Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Host-directed immunotherapy of viral and bacterial infections: past, present and future

Abstract

The advent of COVID-19 and the persistent threat of infectious diseases such as tuberculosis, malaria, influenza and HIV/AIDS remind us of the marked impact that infections continue to have on public health. Some of the most effective protective measures are vaccines but these have been difficult to develop for some of these infectious diseases even after decades of research. The development of drugs and immunotherapies acting directly against the pathogen can be equally challenging, and such pathogen-directed therapeutics have the potential disadvantage of selecting for resistance. An alternative approach is provided by host-directed therapies, which interfere with host cellular processes required for pathogen survival or replication, or target the host immune response to infection (immunotherapies) to either augment immunity or ameliorate immunopathology. Here, we provide a historical perspective of host-directed immunotherapeutic interventions for viral and bacterial infections and then focus on SARS-CoV-2 and Mycobacterium tuberculosis, two major human pathogens of the current era, to indicate the key lessons learned and discuss candidate immunotherapeutic approaches, with a focus on drugs currently in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key developments in host-directed immunotherapeutic interventions for infectious disease.
Fig. 2: Host-directed immunotherapeutic intervention points for severe COVID-19.
Fig. 3: Interferons and immunotherapeutic intervention: COVID-19 and tuberculosis.
Fig. 4: Major candidates for host-directed immunotherapies and their targets in tuberculosis.

Similar content being viewed by others

References

  1. Ellis, G. I., Sheppard, N. C. & Riley, J. L. Genetic engineering of T cells for immunotherapy. Nat. Rev. Genet. 22, 427–447 (2021).

    Article  CAS  Google Scholar 

  2. Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91–104 (2018).

    Article  CAS  Google Scholar 

  3. Boland, E. W. & Headley, N. E. Effects of cortisone acetate on rheumatoid arthritis. J. Am. Med. Assoc. 141, 301–308 (1949).

    Article  CAS  Google Scholar 

  4. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B. Biol. Sci. 147, 258–267 (1957).

    Article  CAS  Google Scholar 

  5. Reichard, O. et al. Randomised, double-blind, placebo-controlled trial of interferon alpha-2b with and without ribavirin for chronic hepatitis C. The Swedish Study Group. Lancet 351, 83–87 (1998).

    Article  CAS  Google Scholar 

  6. Heim, M. H. 25 years of interferon-based treatment of chronic hepatitis C: an epoch coming to an end. Nat. Rev. Immunol. 13, 535–542 (2013).

    Article  CAS  Google Scholar 

  7. Neesgaard, B., Ruhwald, M. & Weis, N. Inducible protein-10 as a predictive marker of antiviral hepatitis C treatment: a systematic review. World J. Hepatol. 9, 677–688 (2017).

    Article  Google Scholar 

  8. Muir, A. J. et al. A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. J. Hepatol. 61, 1238–1246 (2014).

    Article  CAS  Google Scholar 

  9. Lok, A. S. et al. Preliminary study of two antiviral agents for hepatitis C genotype 1. N. Engl. J. Med. 366, 216–224 (2012).

    Article  CAS  Google Scholar 

  10. Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S. & Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 17, 35–56 (2018).

    Article  CAS  Google Scholar 

  11. Barrat, F. J. & Su, L. A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. J. Exp. Med. 216, 1974–1985 (2019).

    Article  CAS  Google Scholar 

  12. Su, L. Pathogenic role of type i interferons in HIV-induced immune impairments in humanized mice. Curr. HIV/AIDS Rep. 16, 224–229 (2019).

    Article  Google Scholar 

  13. Beilharz, M. W., Cummins, J. M. & Bennett, A. L. Protection from lethal influenza virus challenge by oral type 1 interferon. Biochem. Biophys. Res. Commun. 355, 740–744 (2007).

    Article  CAS  Google Scholar 

  14. Davidson, S. et al. IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment. EMBO Mol. Med. 8, 1099–1112 (2016).

    Article  CAS  Google Scholar 

  15. Davidson, S., Maini, M. K. & Wack, A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J. Interferon Cytokine Res. 35, 252–264 (2015).

    Article  CAS  Google Scholar 

  16. Major, J. et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369, 712–717 (2020).

    Article  CAS  Google Scholar 

  17. Broggi, A. et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science 369, 706–712 (2020).

    Article  CAS  Google Scholar 

  18. Onwumeh, J., Okwundu, C. I. & Kredo, T. Interleukin-2 as an adjunct to antiretroviral therapy for HIV-positive adults. Cochrane Database Syst. Rev. 5, CD009818 (2017).

    Google Scholar 

  19. Young, C., Walzl, G. & Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 13, 190–204 (2020).

    Article  CAS  Google Scholar 

  20. Johnson, B. J. et al. rhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tuber. Lung Dis. 78, 195–203 (1997).

    Article  CAS  Google Scholar 

  21. Johnson, J. L. et al. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 168, 185–191 (2003).

    Article  Google Scholar 

  22. Larson, R. P., Shafiani, S. & Urdahl, K. B. Foxp3+ regulatory T cells in tuberculosis. Adv. Exp. Med. Biol. 783, 165–180 (2013).

    Article  CAS  Google Scholar 

  23. Chen, C. Y. et al. IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB. J. Immunol. 188, 4278–4288 (2012).

    Article  CAS  Google Scholar 

  24. Cooper, A. M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).

    Article  CAS  Google Scholar 

  25. Flynn, J. L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  Google Scholar 

  26. Kristensen, I. A., Veirum, J. E., Moller, B. K. & Christiansen, M. Novel STAT1 alleles in a patient with impaired resistance to mycobacteria. J. Clin. Immunol. 31, 265–271 (2011).

    Article  Google Scholar 

  27. Alangari, A. A. et al. Treatment of disseminated mycobacterial infection with high-dose IFN-gamma in a patient with IL-12Rbeta1 deficiency. Clin. Dev. Immunol. 2011, 691956 (2011).

    Article  Google Scholar 

  28. Condos, R., Rom, W. N. & Schluger, N. W. Treatment of multidrug-resistant pulmonary tuberculosis with interferon- gamma via aerosol. Lancet 349, 1513–1515 (1997).

    Article  CAS  Google Scholar 

  29. Wallis, R. S. Lack of a therapeutic role for interferon gamma in patients with tuberculosis. J. Infect. Dis. 209, 627–628 (2014).

    Article  Google Scholar 

  30. Dawson, R. et al. Immunomodulation with recombinant interferon-gamma1b in pulmonary tuberculosis. PLoS One 4, e6984 (2009).

    Article  Google Scholar 

  31. Raju, B. et al. Aerosolized gamma interferon (IFN-gamma) induces expression of the genes encoding the IFN-gamma-inducible 10-kilodalton protein but not inducible nitric oxide synthase in the lung during tuberculosis. Infect. Immun. 72, 1275–1283 (2004).

    Article  CAS  Google Scholar 

  32. Guirado, E., Schlesinger, L. S. & Kaplan, G. Macrophages in tuberculosis: friend or foe. Semin. Immunopathol. 35, 563–583 (2013).

    Article  CAS  Google Scholar 

  33. Tan, B. H. et al. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J. Immunol. 177, 1864–1871 (2006).

    Article  CAS  Google Scholar 

  34. Gopal, R. et al. S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am. J. Respir. Crit. Care Med. 188, 1137–1146 (2013).

    Article  CAS  Google Scholar 

  35. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Article  CAS  Google Scholar 

  36. Dorhoi, A. et al. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol. 44, 2380–2393 (2014).

    Article  CAS  Google Scholar 

  37. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  CAS  Google Scholar 

  38. Moreira-Teixeira, L., Mayer-Barber, K., Sher, A. & O’Garra, A. Type I interferons in tuberculosis: foe and occasionally friend. J. Exp. Med. 215, 1273–1285 (2018).

    Article  CAS  Google Scholar 

  39. Moreira-Teixeira, L. et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat. Commun. 11, 5566 (2020).

    Article  CAS  Google Scholar 

  40. Moreira-Teixeira, L. et al. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat. Immunol. 21, 464–476 (2020).

    Article  CAS  Google Scholar 

  41. Antonelli, L. R. et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest. 120, 1674–1682 (2010).

    Article  CAS  Google Scholar 

  42. Romanowski, K. et al. Long-term all-cause mortality in people treated for tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 19, 1129–1137 (2019).

    Article  Google Scholar 

  43. Willcox, P. A. & Ferguson, A. D. Chronic obstructive airways disease following treated pulmonary tuberculosis. Respir. Med. 83, 195–198 (1989).

    Article  CAS  Google Scholar 

  44. Youssef, J., Novosad, S. A. & Winthrop, K. L. Infection risk and safety of corticosteroid use. Rheum. Dis. Clin. North. Am. 42, 157–176 (2016).

    Article  Google Scholar 

  45. Barnard, C. Tuberculous meningitis; cortisone treatment as an adjunct to the antibiotics; the effect on the clinical features and the cerebrospinal fluid. S. Afr. Med. J. 27, 219–220 (1953).

    CAS  Google Scholar 

  46. Cochran, J. B. Cortisone in the treatment of pulmonary tuberculosis. Edinb. Med. J. 61, 238–249 (1954).

    CAS  Google Scholar 

  47. Dooley, D. P., Carpenter, J. L. & Rademacher, S. Adjunctive corticosteroid therapy for tuberculosis: a critical reappraisal of the literature. Clin. Infect. Dis. 25, 872–887 (1997).

    Article  CAS  Google Scholar 

  48. Critchley, J. A., Young, F., Orton, L. & Garner, P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 13, 223–237 (2013).

    Article  CAS  Google Scholar 

  49. Meintjes, G. et al. Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS 24, 2381–2390 (2010).

    Article  CAS  Google Scholar 

  50. Meintjes, G. et al. Prednisone for the prevention of paradoxical tuberculosis-associated IRIS. N. Engl. J. Med. 379, 1915–1925 (2018).

    Article  CAS  Google Scholar 

  51. Wallis, R. S. Corticosteroid effects on sputum culture in pulmonary tuberculosis: a meta-regression analysis. Open Forum Infect. Dis. 1, ofu020 (2014).

    Article  Google Scholar 

  52. The National Institutes of Health-University of California Expert Panel for Corticosteroids as Adjunctive Therapy for Pneumocystis Pneumonia. Consensus statement on the use of corticosteroids as adjunctive therapy for pneumocystis pneumonia in the acquired immunodeficiency syndrome. N. Engl. J. Med. 323, 1500–1504 (1990).

    Article  Google Scholar 

  53. Fujikura, Y., Manabe, T., Kawana, A. & Kohno, S. Adjunctive corticosteroids for Pneumocystis jirovecii pneumonia in non-HIV-infected patients: a systematic review and meta-analysis of observational studies. Arch. Bronconeumol. 53, 55–61 (2017).

    Article  Google Scholar 

  54. Ewald, H. et al. Adjunctive corticosteroids for Pneumocystis jiroveci pneumonia in patients with HIV infection. Cochrane Database Syst. Rev. 2015, CD006150 (2015).

    Google Scholar 

  55. de Jong, M. D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  Google Scholar 

  56. Hui, D. S., Lee, N., Chan, P. K. & Beigel, J. H. The role of adjuvant immunomodulatory agents for treatment of severe influenza. Antivir. Res. 150, 202–216 (2018).

    Article  CAS  Google Scholar 

  57. Zhou, Y. et al. Use of corticosteroids in influenza-associated acute respiratory distress syndrome and severe pneumonia: a systemic review and meta-analysis. Sci. Rep. 10, 3044 (2020).

    Article  CAS  Google Scholar 

  58. Ni, Y. N., Chen, G., Sun, J., Liang, B. M. & Liang, Z. A. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit. Care 23, 99 (2019).

    Article  Google Scholar 

  59. Wong, L. R. & Perlman, S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses - are we our own worst enemy? Nat. Rev. Immunol. 22, 47–56 (2022).

    Article  CAS  Google Scholar 

  60. Diamond, M. S. & Kanneganti, T. D. Innate immunity: the first line of defense against SARS-CoV-2. Nat. Immunol. 23, 165–176 (2022).

    Article  CAS  Google Scholar 

  61. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).

    Article  CAS  Google Scholar 

  62. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).

    Article  CAS  Google Scholar 

  63. Park, A. & Iwasaki, A. Type I and type III interferons- induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27, 870–878 (2020).

    Article  CAS  Google Scholar 

  64. Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 26, 1623–1635 (2020).

    Article  CAS  Google Scholar 

  65. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463–469 (2020).

    Article  CAS  Google Scholar 

  66. Galani, I. E. et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat. Immunol. 22, 32–40 (2021).

    Article  CAS  Google Scholar 

  67. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883–890.e2 (2020).

    Article  CAS  Google Scholar 

  68. Wang, N. et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe 28, 455–464.e2 (2020).

    Article  Google Scholar 

  69. Arabi, Y. M. et al. Interferon beta-1b and Lopinavir-Ritonavir for middle east respiratory syndrome. N. Engl. J. Med. 383, 1645–1656 (2020).

    Article  CAS  Google Scholar 

  70. WHO Solidarity Trial Consortium. et al. Repurposed antiviral drugs for Covid-19 - interim WHO solidarity trial results. N. Engl. J. Med. 384, 497–511 (2021).

    Article  Google Scholar 

  71. Monk, P. D. et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med. 9, 196–206 (2021).

    Article  CAS  Google Scholar 

  72. Hung, I. F. et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 395, 1695–1704 (2020).

    Article  CAS  Google Scholar 

  73. Feld, J. J. et al. Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respir. Med. 9, 498–510 (2021).

    Article  CAS  Google Scholar 

  74. Channappanavar, R. et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19, 181–193 (2016).

    Article  CAS  Google Scholar 

  75. Garcia-Del-Barco, D., Risco-Acevedo, D., Berlanga-Acosta, J., Martos-Benitez, F. D. & Guillen-Nieto, G. Revisiting pleiotropic effects of type I interferons: rationale for its prophylactic and therapeutic use against SARS-CoV-2. Front. Immunol. 12, 655528 (2021).

    Article  CAS  Google Scholar 

  76. Prokunina-Olsson, L. et al. COVID-19 and emerging viral infections: the case for interferon lambda. J. Exp. Med. 217, e20200653 (2020).

    Article  Google Scholar 

  77. Davidson, S., Crotta, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon alphabeta in acute influenza infection. Nat. Commun. 5, 3864 (2014).

    Article  CAS  Google Scholar 

  78. Angus, D. C. et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA 324, 1317–1329 (2020).

    Article  CAS  Google Scholar 

  79. Recovery Collaborative Group. et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 384, 693–704 (2021).

    Article  Google Scholar 

  80. Leisman, D. E. et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 8, 1233–1244 (2020).

    Article  CAS  Google Scholar 

  81. Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008).

    Article  CAS  Google Scholar 

  82. Le, R. Q. et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 23, 943–947 (2018).

    Article  CAS  Google Scholar 

  83. Rosas, I. O. et al. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N. Engl. J. Med. 384, 1503–1516 (2021).

    Article  CAS  Google Scholar 

  84. Recovery Collaborative Group. et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 397, 1637–1645 (2021).

    Article  Google Scholar 

  85. Remap-Cap Investigators. et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N. Engl. J. Med. 384, 1491–1502 (2021).

    Article  Google Scholar 

  86. Stone, J. H. et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N. Engl. J. Med. 383, 2333–2344 (2020).

    Article  CAS  Google Scholar 

  87. Rubin, E. J., Longo, D. L. & Baden, L. R. Interleukin-6 receptor inhibition in Covid-19-cooling the inflammatory soup. N. Engl. J. Med. 384, 1564–1565 (2021).

    Article  CAS  Google Scholar 

  88. Cremer, P. C. et al. Mavrilimumab in patients with severe COVID-19 pneumonia and systemic hyperinflammation (MASH-COVID): an investigator initiated, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Rheumatol. 3, e410–e418 (2021).

    Article  Google Scholar 

  89. De Luca, G. et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. Lancet Rheumatol. 2, e465–e473 (2020).

    Article  Google Scholar 

  90. Cavalli, G. et al. Interleukin-1 and interleukin-6 inhibition compared with standard management in patients with COVID-19 and hyperinflammation: a cohort study. Lancet Rheumatol. 3, e253–e261 (2021).

    Article  Google Scholar 

  91. Cakarova, L. et al. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am. J. Respir. Crit. Care Med. 180, 521–532 (2009).

    Article  CAS  Google Scholar 

  92. Rosler, B. & Herold, S. Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia-a new therapeutic strategy? Mol. Cell. Pediatr. 3, 29 (2016).

    Article  Google Scholar 

  93. Mehta, P., Chambers, R. C. & Dagna, L. Granulocyte-macrophage colony stimulating factor in COVID-19: friend or foe? Lancet Rheumatol. 3, e394–e395 (2021).

    Article  Google Scholar 

  94. Kremer, J. M. et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 60, 1895–1905 (2009).

    Article  CAS  Google Scholar 

  95. Kalil, A. C. et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N. Engl. J. Med. 384, 795–807 (2021).

    Article  CAS  Google Scholar 

  96. Guimaraes, P. O. et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med. 385, 406–415 (2021).

    Article  CAS  Google Scholar 

  97. Stebbing, J. et al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci. Adv. 7, eabe4724 (2021).

    Article  CAS  Google Scholar 

  98. Seftel, D. & Boulware, D. R. Prospective cohort of fluvoxamine for early treatment of coronavirus disease 19. Open Forum Infect. Dis. 8, ofab050 (2021).

    Article  Google Scholar 

  99. Lenze, E. J. et al. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA 324, 2292–2300 (2020).

    Article  CAS  Google Scholar 

  100. Rosen, D. A. et al. Modulation of the sigma-1 receptor–IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 11, eaau5266 (2019).

    Article  CAS  Google Scholar 

  101. Bonaventura, A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21, 319–329 (2021).

    Article  CAS  Google Scholar 

  102. Gusev, E., Sarapultsev, A., Solomatina, L. & Chereshnev, V. SARS-CoV-2-Specific immune response and the pathogenesis of COVID-19. Int. J. Mol. Sci. 23, 1716 (2022).

    Article  CAS  Google Scholar 

  103. Acanfora, D. et al. The cross-talk between thrombosis and inflammatory storm in acute and long-COVID-19: therapeutic targets and clinical cases. Viruses 13, 1904 (2021).

    Article  CAS  Google Scholar 

  104. Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136, 1169–1179 (2020).

    Article  CAS  Google Scholar 

  105. Weber, A. G., Chau, A. S., Egeblad, M., Barnes, B. J. & Janowitz, T. Nebulized in-line endotracheal dornase alfa and albuterol administered to mechanically ventilated COVID-19 patients: a case series. Mol. Med. 26, 91 (2020).

    Article  Google Scholar 

  106. Zumla, A. et al. Towards host-directed therapies for tuberculosis. Nat. Rev. Drug Discov. 14, 511–512 (2015).

    Article  CAS  Google Scholar 

  107. Musser, J. M., Amin, A. & Ramaswamy, S. Negligible genetic diversity of mycobacterium tuberculosis host immune system protein targets: evidence of limited selective pressure. Genetics 155, 7–16 (2000).

    Article  CAS  Google Scholar 

  108. Ernst, J. D. Antigenic variation and immune escape in the MTBC. Adv. Exp. Med. Biol. 1019, 171–190 (2017).

    Article  CAS  Google Scholar 

  109. Drain, P. K. et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin. Microbiol. Rev. 31, e00021-18 (2018).

    Article  Google Scholar 

  110. Ottenhoff, T. H. et al. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS One 7, e45839 (2012).

    Article  CAS  Google Scholar 

  111. Scriba, T. J. et al. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. PLoS Pathog. 13, e1006687 (2017).

    Article  Google Scholar 

  112. Singhania, A. et al. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat. Commun. 9, 2308 (2018).

    Article  Google Scholar 

  113. Bloom, C. I. et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One 7, e46191 (2012).

    Article  CAS  Google Scholar 

  114. Cliff, J. M. et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J. Infect. Dis. 207, 18–29 (2013).

    Article  CAS  Google Scholar 

  115. Zhang, X. et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    Article  CAS  Google Scholar 

  116. Gideon, H. P., Skinner, J. A., Baldwin, N., Flynn, J. L. & Lin, P. L. Early whole blood transcriptional signatures are associated with severity of lung inflammation in cynomolgus macaques with mycobacterium tuberculosis infection. J. Immunol. 197, 4817–4828 (2016).

    Article  CAS  Google Scholar 

  117. Bogunovic, D. et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337, 1684–1688 (2012).

    Article  CAS  Google Scholar 

  118. Ji, D. X. et al. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat. Microbiol. 4, 2128–2135 (2019).

    Article  CAS  Google Scholar 

  119. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc. Natl Acad. Sci. USA 98, 5752–5757 (2001).

    Article  CAS  Google Scholar 

  120. Manca, C. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon Cytokine Res. 25, 694–701 (2005).

    Article  CAS  Google Scholar 

  121. McNab, F. W. et al. TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. J. Immunol. 191, 1732–1743 (2013).

    Article  CAS  Google Scholar 

  122. Ordway, D. et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J. Immunol. 179, 522–531 (2007).

    Article  CAS  Google Scholar 

  123. Redford, P. S. et al. Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J. Infect. Dis. 209, 270–274 (2014).

    Article  CAS  Google Scholar 

  124. Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

    Article  CAS  Google Scholar 

  125. Zhang, L., Jiang, X., Pfau, D., Ling, Y. & Nathan, C. F. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J. Exp. Med. 218, e20200887 (2021).

    Article  CAS  Google Scholar 

  126. Cooper, A. M., Pearl, J. E., Brooks, J. V., Ehlers, S. & Orme, I. M. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect. Immun. 68, 6879–6882 (2000).

    Article  CAS  Google Scholar 

  127. Moreira-Teixeira, L. et al. Type I IFN inhibits alternative macrophage activation during Mycobacterium tuberculosis infection and leads to enhanced protection in the absence of IFN-gamma signaling. J. Immunol. 197, 4714–4726 (2016).

    Article  CAS  Google Scholar 

  128. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  Google Scholar 

  129. Maiga, M. et al. Risk of tuberculosis reactivation with tofacitinib (CP-690550). J. Infect. Dis. 205, 1705–1708 (2012).

    Article  CAS  Google Scholar 

  130. Maiga, M. et al. Efficacy of adjunctive tofacitinib therapy in mouse models of tuberculosis. EBioMedicine 2, 868–873 (2015).

    Article  Google Scholar 

  131. Vilcheze, C. & Jacobs, W. R. Jr The promises and limitations of N-acetylcysteine as a potentiator of first-line and second-line tuberculosis drugs. Antimicrob. Agents Chemother. 65, e01703-20 (2021).

    Article  Google Scholar 

  132. Amaral et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp Med. 216, 556–570 (2019).

  133. Mai, N. T. et al. A randomised double blind placebo controlled phase 2 trial of adjunctive aspirin for tuberculous meningitis in HIV-uninfected adults. eLife 7, e33478 (2018).

    Article  Google Scholar 

  134. Misra, U. K., Kalita, J. & Nair, P. P. Role of aspirin in tuberculous meningitis: a randomized open label placebo controlled trial. J. Neurol. Sci. 293, 12–17 (2010).

    Article  CAS  Google Scholar 

  135. Schoeman, J. F., Janse van Rensburg, A., Laubscher, J. A. & Springer, P. The role of aspirin in childhood tuberculous meningitis. J. Child Neurol. 26, 956–962 (2011).

    Article  Google Scholar 

  136. Skerry, C. et al. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J. Antimicrob. Chemother. 69, 2453–2457 (2014).

    Article  CAS  Google Scholar 

  137. Dutta, N. K. et al. Statin adjunctive therapy shortens the duration of TB treatment in mice. J. Antimicrob. Chemother. 71, 1570–1577 (2016).

    Article  CAS  Google Scholar 

  138. Ralph, A. P. et al. High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis: under-recognised phenomena. PLoS One 8, e80302 (2013).

    Article  Google Scholar 

  139. Meghji, J., Simpson, H., Squire, S. B. & Mortimer, K. A systematic review of the prevalence and pattern of imaging defined post-TB lung disease. PLoS One 11, e0161176 (2016).

    Article  Google Scholar 

  140. Ross, J., Ehrlich, R. I., Hnizdo, E., White, N. & Churchyard, G. J. Excess lung function decline in gold miners following pulmonary tuberculosis. Thorax 65, 1010–1015 (2010).

    Article  CAS  Google Scholar 

  141. Ehrlich, R. I. et al. Predictors of chronic bronchitis in South African adults. Int. J. Tuberc. Lung Dis. 8, 369–376 (2004).

    CAS  Google Scholar 

  142. Byrne, A. L., Marais, B. J., Mitnick, C. D., Lecca, L. & Marks, G. B. Tuberculosis and chronic respiratory disease: a systematic review. Int. J. Infect. Dis. 32, 138–146 (2015).

    Article  Google Scholar 

  143. Subbian, S. et al. Pharmacologic inhibition of host phosphodiesterase-4 improves isoniazid-mediated clearance of Mycobacterium tuberculosis. Front. Immunol. 7, 238 (2016).

    Article  Google Scholar 

  144. Subbian, S. et al. Adjunctive phosphodiesterase-4 inhibitor therapy improves antibiotic response to pulmonary tuberculosis in a rabbit model. EBioMedicine 4, 104–114 (2016).

    Article  Google Scholar 

  145. Wallis, R. S. et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir. Med. 9, 897–908 (2021).

    Article  CAS  Google Scholar 

  146. Napier, R. J. et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 11, e1004770 (2015).

    Article  Google Scholar 

  147. Napier, R. J. et al. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10, 475–485 (2011).

    Article  CAS  Google Scholar 

  148. Han, Q., Lin, L., Zhao, B., Wang, N. & Liu, X. Inhibition of mTOR ameliorates bleomycin-induced pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 500, 839–845 (2018).

    Article  CAS  Google Scholar 

  149. Cabahug, V. L. O., Uy, H. S., Yu-Keh, E. & Sapno, K. J. D. Outcomes of treatment with sirolimus for non-infectious uveitis: a meta-analysis and systematic review. Clin. Ophthalmol. 13, 649–669 (2019).

    Article  Google Scholar 

  150. Singhal, A. et al. Metformin as adjunct anti-tuberculosis therapy. Sci. Transl. Med. 6, 263ra159 (2014).

    Article  Google Scholar 

  151. Pan, S. W. et al. The risk of TB in patients with type 2 diabetes initiating metformin vs sulfonylurea treatment. Chest 153, 1347–1357 (2018).

    Article  Google Scholar 

  152. Lin, S. Y. et al. Metformin is associated with a lower risk of active tuberculosis in patients with type 2 diabetes. Respirology 23, 1063–1073 (2018).

    Article  Google Scholar 

  153. Marupuru, S. et al. Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility. Braz. J. Infect. Dis. 21, 312–316 (2017).

    Article  Google Scholar 

  154. Degner, N. R., Wang, J. Y., Golub, J. E. & Karakousis, P. C. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin. Infect. Dis. 66, 198–205 (2018).

    Article  CAS  Google Scholar 

  155. Ma, Y. et al. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1259–1263 (2018).

    Article  CAS  Google Scholar 

  156. Padmapriydarsini, C. et al. Randomized trial of metformin with Anti-tuberculosis drugs for early sputum conversion in adults with pulmonary tuberculosis. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab964 (2021).

    Article  Google Scholar 

  157. Badri, M., Wilson, D. & Wood, R. Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study. Lancet 359, 2059–2064 (2002).

    Article  Google Scholar 

  158. Tezera, L. B. et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-alpha. eLife 9, e52668 (2020).

    Article  CAS  Google Scholar 

  159. Barber, D. L. et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci. Transl. Med. 11, eaat2702 (2019).

    Article  Google Scholar 

  160. Fujita, K., Terashima, T. & Mio, T. Anti-PD1 antibody treatment and the development of acute pulmonary tuberculosis. J. Thorac. Oncol. 11, 2238–2240 (2016).

    Article  Google Scholar 

  161. Tzelepis, F. et al. Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Sci. Immunol. 3, eaar4135 (2018).

    Article  Google Scholar 

  162. DiNardo, A. R. et al. Tuberculosis endotypes to guide stratified host-directed therapy. Med 2, 217–232 (2021).

    Article  CAS  Google Scholar 

  163. Manion, M. et al. To induce immune reconstitution inflammatory syndrome or suppress it: the spectrum of Mycobacterium genavense in the antiretroviral era. Clin. Infect. Dis. 72, 315–318 (2020).

    Article  Google Scholar 

  164. National Tuberculosis Association. Diagnostic Standards and Classification of Tuberculosis (NTA, 1940).

  165. Albright, F. S., Orlando, P., Pavia, A. T., Jackson, G. G. & Cannon Albright, L. A. Evidence for a heritable predisposition to death due to influenza. J. Infect. Dis. 197, 18–24 (2008).

    Article  Google Scholar 

  166. Tadokoro, T. et al. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc. Natl Acad. Sci. USA 111, E3641–E3649 (2014).

    Article  CAS  Google Scholar 

  167. Garbers, C., Heink, S., Korn, T. & Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov. 17, 395–412 (2018).

    Article  CAS  Google Scholar 

  168. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020).

    Article  CAS  Google Scholar 

  169. Rose-John, S. Interleukin-6 family cytokines. Cold Spring Harb. Perspect. Biol. 10, a028415 (2017).

    Article  Google Scholar 

  170. Schnepf, D. et al. Selective Janus kinase inhibition preserves interferon-lambda-mediated antiviral responses. Sci. Immunol. 6, eabd5318 (2021).

    Article  CAS  Google Scholar 

  171. Allwood, B. W. et al. Post-tuberculosis lung health: perspectives from the first international symposium. Int. J. Tuberc. Lung Dis. 24, 820–828 (2020).

    Article  CAS  Google Scholar 

  172. Davis, G. L. et al. Treatment of chronic hepatitis C with recombinant interferon alfa. A multicenter randomized, controlled trial. N. Engl. J. Med. 321, 1501–1506 (1989).

    Article  CAS  Google Scholar 

  173. Gillis, S., Ferm, M. M., Ou, W. & Smith, K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J. Immunol. 120, 2027–2032 (1978).

    Article  CAS  Google Scholar 

  174. Kovacs, J. A. et al. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N. Engl. J. Med. 332, 567–575 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Wall and W. Blanchett for helpful suggestions on the manuscript. The contribution of R.S.W. was partially supported by Horizon 2020 grant 847465 for Research and Innovation (DRTB-HDT) and project RIA2019AMR-2647 (panTB-HM) of the EDCTP2 programme of the European Union. The contribution of A.W. was funded by The Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001206), the UK Medical Research Council (FC001206) and the Wellcome Trust (FC001206). A.O’G. is funded by The Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001126), the UK Medical Research Council (FC001126) and the Wellcome Trust (FC001126). A.S. is supported by the intramural research program of the National Institute of Allergy and Infectious Diseases, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Robert S. Wallis or Andreas Wack.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks T. Decker, R. Mahon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

EDCTP: https://www.edctp.org/

PACTR: https://pactr.samrc.ac.za/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallis, R.S., O’Garra, A., Sher, A. et al. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol 23, 121–133 (2023). https://doi.org/10.1038/s41577-022-00734-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-022-00734-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing