Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological barriers to haematopoietic stem cell gene therapy

Abstract

Cell and gene therapies using haematopoietic stem cells (HSCs) epitomize the transformative potential of regenerative medicine. Recent clinical successes for gene therapies involving autologous HSC transplantation (HSCT) demonstrate the potential of genetic engineering in this stem cell type for curing disease. With recent advances in CRISPR gene-editing technologies, methodologies for the ex vivo expansion of HSCs and non-genotoxic conditioning protocols, the range of clinical indications for HSC-based gene therapies is expected to significantly expand. However, substantial immunological challenges need to be overcome. These include pre-existing immunity to gene-therapy reagents, immune responses to neoantigens introduced into HSCs by genetic engineering, and unique challenges associated with next-generation and off-the-shelf HSC products. By synthesizing these factors in this Review, we hope to encourage more research to address the immunological issues associated with current and next-generation HSC-based gene therapies to help realize the full potential of this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Haematopoietic stem cell gene therapy.
Fig. 2: Major landmarks in haematopoietic stem cell transplantation and gene therapy.
Fig. 3: Genetic engineering platforms for haematopoietic stem cell gene therapy.
Fig. 4: Immune barriers in haematopoietic stem cell gene therapy.

Similar content being viewed by others

References

  1. Wilkinson, A. C., Igarashi, K. J. & Nakauchi, H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat. Rev. Genet. 21, 541–554 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. Eaves, C. J. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125, 2605–2613 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Thomas, E. D., Lochte, H. L. Jr., Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    PubMed  Google Scholar 

  5. Wahlstrom, J. T., Dvorak, C. C. & Cowan, M. J. Hematopoietic stem cell transplantation for severe combined immunodeficiency. Curr. Pediatr. Rep. 3, 1–10 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Tiercy, J. M. How to select the best available related or unrelated donor of hematopoietic stem cells? Haematologica 101, 680–687 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. Granot, N. & Storb, R. History of hematopoietic cell transplantation: challenges and progress. Haematologica 105, 2716–2729 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Gragert, L. et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N. Engl. J. Med. 371, 339–348 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Hill, G. R., Betts, B. C., Tkachev, V., Kean, L. S. & Blazar, B. R. Current concepts and advances in graft-versus-host disease immunology. Annu. Rev. Immunol. 39, 19–49 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. Morgan, R. A., Gray, D., Lomova, A. & Kohn, D. B. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21, 574–590 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021). This work is the first clinical application of the CRISPR–Cas9 system for ex vivo HSC gene therapy.

    PubMed  Google Scholar 

  12. Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018). This paper reports clinical trial results from lentiviral-based gene therapy for β-thalassaemia.

    PubMed  Google Scholar 

  13. Boztug, K. et al. Stem-cell gene therapy for the Wiskott–Aldrich syndrome. N. Engl. J. Med. 363, 1918–1927 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Aiuti, A. et al. Correction of ADA–SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    PubMed  Google Scholar 

  15. Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 10, 617 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. Li, C. et al. In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol. Ther. 29, 822–837 (2021).

    PubMed  Google Scholar 

  17. Burns, S. In vivo gene editing of hematopoietic stem and progenitor cells. Intellia https://3o5c4w3neipl16yvhj3nfqam-wpengine.netdna-ssl.com/wp-content/uploads/Keystone_2021_BoneMarrow_10Mar2021-1.pdf (2021). This preclinical data release from Intellia demonstrates in vivo editing of human HSCs in xenografted mice.

  18. Wilkinson, A. C. et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571, 117–121 (2019). This paper is the first to show robust (>100-fold) expansion of HSCs ex vivo.

    PubMed  PubMed Central  Google Scholar 

  19. Piras, F. & Kajaste-Rudnitski, A. Antiviral immunity and nucleic acid sensing in haematopoietic stem cell gene engineering. Gene Ther. 28, 16–28 (2021).

    PubMed  Google Scholar 

  20. Dudek, A. M. & Porteus, M. H. Answered and unanswered questions in early-stage viral vector transduction biology and innate primary cell toxicity for ex-vivo gene editing. Front. Immunol. 12, 660302 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503, 402–405 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Chiu, Y. L. et al. Tat stimulates cotranscriptional capping of HIV mRNA. Mol. Cell 10, 585–597 (2002).

    PubMed  Google Scholar 

  23. Piras, F. et al. Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Mol. Med. 9, 1198–1211 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Wu, X. et al. Intrinsic immunity shapes viral resistance of stem cells. Cell 172, 423–438.e25 (2018).

    PubMed  Google Scholar 

  25. Petrillo, C. et al. Cyclosporine H overcomes innate immune restrictions to improve lentiviral transduction and gene editing in human hematopoietic stem cells. Cell Stem Cell 23, 820–832.e9 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Vaidyanathan, S. et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol. Ther. Nucleic Acids 12, 530–542 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    PubMed  Google Scholar 

  28. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    PubMed  Google Scholar 

  29. Schiroli, G. et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. 9, eaan0820 (2017).

    PubMed  Google Scholar 

  30. Wienert, B., Shin, J., Zelin, E., Pestal, K. & Corn, J. E. In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biol. 16, e2005840 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015). This paper describes the development of chemically modified guides that allow for the first demonstration of CRISPR–Cas9 gene editing in human HSCs.

    PubMed  PubMed Central  Google Scholar 

  32. Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). This paper describes the first demonstration of prime editing, a flexible platform for making gene edits without the use of a double-strand break.

    PubMed  PubMed Central  Google Scholar 

  34. Liao, W., Du, C. & Wang, J. The cGAS–STING pathway in hematopoiesis and its physiopathological significance. Front. Immunol. 11, 573915 (2020).

    PubMed  PubMed Central  Google Scholar 

  35. Dever, D. P. et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539, 384–389 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235–240 (2014). This work is the first demonstration of gene editing mediated by homology directed repair in HSCs; innate immune signalling of HSCs was overcome using integration-deficient lentiviral vectors.

    PubMed  PubMed Central  Google Scholar 

  37. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    PubMed  Google Scholar 

  38. Schiroli, G. et al. Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response. Cell Stem Cell 24, 551–565.e8 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Hosel, M. et al. Toll-like receptor 2-mediated innate immune response in human nonparenchymal liver cells toward adeno-associated viral vectors. Hepatology 55, 287–297 (2012).

    PubMed  Google Scholar 

  40. Zhu, J., Huang, X. & Yang, Y. The TLR9–MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J. Clin. Invest. 119, 2388–2398 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. DeWitt, M. A. et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 8, 360ra134 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Pien, G. C. et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J. Clin. Invest. 119, 1688–1695 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Li, C. et al. Cytotoxic-T-lymphocyte-mediated elimination of target cells transduced with engineered adeno-associated virus type 2 vector in vivo. J. Virol. 83, 6817–6824 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV–factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006). This paper reports adaptive immune responses to gene-therapy reagents as a major barrier to efficacy in clinical trials.

    PubMed  Google Scholar 

  45. Meadows, A. S., Pineda, R. J., Goodchild, L., Bobo, T. A. & Fu, H. Threshold for pre-existing antibody levels limiting transduction efficiency of systemic rAAV9 gene delivery: relevance for translation. Mol. Ther. Methods Clin. Dev. 13, 453–462 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Li, A. et al. AAV–CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).

    PubMed  PubMed Central  Google Scholar 

  47. Long, B. R. et al. The impact of pre-existing immunity on the non-clinical pharmacodynamics of AAV5-based gene therapy. Mol. Ther. Methods Clin. Dev. 13, 440–452 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Mingozzi, F. & High, K. A. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu. Rev. Virol. 4, 511–534 (2017).

    PubMed  Google Scholar 

  49. Mingozzi, F. et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat. Med. 13, 419–422 (2007).

    PubMed  Google Scholar 

  50. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    PubMed  Google Scholar 

  51. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    PubMed  Google Scholar 

  53. Shirley, J. L., de Jong, Y. P., Terhorst, C. & Herzog, R. W. Immune responses to viral gene therapy vectors. Mol. Ther. 28, 709–722 (2020).

    PubMed  PubMed Central  Google Scholar 

  54. George, L. A. et al. Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B. Mol. Ther. 28, 2073–2082 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. Chew, W. L. et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Rust, B. J. et al. Envelope-specific adaptive immunity following transplantation of hematopoietic stem cells modified with VSV-G lentivirus. Mol. Ther. Methods Clin. Dev. 19, 438–446 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Milani, M. et al. Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Mol. Med. 9, 1558–1573 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Calcedo, R. et al. Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial for α-1-antitrypsin deficiency. Proc. Natl Acad. Sci. USA 114, 1655–1659 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Mendell, J. R. et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N. Engl. J. Med. 363, 1429–1437 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Riddell, S. R. et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. 2, 216–223 (1996). This paper reports the first clinical trial in which gene-modified cells are cleared from the body owing to an adaptive immune response against the introduced transgene.

    PubMed  Google Scholar 

  61. Uchida, N. et al. Busulfan combined with immunosuppression allows efficient engraftment of gene-modified cells in a rhesus macaque model. Mol. Ther. 27, 1586–1596 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Uchida, N. et al. Evaluation of engraftment and immunological tolerance after reduced intensity conditioning in a rhesus hematopoietic stem cell gene therapy model. Gene Ther. 21, 148–157 (2014).

    PubMed  Google Scholar 

  63. Bubnic, S. J., Nagy, A. & Keating, A. Donor hematopoietic cells from transgenic mice that express GFP are immunogenic in immunocompetent recipients. Hematology 10, 289–295 (2005).

    PubMed  Google Scholar 

  64. Rosenzweig, M. et al. Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34+ hematopoietic cells. Blood 97, 1951–1959 (2001).

    PubMed  Google Scholar 

  65. Drysdale, C. M., Tisdale, J. F. & Uchida, N. Immunoresponse to gene-modified hematopoietic stem cells. Mol. Ther. Methods Clin. Dev. 16, 42–49 (2020).

    PubMed  Google Scholar 

  66. Uchida, N. et al. Total body irradiation must be delivered at high dose for efficient engraftment and tolerance in a rhesus stem cell gene therapy model. Mol. Ther. Methods Clin. Dev. 3, 16059 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Kung, S. K. et al. Induction of transgene-specific immunological tolerance in myeloablated nonhuman primates using lentivirally transduced CD34+ progenitor cells. Mol. Ther. 8, 981–991 (2003).

    PubMed  Google Scholar 

  68. Manilay, J. O., Pearson, D. A., Sergio, J. J., Swenson, K. G. & Sykes, M. Intrathymic deletion of alloreactive T cells in mixed bone marrow chimeras prepared with a nonmyeloablative conditioning regimen. Transplantation 66, 96–102 (1998).

    PubMed  Google Scholar 

  69. Styczynski, J. et al. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transpl. 55, 126–136 (2020).

    Google Scholar 

  70. Ogonek, J. et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front. Immunol. 7, 507 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Mikhael, N. L. & Elsorady, M. Clinical significance of T cell receptor excision circle (TREC) quantitation after allogenic HSCT. Blood Res. 54, 274–281 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Hakim, F. T. et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest. 115, 930–939 (2005).

    PubMed  PubMed Central  Google Scholar 

  73. Bhatt, K. H. et al. Short-course rapamycin treatment enables engraftment of immunogenic gene-engineered bone marrow under low-dose irradiation to permit long-term immunological tolerance. Stem Cell. Res. Ther. 8, 57 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Beagles, K. E., Peterson, L., Zhang, X., Morris, J. & Kiem, H. P. Cyclosporine inhibits the development of green fluorescent protein (GFP)-specific immune responses after transplantation of GFP-expressing hematopoietic repopulating cells in dogs. Hum. Gene Ther. 16, 725–733 (2005).

    PubMed  Google Scholar 

  75. Tarantal, A. F. et al. Nonmyeloablative conditioning regimen to increase engraftment of gene-modified hematopoietic stem cells in young rhesus monkeys. Mol. Ther. 20, 1033–1045 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Swart, J. F. et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat. Rev. Rheumatol. 13, 244–256 (2017).

    PubMed  Google Scholar 

  77. Sack, B. K., Herzog, R. W., Terhorst, C. & Markusic, D. M. Development of gene transfer for induction of antigen-specific tolerance. Mol. Ther. Methods Clin. Dev. 1, 14013 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Coleman, M. A. et al. Tolerance induction with gene-modified stem cells and immune-preserving conditioning in primed mice: restricting antigen to differentiated antigen-presenting cells permits efficacy. Blood 121, 1049–1058 (2013).

    PubMed  Google Scholar 

  79. Furlan, R. A tolerizing mRNA vaccine against autoimmunity? Mol. Ther. 29, 896–897 (2021).

    PubMed  PubMed Central  Google Scholar 

  80. Weischendorff, S. et al. Reduced plasma amino acid levels during allogeneic hematopoietic stem cell transplantation are associated with systemic inflammation and treatment-related complications. Biol. Blood Marrow Transpl. 25, 1432–1440 (2019).

    Google Scholar 

  81. De La Serna, J. et al. Toxicity and efficacy of busulfan and fludarabine myeloablative conditioning for HLA-identical sibling allogeneic hematopoietic cell transplantation in AML and MDS. Bone Marrow Transplant. 51, 961–966 (2016).

    Google Scholar 

  82. Xun, C. Q., Thompson, J. S., Jennings, C. D., Brown, S. A. & Widmer, M. B. Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83, 2360–2367 (1994).

    PubMed  Google Scholar 

  83. Squeri, G. et al. Targeting a pre-existing anti-transgene T cell response for effective gene therapy of MPS-I in the mouse model of the disease. Mol. Ther. 27, 1215–1227 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467, 318–322 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. Gouw, S. C. et al. F8 gene mutation type and inhibitor development in patients with severe hemophilia A: systematic review and meta-analysis. Blood 119, 2922–2934 (2012).

    PubMed  Google Scholar 

  86. Ponder, K. P. Immune response hinders therapy for lysosomal storage diseases. J. Clin. Invest. 118, 2686–2689 (2008).

    PubMed  PubMed Central  Google Scholar 

  87. Lutzko, C. et al. Genetically corrected autologous stem cells engraft, but host immune responses limit their utility in canine α-l-iduronidase deficiency. Blood 93, 1895–1905 (1999).

    PubMed  Google Scholar 

  88. Gentner, B. et al. Hematopoietic stem- and progenitor-cell gene therapy for Hurler syndrome. N. Engl. J. Med. 385, 1929–1940 (2021).

    PubMed  Google Scholar 

  89. Yin, L. et al. CRISPR–Cas13a inhibits HIV-1 infection. Mol. Ther. Nucleic Acids 21, 147–155 (2020).

    PubMed  PubMed Central  Google Scholar 

  90. Xu, L. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 381, 1240–1247 (2019).

    PubMed  Google Scholar 

  91. Burke, B. P. et al. Engineering cellular resistance to HIV-1 infection in vivo using a dual therapeutic lentiviral vector. Mol. Ther. Nucleic Acids 4, e236 (2015).

    PubMed  Google Scholar 

  92. Kim, M. Y. et al. Genetic inactivation of CD33 in hematopoietic stem cells to tnable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173, 1439–1453.e19 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Voss, J. E. et al. Reprogramming the antigen specificity of B cells using genome-editing technologies. eLife 8, e42995 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Greiner, V. et al. CRISPR-mediated editing of the B cell receptor in primary human B cells. iScience 12, 369–378 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. De Oliveira, S. N. et al. Modification of hematopoietic stem/progenitor cells with CD19-specific chimeric antigen receptors as a novel approach for cancer immunotherapy. Hum. Gene Ther. 24, 824–839 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Vatakis, D. N. et al. Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc. Natl Acad. Sci. USA 108, E1408–E1416 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L. F. Lessons from the host defences of bats, a unique viral reservoir. Nature 589, 363–370 (2021).

    PubMed  Google Scholar 

  98. Bai, T. et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019).

    PubMed  Google Scholar 

  99. Fares, I. et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509–1512 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. Demirci, S., Leonard, A. & Tisdale, J. F. Hematopoietic stem cells from pluripotent stem cells: clinical potential, challenges, and future perspectives. Stem Cell Transl. Med. 9, 1549–1557 (2020).

    Google Scholar 

  102. Sandler, V. M. et al. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 511, 312–318 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Riddell, J. et al. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157, 549–564 (2014). This paper is the first to demonstrate trans-differentiation of cells to HSCs.

    PubMed  PubMed Central  Google Scholar 

  104. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    PubMed  Google Scholar 

  105. Robinson, J., Soormally, A. R., Hayhurst, J. D. & Marsh, S. G. E. The IPD-IMGT/HLA Database — new developments in reporting HLA variation. Hum. Immunol. 77, 233–237 (2016).

    PubMed  Google Scholar 

  106. Xu, H. et al. Targeted disruption of HLA genes via CRISPR–Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e7 (2019).

    PubMed  Google Scholar 

  107. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017). This paper reports that hypoimmune cells allow for allogeneic transplantation without rejection or HLA matching.

    PubMed  PubMed Central  Google Scholar 

  109. Deuse, T. et al. Hypoimmune induced pluripotent stem cell-derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proc. Natl Acad. Sci. USA 118, e2022091118 (2021).

    PubMed  PubMed Central  Google Scholar 

  110. Liu, X. et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat. Immunol. 12, 416–424 (2011).

    PubMed  Google Scholar 

  111. Madsen, L. et al. Mice lacking all conventional MHC class II genes. Proc. Natl Acad. Sci. USA 96, 10338–10343 (1999).

    PubMed  PubMed Central  Google Scholar 

  112. Grusby, M. J. et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl Acad. Sci. USA 90, 3913–3917 (1993).

    PubMed  PubMed Central  Google Scholar 

  113. Burger, P., Hilarius-Stokman, P., de Korte, D., van den Berg, T. K. & van Bruggen, R. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood 119, 5512–5521 (2012).

    PubMed  Google Scholar 

  114. Noyan, F. et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am. J. Transplant. 17, 917–930 (2017).

    PubMed  Google Scholar 

  115. Todo, S. et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 64, 632–643 (2016).

    PubMed  Google Scholar 

  116. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Akbarpour, M. et al. Insulin B chain 9-23 gene transfer to hepatocytes protects from type 1 diabetes by inducing Ag-specific FoxP3+ Tregs. Sci. Transl. Med. 7, 289ra281 (2015).

    Google Scholar 

  118. Cunningham, E. C. et al. Gene therapy for tolerance: high-level expression of donor major histocompatibility complex in the liver overcomes naive and memory alloresponses to skin grafts. Transplantation 95, 70–77 (2013).

    PubMed  Google Scholar 

  119. Calne, R. Y. et al. Induction of immunological tolerance by porcine liver allografts. Nature 223, 472–476 (1969).

    PubMed  Google Scholar 

  120. Bernardo, M. E. & Aiuti, A. The role of conditioning in hematopoietic stem-cell gene therapy. Hum. Gene Ther. 27, 741–748 (2016).

    PubMed  Google Scholar 

  121. Chanut, F. J. A. et al. Conditioning regimens in long-term pre-clinical studies to support development of ex vivo gene therapy: review of nonproliferative and proliferative changes. Hum. Gene Ther. 32, 66–76 (2021).

    PubMed  Google Scholar 

  122. Agarwal, R. et al. First report of non-genotoxic conditioning with JSP191 (anti-CD117) and hematopoietic stem cell transplantation in a newly diagnosed patient with severe combined immune deficiency. Blood 136, 10–10 (2020).

    Google Scholar 

  123. Myburgh, R. et al. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia 34, 2688–2703 (2020).

    PubMed  Google Scholar 

  124. Chhabra, A. et al. Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci. Transl. Med. 8, 351ra105 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. George, B. M. et al. Antibody conditioning enables MHC-mismatched hematopoietic stem cell transplants and organ graft tolerance. Cell Stem Cell 25, 185–192.e3 (2019). This paper reports that antibody-mediated conditioning allows for HSCT between completely MHC-mismatched donor and recipient mice.

    PubMed  PubMed Central  Google Scholar 

  126. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    PubMed  Google Scholar 

  127. Ochi, K., Morita, M., Wilkinson, A. C., Iwama, A. & Yamazaki, S. Non-conditioned bone marrow chimeric mouse generation using culture-based enrichment of hematopoietic stem and progenitor cells. Nat. Commun. 12, 3568 (2021).

    PubMed  PubMed Central  Google Scholar 

  128. Shimoto, M., Sugiyama, T. & Nagasawa, T. Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood 129, 2124–2131 (2017). This work is the first demonstration of robust HSC engraftment without conditioning in immunocompetent mice.

    PubMed  Google Scholar 

  129. Rio, P. et al. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat. Med. 25, 1396–1401 (2019).

    PubMed  Google Scholar 

  130. Wilkinson, A. C. et al. Cas9-AAV6 gene correction of β-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nat. Commun. 12, 686 (2021).

    PubMed  PubMed Central  Google Scholar 

  131. Ginn, S. L. et al. Limiting thymic precursor supply increases the risk of lymphoid malignancy in murine X-linked severe combined immunodeficiency. Mol. Ther. Nucleic Acids 6, 1–14 (2017).

    PubMed  Google Scholar 

  132. Pasi, K. J. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N. Engl. J. Med. 382, 29–40 (2020).

    PubMed  Google Scholar 

  133. Jacobson, S. G. et al. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med. 372, 1920–1926 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. Goldstein, J. M. et al. In situ modification of tissue stem and progenitor cell genomes. Cell Rep. 27, 1254–1264.e7 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Humbert, O. et al. Rapid immune reconstitution of SCID-X1 canines after G-CSF/AMD3100 mobilization and in vivo gene therapy. Blood Adv. 2, 987–999 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021). This work is the first clinical trial to use the CRISPR–Cas9 system in vivo.

    PubMed  Google Scholar 

  137. Krishnamurthy, S. et al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat. Commun. 10, 4906 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. [No authors listed.] High-dose AAV gene therapy deaths. Nat. Biotechnol. 38, 910 (2020).

    Google Scholar 

  140. Sibbald, B. Death but one unintended consequence of gene-therapy trial. CMAJ 164, 1612 (2001).

    PubMed  PubMed Central  Google Scholar 

  141. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    PubMed  PubMed Central  Google Scholar 

  142. Brown, B. D., Venneri, M. A., Zingale, A., Sergi Sergi, L. & Naldini, L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med. 12, 585–591 (2006).

    PubMed  Google Scholar 

  143. Dunleavy, K. With the pricing situation ‘untenable’ in Europe, Bluebird will wind down its operations in the ‘broken’ market. Fierce Pharma https://www.fiercepharma.com/pharma/situation-untenable-bluebird-will-wind-down-its-operations-broken-europe (2021).

  144. Ferrari, G., Thrasher, A. J. & Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 22, 216–234 (2021).

    PubMed  Google Scholar 

  145. Cavazzana, M., Bushman, F. D., Miccio, A., Andre-Schmutz, I. & Six, E. Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat. Rev. Drug Discov. 18, 447–462 (2019).

    PubMed  Google Scholar 

  146. Aiuti, A., Roncarolo, M. G. & Naldini, L. Gene therapy for ADA–SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol. Med. 9, 737–740 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    PubMed  PubMed Central  Google Scholar 

  149. Yla-Herttuala, S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol. Ther. 20, 1831–1832 (2012).

    PubMed  PubMed Central  Google Scholar 

  150. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    PubMed  Google Scholar 

  151. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    PubMed  Google Scholar 

  152. Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA–SCID: initial trial results after 4 years. Science 270, 475–480 (1995).

    PubMed  Google Scholar 

  153. Civin, C. I. et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol. 133, 157–165 (1984).

    PubMed  Google Scholar 

  154. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    PubMed  Google Scholar 

  155. Gyurkocza, B. & Sandmaier, B. M. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood 124, 344–353 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.T.C. is supported by the National Science Foundation (NSF). A.C.W. acknowledges support from the Medical Research Council (MRC) and the Kay Kendall Leukaemia Fund. H.N. is supported by the National Institutes of Health (NIH) (grants R01DK116944; R01HL147124) and the Virginia and D.K. Ludwig Fund for Cancer Research (D.K. Ludwig Fund).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceiving, writing and editing this Review.

Corresponding authors

Correspondence to Adam C. Wilkinson or Hiromitsu Nakauchi.

Ethics declarations

Competing interests

H.N. is a co-founder and shareholder in Megakaryon, Century Therapeutic and Celaid Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks P. Genovese and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Glossary

Sickle cell disease

A disease caused by a specific point mutation in the haemoglobin-β (HBB) gene, which leads to the formation of haemoglobin tetramers that can polymerize with each other and that cause red blood cells to become highly fragile and adopt a characteristic sickle shape.

Conditioning regimens

Treatments given prior to haematopoietic stem cell transplantation (HSCT) to ablate components of the haematopoietic system in the recipient in order to ensure engraftment of transplanted cells.

Autoimmune haemolytic anaemia

An autoimmune disease whereby patients produce autoantibodies that target red blood cells, causing them to lyse prematurely and thus leading to anaemia.

cGAS–STING pathway

A cytosolic DNA-sensing signalling pathway, in which binding of cGAS to double-stranded DNA (dsDNA) in the cytoplasm leads to the downstream activation of STING and, subsequently, the activation of an inflammatory transcriptional programme in cells.

Adenosine deaminase deficiency–severe combined immunodeficiency

(ADA–SCID). A disease caused by mutations in the adenosine deaminase (ADA) gene. ADA is an essential enzyme in the purine salvage pathway, deficiency of which prevents the maturation of B cells, T cells and natural killer cells.

β-Thalassaemia

A disease caused by mutations in the haemoglobin-β (HBB) gene that prevent functional HBB expression, leading to an inability of red blood cells to form haemoglobin tetramers.

CRISPR–Cas9

A CRISPR–Cas gene-editing platform adapted from bacteria that can be directed to make double-strand breaks at specific sequences of DNA.

Base editors

Gene-editing platforms that allow for the alteration of single nucleotides in the genome without requiring a double-strand break in DNA, through fusion of a catalytically dead DNA endonuclease Cas9 to a deaminase enzyme.

Prime editing

A gene-editing platform that allows for the modification of small sequences (up to ~40 bp) in the genome through fusion of a catalytically dead DNA endonuclease Cas9 to a reverse transcriptase.

Homology directed repair

A DNA repair pathway that corrects double-strand breaks using a homologous DNA sequence. This pathway may be used to change specific sequences in the genome or to introduce transgenes in specific locations in the genome.

Mucopolysaccharidosis type 1

(MPS1). A disease caused by mutations in α-l-iduronidase (IDUA), which lead to a build-up of glycosaminoglycan in lysosomes.

Small interfering RNAs

Small, 20–27 bp, double-stranded RNA molecules that bind endogenous mRNAs, leading to their downregulation through the RNA-induced silencing complex (RISC) pathway.

CRISPR–Cas13

A CRISPR–Cas gene-editing platform adapted from bacteria that can be used to target mRNAs for cleavage, preventing their translation within cells.

Chimeric antigen receptor T cell

(CAR T cell). A T cell that has been genetically modified to express a chimeric receptor that consists of the intracellular portion of the T cell receptor (TCR) fused to an extracellular domain that can bind an antigen of interest, causing the T cell to become activated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlesworth, C.T., Hsu, I., Wilkinson, A.C. et al. Immunological barriers to haematopoietic stem cell gene therapy. Nat Rev Immunol 22, 719–733 (2022). https://doi.org/10.1038/s41577-022-00698-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-022-00698-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing