pathophysiology and clinical features, as well as the development of novel therapeutics for their prevention and/or management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram showing a relative timescale for the onset and duration of CRS and ICANS.
Fig. 2: Working model of the pathophysiological mechanisms of CRS.
Fig. 3: Schematic representation of current and potential therapeutic interventions for CRS.
Fig. 4: Pathophysiology of ICANS.

Similar content being viewed by others

References

  1. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013). Together with Brentjens et al. (2013), this article reports early clinical data demonstrating the efficacy of CD19CAR T cells in patients with refractory acute lymphoblastic leukaemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    CAS  PubMed  Google Scholar 

  6. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Maher, J. et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002). This article is the first demonstration that fusion receptors containing both T cell receptor and CD28 signalling moieties could redirect and amplify human T cell responses.

    CAS  PubMed  Google Scholar 

  8. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 18, 676–684 (2004).

    CAS  PubMed  Google Scholar 

  9. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130, 2295–2306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018). This review discusses clinical aspects of CAR T cell-mediated toxicities.

    CAS  PubMed  Google Scholar 

  15. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    CAS  PubMed  Google Scholar 

  16. Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Santomasso, B. D. et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 8, 958–971 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Locke, F. L., Go, W. Y. & Neelapu, S. S. Development and use of the anti-CD19 chimeric antigen receptor T-cell therapy axicabtagene ciloleucel in large B-cell lymphoma: a review. JAMA Oncol. 6, 281–290 (2019).

    Google Scholar 

  19. Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003).

    CAS  PubMed  Google Scholar 

  20. Kowolik, C. M. et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66, 10995–11004 (2006).

    CAS  PubMed  Google Scholar 

  21. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  PubMed  Google Scholar 

  22. Pennisi, M. et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 4, 676–686 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Le, R. Q. et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 23, 943–947 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Stegen, S. J. C. et al. Preclinical in vivo modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window of therapeutic opportunity? J. Immunol. 191, 4589–4598 (2013).

    PubMed  Google Scholar 

  25. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Oluwole, O. O. & Davila, M. L. At the bedside: clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. J. Leukoc. Biol. 100, 1265–1272 (2016).

    CAS  PubMed  Google Scholar 

  28. Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018). This study reports the role of recipient macrophage-derived IL-1, IL-6 and NO in the pathogenesis of CRS in a mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    CAS  PubMed  Google Scholar 

  31. Shah, N. N. et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38, 1938–1950 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Baird, J. H. et al. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood https://doi.org/10.1182/blood.2020009432 (2020).

    Article  PubMed  Google Scholar 

  33. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018). This study in humanized mice identifies the roles of monocyte-derived IL-1 and IL-6 as key cytokines mediating CRS and ICANS.

    CAS  PubMed  Google Scholar 

  34. Nijmeijer, B. A., Willemze, R. & Falkenburg, J. H. F. An animal model for human cellular immunotherapy: specific eradication of human acute lymphoblastic leukemia by cytotoxic T lymphocytes in NOD/SCID mice. Blood 100, 654–660 (2002).

    CAS  PubMed  Google Scholar 

  35. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nashleanas, M. & Scott, P. Activated T cells induce macrophages to produce NO and control Leishmania major in the absence of tumor necrosis factor receptor p55. Infect. Immun. 68, 1428–1434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Orabona, C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat. Immunol. 5, 1134–1142 (2004). This mouse study describes the crucial role of CD80- and CD86-mediated co-stimulation in T cell activation.

    CAS  PubMed  Google Scholar 

  38. Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson, M. E. & Siahaan, T. J. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides 24, 487–501 (2003).

    CAS  PubMed  Google Scholar 

  40. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    CAS  PubMed  Google Scholar 

  41. Tanaka, T. et al. IL-6 in inflammation, immunity and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Mishra, D. et al. Parabrachial interleukin-6 reduces body weight and food intake and increases thermogenesis to regulate energy metabolism. Cell Rep. 26, 3011–3026 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Ann. Rev. Immunol. 27, 519–550 (2009).

    CAS  Google Scholar 

  44. Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5, eaax7969 (2020).

    CAS  PubMed  Google Scholar 

  48. Sachdeva, M., Duchateau, P., Depil, S., Poirot, L. & Valton, J. Granulocyte–macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J. Biol. Chem. 294, 5430–5437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Manz, M. G. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26, 537–541 (2007).

    CAS  PubMed  Google Scholar 

  50. Sterner, R. M. et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133, 697–709 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pennica, D. et al. Human tumor necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    CAS  PubMed  Google Scholar 

  52. Li, J. et al. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci. Transl. Med. 11, eaax8861 (2019).

    PubMed  Google Scholar 

  53. Lin, C. F. et al. IFN-γ synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10. J. Cell. Biochem. 105, 746–755 (2008).

    CAS  PubMed  Google Scholar 

  54. Tötemeyer, S. et al. IFN-γ enhances production of nitric oxide from macrophages via a mechanism that depends on nucleotide oligomerization domain-2. J. Immunol. 176, 4804–4810 (2006).

    PubMed  Google Scholar 

  55. Capaldo, C. T. & Nusrat, A. Cytokine regulation of tight junctions. Biochim. Biophys. Acta. 1788, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  56. Rahman, M. T. et al. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood–brain and small intestinal epithelial barriers: relevance for neuro-inflammatory diseases. Biochem. Biophys. Res. Commun. 507, 274–279 (2018).

    CAS  PubMed  Google Scholar 

  57. Chai, Q., He, W. Q., Zhou, M., Lu, H. & Fu, Z. F. Enhancement of blood–brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J. Virol. 88, 4698–4710 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Lopez-Ramirez, M. A. et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J. Immunol. 189, 3130–3139 (2012).

    CAS  PubMed  Google Scholar 

  59. Volmar, A. M. The role of atrial natriuretic peptide in the immune system. Peptides 26, 1086–1094 (2005).

    Google Scholar 

  60. Staedtke, V. et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 564, 273–277 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Davila, M. L., Kloss, C. C., Gunset, G. & Sadelain, M. CD19 CAR-targeted T cells induce long-term remission and B cell aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS ONE 8, e61338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bondanza, A. et al. Suicide gene therapy of graft versus-host disease induced by central memory human T lymphocytes. Blood 107, 1828–1836 (2006).

    CAS  PubMed  Google Scholar 

  63. Mastaglio, S. et al. NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus host disease. Blood 130, 606–618 (2017).

    CAS  PubMed  Google Scholar 

  64. Siegler, E. L. & Wang, P. Preclinical models in chimeric antigen receptor engineered T-cell therapy. Hum. Gene Ther. 29, 534–546 (2018).

    CAS  PubMed  Google Scholar 

  65. Locke, F. L. et al. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-hodgkin lymphoma (NHL). Blood 130, 1547 (2017).

    Google Scholar 

  66. Dyson, A. & Singer, M. Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Crit. Care Med. 37, S30–S37 (2009).

    PubMed  Google Scholar 

  67. Page, A. V. & Liles, W. C. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence 4, 507–516 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Schwameis, M., Schörgenhofer, C., Assinger, A., Steiner, M. M. & Jilma, B. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb. Haemost. 113, 708–718 (2015).

    PubMed  Google Scholar 

  69. Gust, J. et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy. Ann. Neurol. 86, 42–54 (2019).

    CAS  PubMed  Google Scholar 

  70. Kim, H. J., Tsao, J. W. & Stanfill, A. G. The current state of biomarkers of mild traumatic brain injury. JCI Insight 3, e97105 (2018).

    PubMed Central  Google Scholar 

  71. Sofroniew, M. V. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20, 160–172 (2014).

    CAS  PubMed  Google Scholar 

  72. Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gutierrez, E. G., Banks, W. A. & Kastin, A. J. Blood-borne interleukin-1 receptor antagonist crosses the blood–brain barrier. J. Neuroimmunol. 55, 153–160 (1994).

    CAS  PubMed  Google Scholar 

  74. Galea, J. et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J. Cereb. Blood Flow. Metab. 31, 439–447 (2011).

    CAS  PubMed  Google Scholar 

  75. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e17 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dorovini-Zis, K. et al. The neuropathology of fatal cerebral malaria in Malawian children. Am. J. Pathol. 178, 2146–2158 (2011).

    PubMed  PubMed Central  Google Scholar 

  77. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 11, 6129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    CAS  PubMed  Google Scholar 

  79. Reu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pluvinage, J. V. et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568, 187–192 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. DeAngelo, D. J. et al. Clinical outcomes for the phase 2, single-arm, multicenter trial of JCAR015 in adult B-ALL (ROCKET Study) [abstract P217]. SITC 2017 Annual Meeting Abstracts Book https://higherlogicdownload.s3.amazonaws.com/SITCANCER/3bcb5ebf-803a-42fe-83b6-0773bc4eb962/UploadedImages/Annual%20Meeting%202017/SITC_2017_Abstract_Book.pdf (2017).

  82. Mahadeo, K. M. et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat. Rev. Clin. Oncol. 16, 45–63 (2019).

    CAS  PubMed  Google Scholar 

  83. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 25, 625–638 (2019).

    CAS  Google Scholar 

  84. Maus, M. V. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J. Immunother. Cancer 8, e001511 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Nishimoto, N. et al. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964 (2008).

    CAS  PubMed  Google Scholar 

  86. Nastoupil, L. J. et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J. Clin. Oncol. 38, 3119–3128 (2020).

    PubMed  PubMed Central  Google Scholar 

  87. Strati, P. et al. Prognostic impact of dose, duration, and timing of corticosteroid therapy in patients with large B-cell lymphoma treated with standard of care axicabtagene ciloleucel (Axi-cel). J. Clin. Oncol. 38, 8011 (2020).

    Google Scholar 

  88. Topp, M. V. et al. Earlier steroid use with axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory large B cell lymphoma. Blood 134, 243 (2019).

    Google Scholar 

  89. Siddiqi, T. et al. Patient characteristics and pre-infusion biomarkers of inflammation correlate with clinical outcomes after treatment with the defined composition, CD19-targeted CAR T cell product, JCAR017. Blood 130, 193 (2017).

    Google Scholar 

  90. Jacobson, C. A. et al. Axicabtagene ciloleucel in the non-trial setting: outcomes and correlates of response, resistance, and toxicity. J. Clin. Oncol. 38, 3095–3106 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Turtle, C. J. et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. 35, 3010–3020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hirayama, A. V. et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133, 1876–1887 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Neelapu, S. S. CAR-T efficacy: is conditioning the key? Blood 133, 1799–1800 (2019).

    CAS  PubMed  Google Scholar 

  97. Neelapu, S. S. et al. Outcomes of older patients in ZUMA-1, a pivotal study of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 135, 2106–2109 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019). This study reports a novel CD19CAR construct with 4-1BB and CD3ζ co-stimulatory domains that in clinical practice conferred protection against B cell lymphomas without increasing serum cytokine levels or inducing CRS.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019). This study reports a modified CD19CAR construct with lower binding affinity, resulting in both reduced CRS and increased expansion of CAR T cell populations in vivo.

    CAS  PubMed  Google Scholar 

  100. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicenter, phase 1-2 trial. Lancet Oncol. 20, 31–42 (2019).

    CAS  PubMed  Google Scholar 

  101. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019). This study shows that altering the activation potential of a CAR construct can influence T cell differentiation and the balance between effector and memory T cell phenotypes.

    CAS  PubMed  Google Scholar 

  104. Acharya, U. H. et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Exp. Rev. Hematol. 12, 195–205 (2019).

    CAS  Google Scholar 

  105. Huarte, E. et al. Itacitinib (INCB039110), a JAK1 inhibitor, reduces cytokines associated with cytokine release syndrome induced by CAR T-cell therapy. Clin. Cancer Res. 26, 6299–6309 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dubovsky, J. A. et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a TH1-selective pressure in T lymphocytes. Blood 122, 2539–2549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ruella, M. et al. Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells for B-cell neoplasms. Leukemia 31, 246–248 (2017).

    CAS  PubMed  Google Scholar 

  108. Mestermann, K. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl. Med. 11, eaau5907 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Sun, C. et al. THEMIS-SHP1 recruitment by 4-1BB tunes LCK-mediated priming of chimeric antigen receptor-redirected T cells. Cancer Cell 37, 216–225.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Strati, P. et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 4, 3123–3127 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Henter, J. I. et al. Emapalumab in primary hemophagocytic lymphohistiocytosis. N. Engl. J. Med. 383, 596–598 (2020).

    PubMed  Google Scholar 

  112. Boardman, D. A. et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am. J. Transplant. 17, 931–943 (2017).

    CAS  PubMed  Google Scholar 

  113. Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, e126194 (2019).

    Google Scholar 

  114. Dawson, N. A. J. et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci. Transl. Med. 12, eaaz3866 (2020).

    CAS  PubMed  Google Scholar 

  115. Rosado-Sánchez, I. & Levings, M. K. Building a CAR-Treg: going from the basic to the luxury model. Cell. Immunol. 358, 104220 (2020).

    PubMed  Google Scholar 

  116. Jatiani, S. S. et al. Myeloma CAR-T CRS management with IL-1R antagonist anakinra. Clin. Lymphoma Myeloma Leuk. 20, 632–636.e1 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. Voskoboinik, I. et al. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

    CAS  PubMed  Google Scholar 

  118. Grom, A. A., Horne, A. & De Benedetti, F. Macrophage activation syndrome in the era of biologic therapy. Nat. Rev. Rheumatol. 12, 259–268 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gadoury-Levesque, V. et al. Frequency and spectrum of disease-causing variants in 1892 patients with suspected genetic HLH disorders. Blood Adv. 4, 2578–2594 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Teachey, D. T. et al. Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’. Nat. Rev. Clin. Oncol. 15, 218 (2018).

    PubMed  Google Scholar 

  121. Teachey, D. T. et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121, 5154–5157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ishii, K. et al. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. J. Clin. Invest. 130, 5425–5443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sumegi, J. et al. Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood 117, e151–e160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Moore, J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. Science 368, 473–474 (2020).

    CAS  PubMed  Google Scholar 

  126. Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46, 846–848 (2020).

    CAS  PubMed  Google Scholar 

  127. Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Guaraldi, G. et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2, e474–e484 (2020).

    PubMed  PubMed Central  Google Scholar 

  129. Xu, X. et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl Acad. Sci. USA 117, 10970–10975 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Campochiaro, C. et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-center retrospective cohort study. Eur. J. Intern. Med. 76, 43–49 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Salama, C. et al. Tocilizumab in patients hospitalized with COVID-19 pneumonia. N. Engl. J. Med. 384, 20–30 (2021).

    CAS  PubMed  Google Scholar 

  132. Kewan, T. et al. Tocilizumab for treatment of patients with severe COVID-19: a retrospective cohort study. EClinicalMedicine 24, 100418 (2020).

    PubMed  PubMed Central  Google Scholar 

  133. Huet, T. et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2, e393–e400 (2020).

    PubMed  PubMed Central  Google Scholar 

  134. Cavalli, G. et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2, e325–e331 (2020).

    PubMed  PubMed Central  Google Scholar 

  135. Bozzi, G. et al. Anakinra combined with methylprednisolone in patients with severe COVID-19 pneumonia and hyperinflammation: an observational cohort study. J. Allergy Clin. Immunol. 147, 561–566.e4 (2021).

    CAS  PubMed  Google Scholar 

  136. Cauchois, R. et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc. Natl Acad. Sci. USA 117, 18951–18953 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Dinarello, C. A. Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev. 29, 317–329 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA 100, 2645–2650 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Horikawa, N. et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin. Cancer Res. 23, 587–599 (2017).

    CAS  PubMed  Google Scholar 

  141. Voronov, E., Yaron, C. & Apte, R. N. The role IL-1 in tumor-mediated angiogenesis. Front. Physiol. 5, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Kaplanov, I. et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc. Natl Acad. Sci. USA 116, 1361–1369 (2019).

    CAS  PubMed  Google Scholar 

  143. Carey, A. et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep. 18, 3204–3218 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ridker, P. M. et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  145. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    CAS  PubMed  Google Scholar 

  146. Litmanovich, A., Khazim, K. & Cohen, I. The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol. Ther. 6, 109–127 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.C.M. was supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Emma C. Morris.

Ethics declarations

Competing interests

M.S. and T.G. are listed as inventors in a Memorial Sloan Kettering-held patent application related to treatment of cytokine release syndrome: ‘Methods and compositions for alleviating cytokine release syndrome’ (WO2019099993A1). E.C.M. is scientific co-founder of Quell Therapeutics Ltd, which is developing chimeric antigen receptor (CAR)-modified regulatory T cells, and has served as a consultant to Kite, a Gilead company. S.S.N. served as consultant to Kite, a Gilead Company, Merck, Bristol-Myers Squibb, Novartis, Celgene, Pfizer, Allogene Therapeutics, Cell Medica/Kuur, Incyte, Precision Biosciences, Legend Biotech, Adicet Bio, Calibr and Unum Therapeutics; received research support from Kite, a Gilead Company, Bristol-Myers Squibb, Merck, Poseida, Cellectis, Celgene, Karus Therapeutics, Unum Therapeutics, Allogene Therapeutics, Precision Biosciences and Acerta; received royalties from Takeda Pharmaceuticals; and has intellectual property related to cell therapy.

Additional information

Peer review information

Nature Reviews Immunology thanks A. Bondanza, S. Grupp and C. Jacobson for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Glossary

Poor-risk malignant disease

Subtypes of malignancy (cancer) that have a poor prognosis with conventional therapies.

Blood–brain barrier

(BBB). A network of blood vessels and tissues that form a functional barrier to prevent harmful substances from entering the brain.

Activation-induced cell death

In peripheral T cells, death that is often the result of engagement of cell death pathways (for example, CD95–CD95L) that are upregulated during immune activation.

CD19+ lymphoma xenograft model

A lymphoma model in which immunodeficient mice are engrafted with human lymphoma cells positive for the CD19 surface antigen.

Humanized NSG mice

An immunodeficient mouse strain (NSG) reconstituted with human immune cells; in some iterations of this model, mice are engineered with transgenes encoding human haematopoietic cytokines.

Acute phase response

An early-onset, innate, systemic inflammatory reaction that results from various insults such as infection and tissue injury.

SCID–beige xenograft model

Severe combined immunodeficient (SCID)–beige mice lack mature B cells and T cells and exhibit defective natural killer cell responses, which makes them permissive to engraftment with human tumour tissue.

Human PBMC xenograft model

An immunodeficient mouse strain with an immune system reconstituted with human peripheral blood mononuclear cells (PBMCs) that can be engrafted with human tumour tissue.

Disseminated intravascular coagulation

A rare condition in which abnormal blood clotting occurs throughout the body’s blood vessels in response to various triggers that activate coagulation pathways.

Conditioning therapy

Chemotherapy and/or radiotherapy delivered prior to the infusion of chimeric antigen receptor (CAR) T cells, with the aim of increasing the expansion of the infused T cell population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, E.C., Neelapu, S.S., Giavridis, T. et al. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 22, 85–96 (2022). https://doi.org/10.1038/s41577-021-00547-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-021-00547-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer