Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune cell-mediated features of non-alcoholic steatohepatitis

Abstract

Non-alcoholic fatty liver disease (NAFLD) includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards non-alcoholic steatohepatitis (NASH), cirrhosis or even hepatocellular carcinoma. NAFLD is a major health burden, and its incidence is increasing worldwide. Although it is primarily a disease of disturbed metabolism, NAFLD involves several immune cell-mediated inflammatory processes, particularly when reaching the stage of NASH, at which point inflammation becomes integral to the progression of the disease. The hepatic immune cell landscape is diverse at steady state and it further evolves during NASH with direct consequences for disease severity. In this Review, we discuss current concepts related to the role of immune cells in the onset and progression of NASH. A better understanding of the mechanisms by which immune cells contribute to NASH pathogenesis should aid the design of innovative drugs to target NASH, for which current therapeutic options are limited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contributing factors in NAFLD progression and NASH pathogenesis.
Fig. 2: Immune landscape of the healthy liver.
Fig. 3: Immune modulation of NASH pathogenesis.
Fig. 4: The diversity of hepatic macrophages during NASH.

Similar content being viewed by others

References

  1. Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer — mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drucker, D. J. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metab. 33, 479–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarma, S., Sockalingam, S. & Dash, S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes. Metab. 23 (Suppl. 1), 3–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Pais, R. et al. Fatty liver is an independent predictor of early carotid atherosclerosis. J. Hepatol. 65, 95–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Pais, R., Redheuil, A., Cluzel, P., Ratziu, V. & Giral, P. Relationship among fatty liver, specific and multiple-site atherosclerosis, and 10-year Framingham score. Hepatology 69, 1453–1463 (2019).

    Article  PubMed  Google Scholar 

  6. Eslam, M., Sanyal, A. J. & George, J., International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 69, 896–904 (2018).

    Article  PubMed  Google Scholar 

  8. O’Hara, J. et al. Cost of non-alcoholic steatohepatitis in Europe and the USA: the GAIN study. JHEP Rep. 2, 100142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schattenberg, J. M. et al. Disease burden and economic impact of diagnosed non-alcoholic steatohepatitis (nash) in five European countries in 2018: a cost-of-illness analysis. Liver Int. 41, 1227–1242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Younossi, Z. M. et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64, 1577–1586 (2016).

    Article  PubMed  Google Scholar 

  11. Vuppalanchi, R., Noureddin, M., Alkhouri, N. & Sanyal, A. J. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 18, 373–392 (2021). This recent Review summarizes the past, present and future of therapeutics for NASH.

    Article  PubMed  Google Scholar 

  12. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 55, 434–438 (1980).

    CAS  PubMed  Google Scholar 

  14. Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73, 202–209 (2020).

    Article  PubMed  Google Scholar 

  15. Younossi, Z. M. et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology 73, 1194–1198 (2021).

    Article  PubMed  Google Scholar 

  16. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  17. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015).

    Article  PubMed  Google Scholar 

  18. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Pais, R. et al. NAFLD and liver transplantation: current burden and expected challenges. J. Hepatol. 65, 1245–1257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Segovia-Miranda, F. et al. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat. Med. 25, 1885–1893 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harrison, S. A. et al. A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 5, 970–985 (2020).

    Article  PubMed  Google Scholar 

  22. Munteanu, M. et al. Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference. Aliment. Pharmacol. Ther. 44, 877–889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newsome, P. N. et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 5, 362–373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Srivastava, A. et al. Prospective evaluation of a primary care referral pathway for patients with non-alcoholic fatty liver disease. J. Hepatol. 71, 371–378 (2019).

    Article  PubMed  Google Scholar 

  25. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Softic, S., Cohen, D. E. & Kahn, C. R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 61, 1282–1293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Todoric, J. et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat. Metab. 2, 1034–1045 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014). This study shows how hepatic endoplasmic reticulum stress, hepatocyte cell death and inflammation together contribute to NASH-associated HCC development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ichimura, M. et al. High-fat and high-cholesterol diet rapidly induces non-alcoholic steatohepatitis with advanced fibrosis in Sprague-Dawley rats. Hepatol. Res. 45, 458–469 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Savard, C. et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 57, 81–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Liang, J. Q. et al. Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat. Commun. 9, 4490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X. et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 70, 761–774 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J. Y. et al. ER stress drives lipogenesis and steatohepatitis via Caspase-2 activation of S1P. Cell 175, 133–145.e15 (2018). This study shows that caspase 2-mediated regulation of SREBP has a crucial impact on NASH development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Imajo, K. et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 16, 44–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Tran, S. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627–640.e5 (2020). This study shows that monocyte-derived Kupffer cells are generated during NASH and describes how they affect NASH pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  36. Feldstein, A. E. et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125, 437–443 (2003).

    Article  PubMed  Google Scholar 

  37. Schwabe, R. F. & Luedde, T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat. Rev. Gastroenterol. Hepatol. 15, 738–752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Luedde, T. et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, P. et al. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science 367, 652–660 (2020). This study shows the crucial role of the AMPK–caspase 6 axis in NASH pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barreyro, F. J. et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 35, 953–966 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Witek, R. P. et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50, 1421–1430 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Wandrer, F. et al. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis. 11, 212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arroyave-Ospina, J. C., Wu, Z., Geng, Y. & Moshage, H. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: implications for prevention and therapy. Antioxidants 10, 174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Z., Tian, R., She, Z., Cai, J. & Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 152, 116–141 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Meakin, P. J. et al. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol. Cell Biol. 34, 3305–3320 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grohmann, M. et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell 175, 1289–1306.e20 (2018). This study shows how oxidative stress independently modulates signalling pathways to promote NASH, fibrosis and HCC development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marí, M. et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 4, 185–198 (2006).

    Article  PubMed  Google Scholar 

  48. Brenner, C., Galluzzi, L., Kepp, O. & Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Sun, X. et al. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab. 31, 189–206.e8 (2020). This study shows the beneficial effect of neutralizing oxidized phospholipids on NASH progression.

    Article  CAS  PubMed  Google Scholar 

  50. Ganz, M. et al. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. J. Transl. Med. 13, 193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kakazu, E., Mauer, A. S., Yin, M. & Malhi, H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J. Lipid Res. 57, 233–245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dasgupta, D. et al. IRE1A stimulates hepatocyte-derived extracellular vesicles that promote inflammation in mice with steatohepatitis. Gastroenterology 159, 1487–1503.e17 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Hammoutene, A. & Rautou, P.-E. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J. Hepatol. 70, 1278–1291 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Heymann, F. & Tacke, F. Immunology in the liver — from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Balmer, M. L. et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med. 6, 237ra66 (2014).

    Article  PubMed  Google Scholar 

  56. McDonald, B. et al. Programing of an intravascular immune firewall by the gut microbiota protects against pathogen dissemination during infection. Cell Host Microbe 28, 660–668.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Eipel, C., Abshagen, K. & Vollmar, B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol. 16, 6046–6057 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ficht, X. & Iannacone, M. Immune surveillance of the liver by T cells. Sci. Immunol. 5, eaba2351 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Hammond, K. J. et al. CD1d-restricted NKT cells: an interstrain comparison. J. Immunol. 167, 1164–1173 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pellicci, D. G., Koay, H.-F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Rahimpour, A. et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095–1108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Tang, X.-Z. et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190, 3142–3152 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Forkel, M. et al. Composition and functionality of the intrahepatic innate lymphoid cell-compartment in human nonfibrotic and fibrotic livers. Eur. J. Immunol. 47, 1280–1294 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bai, L. et al. Liver type 1 innate lymphoid cells develop locally via an interferon-γ-dependent loop. Science 371, eaba4177 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Fernandez-Ruiz, D. et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Moro-Sibilot, L. et al. Mouse and human liver contain immunoglobulin A-secreting cells originating from peyer’s patches and directed against intestinal antigens. Gastroenterology 151, 311–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. David, B. A. et al. Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151, 1176–1191 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Sierro, F. et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47, 374–388.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  PubMed  Google Scholar 

  77. Hoeffel, G. et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654.e9 (2019). This study shows how signals derived from hepatocytes, hepatic stellate cells and liver sinusoidal endothelial cells function together to drive Kupffer cell specification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53, 641–657.e14 (2020). This study highlights macrophage diversity in a mouse model of NASH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell. 75, 644–660.e5 (2019). This study shows immune cell diversity and activation in a mouse model of NASH using single-cell RNA sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019). This study reveals the immune landscape of human cirrhosis using single-cell RNA sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yuseff, M.-I., Pierobon, P., Reversat, A. & Lennon-Duménil, A.-M. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat. Rev. Immunol. 13, 475–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Fillatreau, S. B cells and their cytokine activities implications in human diseases. Clin. Immunol. 186, 26–31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bruzzì, S. et al. B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radic. Biol. Med. 124, 249–259 (2018).

    Article  PubMed  Google Scholar 

  88. Barrow, F. et al. Microbiota-driven activation of intrahepatic B cells aggravates nonalcoholic steatohepatitis through innate and adaptive signaling. Hepatology 74, 704–722 (2021). This study shows that hepatic B cells are activated in a microbiota-dependent manner during NASH and participate in disease progression.

    Article  CAS  PubMed  Google Scholar 

  89. Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Miyake, T. et al. B cell-activating factor is associated with the histological severity of nonalcoholic fatty liver disease. Hepatol. Int. 7, 539–547 (2013).

    Article  PubMed  Google Scholar 

  92. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017). This study shows that IgA is a crucial factor in NASH-induced HCC in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McPherson, S., Henderson, E., Burt, A. D., Day, C. P. & Anstee, Q. M. Serum immunoglobulin levels predict fibrosis in patients with non-alcoholic fatty liver disease. J. Hepatol. 60, 1055–1062 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Haas, J. T. et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nat. Metab. 1, 604–614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Deczkowska, A. et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat. Med. 27, 1043–1054 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Heier, E.-C. et al. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis. J. Hepatol. 66, 1241–1250 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Murphy, K. M. & Stockinger, B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat. Immunol. 11, 674–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luo, X.-Y. et al. IFN-γ deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G891–G899 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Syn, W.-K. et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 53, 106–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, X. et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J. Hepatol. 61, 1365–1375 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, X. et al. CXC chemokine receptor 3 promotes steatohepatitis in mice through mediating inflammatory cytokines, macrophages and autophagy. J. Hepatol. 64, 160–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Shimamura, T. et al. Novel role of IL-13 in fibrosis induced by nonalcoholic steatohepatitis and its amelioration by IL-13R-directed cytotoxin in a rat model. J. Immunol. 181, 4656–4665 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Gieseck, R. L., Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Gao, Y. et al. IL-33 treatment attenuated diet-induced hepatic steatosis but aggravated hepatic fibrosis. Oncotarget 7, 33649–33661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51, 77–89.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rau, M. et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J. Immunol. 196, 97–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Tang, Y. et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin. Exp. Immunol. 166, 281–290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Giles, D. A. et al. Regulation of inflammation by IL-17A and IL-17F modulates non-alcoholic fatty liver disease pathogenesis. PLoS One 11, e0149783 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gomes, A. L. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30, 161–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Rolla, S. et al. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice. Clin. Sci. 130, 193–203 (2016).

    Article  CAS  Google Scholar 

  112. Moreno-Fernandez, M. E. et al. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab. 33, 1187–1204.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Her, Z. et al. CD4+ T cells mediate the development of liver fibrosis in high fat diet-induced NAFLD in humanized mice. Front. Immunol. 11, 580968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014). This study shows the impact of CD8+ T cells and NKT cells on NASH onset and its progression to HCC.

    Article  CAS  PubMed  Google Scholar 

  116. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, T. et al. The immunoregulatory effects of CD8 T-cell-derived perforin on diet-induced nonalcoholic steatohepatitis. FASEB J. 33, 8490–8503 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73, 2527–2536 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lykens, J. E., Terrell, C. E., Zoller, E. E., Risma, K. & Jordan, M. B. Perforin is a critical physiologic regulator of T-cell activation. Blood 118, 618–626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Terrell, C. E. & Jordan, M. B. Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8+ T cells and dendritic cells. Blood 121, 5184–5191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Boissonnas, A. et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity 32, 266–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Syn, W.-K. et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998–2007 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Syn, W.-K. et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61, 1323–1329 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Maricic, I. et al. Differential activation of hepatic invariant NKT cell subsets plays a key role in progression of nonalcoholic steatohepatitis. J. Immunol. 201, 3017–3035 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. & Hogquist, K. A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Li, F. et al. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat. Commun. 7, 13839 (2017).

    Article  PubMed  Google Scholar 

  128. Li, Y. et al. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front. Immunol. 9, 1994 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Toubal, A. et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun. 11, 3755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hegde, P. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Semple, J. W., Italiano, J. E. & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Wong, C. H. Y., Jenne, C. N., Petri, B., Chrobok, N. L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14, 785–792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Fujita, K. et al. Effectiveness of antiplatelet drugs against experimental non-alcoholic fatty liver disease. Gut 57, 1583–1591 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Malehmir, M. et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat. Med. 25, 641–655 (2019). Fujita et al.135 and Malehmir et al.136 reveal the potential of anti-platelet therapies to treat NASH.

    Article  CAS  PubMed  Google Scholar 

  137. Jorch, S. K. & Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23, 279–287 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Soehnlein, O., Steffens, S., Hidalgo, A. & Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Gadd, V. L. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59, 1393–1405 (2014).

    Article  PubMed  Google Scholar 

  140. Rensen, S. S. et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am. J. Pathol. 175, 1473–1482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zang, S. et al. Neutrophils play a crucial role in the early stage of nonalcoholic steatohepatitis via neutrophil elastase in mice. Cell Biochem. Biophys. 73, 479–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Zhao, X. et al. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis. 11, 379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. van der Windt, D. J. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 68, 1347–1360 (2018).

    Article  PubMed  Google Scholar 

  144. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057–1074.e7 (2020). This study shows how the epigenetic landscape of liver macrophage subsets is altered during NASH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sakai, M. et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655–670.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Scott, C. L. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 7, 10321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Krenkel, O. et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 69, 551–563 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).

    Article  PubMed  Google Scholar 

  152. St Paul, M. & Ohashi, P. S. The roles of CD8+ T cell subsets in antitumor immunity. Trends Cell Biol. 30, 695–704 (2020).

    Article  Google Scholar 

  153. Ma, C. et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531, 253–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chawla, A. Control of macrophage activation and function by PPARs. Circ. Res. 106, 1559–1569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lefere, S. et al. Differential effects of selective-and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J. Hepatol. 73, 757–770 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Sun, L., Cai, J. & Gonzalez, F. J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 335–347 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Kjærgaard, K. et al. Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis. J. Hepatol. 74, 58–65 (2021).

    Article  PubMed  Google Scholar 

  158. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019). A phase III clinical study that shows the efficacy of obeticholic acid to limit hepatic fibrosis in patients with NASH.

    Article  CAS  PubMed  Google Scholar 

  159. Siddiqui, M. S. et al. Impact of obeticholic acid on the lipoprotein profile in patients with non-alcoholic steatohepatitis. J. Hepatol. 72, 25–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Harrison, S. A. et al. A randomized, placebo-controlled trial of Emricasan in patients with NASH and F1-F3 fibrosis. J. Hepatol. 72, 816–827 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Kruger, A. J. et al. Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis. Hepatol. Commun. 2, 529–545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lefebvre, E. et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One 11, e0158156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020). One of the first studies showing that CAR T cells could be used to combat fibrosis in the context of NASH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Thomas, J. A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53, 2003–2015 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Moroni, F. et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat. Med. 25, 1560–1565 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Matsumoto, M. et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int. J. Exp. Pathol. 94, 93–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, X. et al. Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis. Cell Metab. 31, 969–986.e7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Im, Y. R. et al. A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology 74, 1884–1901 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hansen, H. H. et al. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov. Today 22, 1707–1718 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Machado, M. V. et al. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One 10, e0127991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Li, H. et al. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Front. Immunol. 11, 1169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020). This study explains the design of a new bioinformatic tool to probe the intercellular communications operating in complex tissue environments.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work could not be cited owing to space limitations. This work was supported by Inserm, Sorbonne Université and grants from the Fondation de France (project number 00056835), the Agence Nationale pour la Recherche (ANR-15-CE14-0015-02, ANR-17-CE14-0009-02, ANR-17-CE14-0023-01 and ANR-20-CE15-0018-02) and the city of Paris (Emergence-s- program) to E.L.G. as well as grants from the Fondation de France (project number 00096295), Alliance Sorbonne Université (Programme Emergence) and the Agence Nationale pour la Recherche (ANR-17-CE14-0044-01) to T.H. The authors thank G. Marcelin for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Emmanuel L. Gautier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks X. Revelo and F. Tacke for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Insulin resistance

A state in which cells are not able to respond fully to insulin or induce signalling pathways downstream of the insulin receptor.

Steatosis

Describes the abnormal accumulation of lipids in a tissue.

Metabolic syndrome

A group of five conditions (increased blood pressure, high blood sugar level, excess body fat around the waist, and abnormal cholesterol or triglyceride levels) that can occur together and increase the risk of heart disease, stroke and type 2 diabetes.

Endoplasmic reticulum stress

A state of cellular stress that occurs when protein folding in the ER is impaired, leading to the accumulation of unfolded and/or misfolded proteins.

β-oxidation

Catabolic process occurring in the mitochondria by which fatty acids are converted into acetyl-CoA, a major metabolic intermediate.

Mallory–Denk bodies

Cytoplasmic aggregates of damaged cytoskeletal components found in hepatocytes during NASH or alcoholic liver disease.

Portal tracts

Areas of the liver, also known as portal triads, that consist of a bile duct, a small branch of the portal vein and a branch of the hepatic artery.

Gut-associated lymphoid tissue

Intestinal lymphoid structures, including Peyer’s patches and isolated lymphoid follicles, that are particularly rich in antibody-producing plasma cells.

Hepatic stellate cells

(HSCs). Mesenchymal liver cells found in the area between sinusoids and hepatocytes, known as the space of Disse.

Neutrophil extracellular traps

(NETs). Structures released by neutrophils that are primarily composed of a scaffold of chromatin fibres and antimicrobial proteins.

Peroxisome proliferator-activated receptor

(PPAR). Part of a group of ligand-controlled transcription factors of the nuclear receptor family that have major regulatory roles in controlling metabolic functions as well as anti-inflammatory properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huby, T., Gautier, E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol 22, 429–443 (2022). https://doi.org/10.1038/s41577-021-00639-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-021-00639-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing