Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

From TCR fundamental research to innovative chimeric antigen receptor design

Abstract

Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The TCR and its functional signalling motifs.
Fig. 2: Different CAR formats.
Fig. 3: TCR-like chimeric receptors.
Fig. 4: Timeline of the development of CARs and TCR-like chimeric receptors.

Similar content being viewed by others

References

  1. Dong, D. et al. Structural basis of assembly of the human T cell receptor–CD3 complex. Nature 573, 546–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Y. et al. Cholesterol inhibits TCR signaling by directly restricting TCR–CD3 core tunnel motility. Mol. Cell 82, 1278–1287.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Love, P. E. & Hayes, S. M. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Persp. Biol. 2, a002485 (2010).

    Google Scholar 

  5. Pitcher, L. A. & van Oers, N. S. C. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol. 24, 554–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Letourneur, F. & Klausner, R. D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor ζ family proteins. Proc. Natl Acad. Sci. USA 88, 8905–8909 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64, 1037–1046 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  PubMed  Google Scholar 

  10. Majzner, R. G. et al. GD2–CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, J., Huang, X. & Huang, J. CAR-T cell therapy for hematological malignancies: limitations and optimization strategies. Front. Immunol. 13, 1019115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Swamy, M. et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Aivazian, D. & Stern, L. J. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, H., Cordoba, S.-P., Dushek, O. & van der Merwe, P. A. Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl Acad. Sci. USA 108, 19323–19328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, L. et al. Ionic CD3–Lck interaction regulates the initiation of T-cell receptor signaling. Proc. Natl Acad. Sci. USA 114, E5891–E5899 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, W. et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 182, 855–871.e23 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. von Essen, M. et al. The CD3 γ leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation. J. Immunol. 168, 4519–4523 (2002).

    Article  Google Scholar 

  21. Janeway, C. A. Ligands for the T-cell receptor: hard times for avidity models. Immunol. Today 16, 223–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lever, M., Maini, P. K., van der Merwe, P. A. & Dushek, O. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14, 619–629 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Schamel, W. W., Alarcon, B. & Minguet, S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol. Rev. 291, 8–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Minguet, S., Swamy, M., Alarcón, B., Luescher, I. F. & Schamel, W. W. A. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Cochran, J. R., Cameron, T. O. & Stern, L. J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 9, 459–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Cordoba, S.-P. et al. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121, 4295–4302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung, Y., Wen, L., Altman, A. & Ley, K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat. Commun. 12, 3872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Acuto, O. T-cell virtuosity in “knowing thyself”. Front. Immunol. 15, 1343575 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartl, F. A. et al. Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat. Immunol. 21, 902–913 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Gil, D., Schamel, W. W. A., Montoya, M., Sánchez-Madrid, F. & Alarcón, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Blanco, R., Borroto, A., Schamel, W., Pereira, P. & Alarcon, B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci. Signal. 7, ra115 (2014).

    Article  PubMed  Google Scholar 

  35. Risueño, R. M., van Santen, H. M. & Alarcón, B. A conformational change senses the strength of T cell receptor–ligand interaction during thymic selection. Proc. Natl Acad. Sci. USA 103, 9625–9630 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee, M. S. et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 43, 227–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sušac, L. et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 185, 3201–3213.e19 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Notti, R. Q. et al. The resting state of the human T-cell receptor. Preprint at bioRxiv https://doi.org/10.1101/2023.08.22.554360 (2023).

  39. van Eerden, F. J. et al. TCR binding to a peptide-MHC complex raises a drawbridge for CD3 cross-membrane signaling. preprint at bioRxiv https://doi.org/10.1101/2022.07.27.501668 (2022).

  40. Molnár, E. et al. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J. Biol. Chem. 287, 42664–42674 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pathan-Chhatbar, S. et al. Direct regulation of the T cell antigen receptor’s activity by cholesterol. Front. Cell Dev. Biol. 8, 615996 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013).

    Article  PubMed  Google Scholar 

  43. Deford-Watts, L. M. et al. The cytoplasmic tail of the T cell receptor CD3ε subunit contains a phospholipid-binding motif that regulates T cell functions. J. Immunol. 183, 1055–1064 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, X., Li, H. & Xu, C. Structural understanding of T cell receptor triggering. Cell. Mol. Immunol. 17, 193–202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hem, C. D. et al. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell. Commun. Signal. 13, 31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Velasco Cárdenas, R. M.-H. et al. Harnessing CD3 diversity to optimize CAR T cells. Nat. Immunol. 24, 2135–2149 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Horkova, V. et al. Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat. Immunol. 24, 174–185 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Honikel, M. M. & Olejniczak, S. H. Co-stimulatory receptor signaling in CAR-T cells. Biomolecules 12, 1303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hege, K. M. et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer 5, 22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Till, B. G. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112, 2261–2271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brocker, T. Chimeric Fv-ζ or Fv-ε receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 96, 1999–2001 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Asmamaw Dejenie, T. et al. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Hum. Vaccin. Immunother. 18, 2114254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang, H., Song, X., Shen, L., Wang, X. & Xu, C. Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 8, 123–134 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Ajina, A. & Maher, J. Strategies to address chimeric antigen receptor tonic signaling. Mol. Cancer Ther. 17, 1795–1815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salzer, B. et al. Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat. Commun. 11, 4166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, H., Huang, Y. & Xu, C. Charging CAR by electrostatic power. Immunol. Rev. 320, 138–146 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Nieba, L., Honegger, A., Krebber, C. & Plückthun, A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 10, 435–444 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Atwell, J. L. et al. scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Protein Eng. 12, 597–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Srivastava, S. & Riddell, S. R. Engineering CAR-T cells: design concepts. Trends Immunol. 36, 494–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiao, Q. et al. Size-dependent activation of CAR-T cells. Sci. Immunol. 7, eabl3995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Filby, A. et al. Fyn regulates the duration of TCR engagement needed for commitment to effector function. J. Immunol. 179, 4635–4644 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, L. et al. CD28–CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell. Rep. Med. 4, 100917 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Burton, J. et al. Inefficient exploitation of accessory receptors reduces the sensitivity of chimeric antigen receptors. Proc. Natl Acad. Sci. USA 120, e2216352120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gudipati, V. et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat. Immunol. 21, 848–856 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. James, S. E. et al. Mathematical modeling of chimeric TCR triggering predicts the magnitude of target lysis and its impairment by TCR downmodulation. J. Immunol. 184, 4284–4294 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Harris, D. T. et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J. Immunol. 200, 1088–1100 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Salter, A. I. et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci. Signal. 14, eabe2606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harrer, D. C. et al. Fine-tuning the antigen sensitivity of CAR T cells: emerging strategies and current challenges. Front. Immunol. 14, 1321596 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qian, D., Griswold-Prenner, I., Rosner, M. R. & Fitch, F. W. Multiple components of the T cell antigen receptor complex become tyrosine-phosphorylated upon activation. J. Biol. Chem. 268, 4488–4493 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Baniyash, M., Garcia-Morales, P., Luong, E., Samelson, L. E. & Klausner, R. D. The T cell antigen receptor ζ chain is tyrosine phosphorylated upon activation. J. Biol. Chem. 263, 18225–18230 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Chylek, L. A. et al. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS ONE 9, e104240 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Holst, J. et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat. Immunol. 9, 658–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Pitcher, L. A. et al. The CD3 γε/δε signaling module provides normal T cell functions in the absence of the TCR ζ immunoreceptor tyrosine-based activation motifs. Eur. J. Immunol. 35, 3643–3654 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Bettini, M. L. et al. Cutting edge: CD3 ITAM diversity is required for optimal TCR signaling and thymocyte development. J. Immunol. 199, 1555–1560 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Osman, N., Turner, H., Lucas, S., Reif, K. & Cantrell, D. A. The protein interactions of the immunoglobulin receptor family tyrosine-based activation motifs present in the T cell receptor ζ subunits and the CD3 γ, δ and ε chains. Eur. J. Immunol. 26, 1063–1068 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Sunder-Plassmann, R., Lialios, F., Madsen, M., Koyasu, S. & Reinherz, E. L. Functional analysis of immunoreceptor tyrosine-based activation motif (ITAM)-mediated signal transduction: the two YxxL segments within a single CD3ζ-ITAM are functionally distinct. Eur. J. Immunol. 27, 2001–2009 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Guirado, M. et al. Phosphorylation of the N-terminal and C-terminal CD3-ε–ITAM tyrosines is differentially regulated in T cells. Biochem. Biophys. Res. Commun. 291, 574–581 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Paensuwan, P. et al. Nck binds to the T cell antigen receptor using its SH3.1 and SH2 domains in a cooperative manner, promoting TCR functioning. J. Immunol. 196, 448–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Kesti, T. et al. Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3ε. J. Immunol. 179, 878–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183, 5563–5574 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. James, J. R. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci. Signal. 11, eaan1088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Majzner, R. G. et al. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10, 702–723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116, 3875–3886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo, X. et al. Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res. 27, 505–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gagnon, E., Schubert, D. A., Gordo, S., Chu, H. H. & Wucherpfennig, K. W. Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain. J. Exp. Med. 209, 2423–2439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, H., Yan, C., Guo, J. & Xu, C. Ionic protein–lipid interactions at the plasma membrane regulate the structure and function of immunoreceptors. Adv. Immunol. 144, 65–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gomes-Silva, D. et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell. Rep. 21, 17–26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. DeFord-Watts, L. M., Young, J. A., Pitcher, L. A. & van Oers, N. S. C. The membrane-proximal portion of CD3 ε associates with the serine/threonine kinase GRK2. J. Biol. Chem. 282, 16126–16134 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Dobbins, J. et al. Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Sci. Signal. 9, ra75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang, W. et al. Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat. Struct. Mol. Biol. 24, 1081–1092 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Hartl, F. A. et al. Cooperative interaction of nck and lck orchestrates optimal TCR signaling. Cells 10, 834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tailor, P. et al. The proline-rich sequence of CD3ε as an amplifier of low-avidity TCR signaling. J. Immunol. 181, 243–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Borroto, A. et al. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci. Transl. Med. 8, 370ra184 (2016).

    Article  PubMed  Google Scholar 

  104. Borroto, A. et al. Nck recruitment to the TCR required for ZAP70 activation during thymic development. J. Immunol. 190, 1103–1112 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Martin-Blanco, N. et al. CD3ε recruits Numb to promote TCR degradation. Int. Immunol. 28, 127–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Mingueneau, M. et al. The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nat. Immunol. 9, 522–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Borroto, A. et al. Relevance of Nck–CD3ε interaction for T cell activation in vivo. J. Immunol. 192, 2042–2053 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Szymczak, A. L. et al. The CD3ε proline-rich sequence, and its interaction with Nck, is not required for T cell development and function. J. Immunol. 175, 270–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Göbel, T. W. & Dangy, J. P. Evidence for a stepwise evolution of the CD3 family. J. Immunol. 164, 879–883 (2000).

    Article  PubMed  Google Scholar 

  110. Dietrich, J., Hou, X., Wegener, A. M. & Geisler, C. CD3 γ contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J. 13, 2156–2166 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boding, L. et al. TCR down-regulation controls T cell homeostasis. J. Immunol. 183, 4994–5005 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Bonefeld, C. M. et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J. Immunol. 181, 7786–7799 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Kolanus, W., Romeo, C. & Seed, B. T cell activation by clustered tyrosine kinases. Cell 74, 171–183 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Fitzer-Attas, C. J., Schindler, D. G., Waks, T. & Eshhar, Z. Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J. Immunol. 160, 145–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Tousley, A. M. et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 615, 507–516 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Balagopalan, L. et al. Generation of antitumor chimeric antigen receptors incorporating T cell signaling motifs. Sci. Signal. 17, eadp8569 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Xu, Y. et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4, 62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Helsen, C. W. et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat. Commun. 9, 3049 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Schamel, W. W. A. et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 202, 493–503 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Minguet, S. et al. The extracellular part of ζ is buried in the T cell antigen receptor complex. Immunol. Lett. 116, 203–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Ding, J. et al. Mesothelin-targeting T cells bearing a novel T cell receptor fusion construct (TRuC) exhibit potent antitumor efficacy against solid tumors. Oncoimmunology 12, 2182058 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rana, J. et al. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol. Ther. 29, 2660–2676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun, Y. et al. Chimeric anti-GPC3 sFv-CD3ε receptor-modified T cells with IL7 co-expression for the treatment of solid tumors. Mol. Ther. Oncolyt. 25, 160–173 (2022).

    Article  CAS  Google Scholar 

  125. Zhang, Z. et al. Treating solid tumors with TCR-based chimeric antigen receptor targeting extra domain B-containing fibronectin. J. Immunother. Cancer 11, e007199 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Birtel, M. et al. A TCR-like CAR promotes sensitive antigen recognition and controlled T-cell expansion upon mRNA vaccination. Cancer Res. Commun. 2, 827–841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, Z. et al. Antibody-based binding domain fused to TCRγ chain facilitates T cell cytotoxicity for potent anti-tumor response. Oncogenesis 12, 33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lesch, S. et al. PD-1-CD28 fusion protein strengthens mesothelin-specific TRuC T cells in preclinical solid tumor models. Cell. Oncol. 46, 227–235 (2023).

    Article  CAS  Google Scholar 

  129. Juraske, C. et al. Reprogramming of human γδ T cells by expression of an anti-CD19 TCR fusion construct (εTRuC) to enhance tumor killing. J. Leuk. Biol. 115, 293–305 (2024).

    Article  Google Scholar 

  130. Li, C. et al. Novel CD19-specific γ/δ TCR-T cells in relapsed or refractory diffuse large B-cell lymphoma. J. Hematol. Oncol. 16, 5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kuwana, Y. et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun. 149, 960–968 (1987).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, J. et al. A novel adoptive synthetic TCR and antigen receptor (STAR) T-Cell therapy for B-cell acute lymphoblastic leukemia. Am. J. Hematol. 97, 992–1004 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Hassan, R. et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat. Med. 29, 2099–2109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. He, P. et al. A novel antibody-TCR (AbTCR) T-cell therapy is safe and effective against CD19-positive relapsed/refractory B-cell lymphoma. J. Cancer Res. Clin. Oncol. 149, 2757–2769 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Singh, N., Perazzelli, J., Grupp, S. A. & Barrett, D. M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl. Med. 8, 320ra3 (2016).

    Article  PubMed  Google Scholar 

  136. Fraietta, J. A. et al. Biomarkers of response to anti-CD19 chimeric antigen receptor (CAR) T-cell therapy in patients with chronic lymphocytic leukemia. Blood 128, 57–57 (2016).

    Article  Google Scholar 

  137. Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3, 356–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Feucht, J. & Sadelain, M. Function and evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen receptors. Immunooncol. Technol. 8, 2–11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, J. et al. Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res. 33, 341–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sarén, T. et al. Complementarity-determining region clustering may cause CAR-T cell dysfunction. Nat. Commun. 14, 4732 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hudecek, M. et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3, 125–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Hombach, A., Hombach, A. A. & Abken, H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther. 17, 1206–1213 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Watanabe, N. et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 5, e1253656 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Myers, D. R., Zikherman, J. & Roose, J. P. Tonic signals: why do lymphocytes bother? Trends Immunol. 38, 844–857 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stefanová, I. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248–254 (2003).

    Article  PubMed  Google Scholar 

  146. Dustin, M. L. & Choudhuri, K. Signaling and polarized communication across the T cell immunological synapse. Annu. Rev. Cell Dev. Biol. 32, 303–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Davenport, A. J. et al. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc. Natl Acad. Sci. USA 115, E2068–E2076 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor 960 chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Becker, M. L. et al. Expression of a hybrid immunoglobulin-T cell receptor protein in 963 transgenic mice. Cell 58, 911–921 (1989).

    Article  CAS  PubMed  Google Scholar 

  150. Goverman, J. et al. Chimeric immunoglobulin-T cell receptor proteins form functional 965 receptors: implications for T cell receptor complex formation and activation. Cell 60, 966 929–39 (1990).

    Article  Google Scholar 

  151. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of 968 cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding 969 domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McGuinness, R. P. et al. Anti-tumor activity of human T cells expressing the CC49-972 ζ chimeric immune receptor. Hum. Gene Ther. 10, 165–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T980 lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ 981 /CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen 977 receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–33 978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. He, C. et al. CD19 CAR antigen engagement mechanisms and affinity tuning. Sci. Immunol. 8, eadf1426 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Valitutti, S., Müller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  159. Watanabe, K. et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. J. Immunol. 194, 911–920 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research groups of S.M. and W.W.S. are supported by the German Research Foundation (DFG) under Germany’s Excellence Strategy (EXC-2189 project 390939984) and under the Excellence Initiative of the German Federal and State Governments (EXC-294) and in part by the Ministry for Science, Research and Arts of the State of Baden-Württemberg. Further support is given by the DFG under FOR2799 (SCHA976/8-2 to W.W.S. and MI1942/3-1 to S.M.), SFB1381 (project 403222702-A9 to W.W.S.), SFB1479 (project 441891347-P15 to S.M.), SFB1160 (project 256073931-B01 to S.M.), and projects MI1942/4-1 (project 501418856 to S.M.) and MI1942/5-1 (project 501436442 to S.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and W.W.S. contributed equally to all aspects of the article. All authors wrote, reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Susana Minguet or Wolfgang W. Schamel.

Ethics declarations

Competing interests

S.M. and W.W.S. are patent holders on ‘Lck-binding motif in CD3e’ (European patent application number 20711971.0 and US patent application number 20230070126). M.V.M. is an inventor on patents related to adoptive cell therapies, held by Massachusetts General Hospital and the University of Pennsylvania (some licensed to Novartis); holds equity in 2Seventy Bio, Genocea, Oncternal and Neximmune; and serves on the board of directors of 2Seventy Bio. W.W.S. and M.V.M. have served as consultants for multiple companies involved in cell therapies. The interests of M.V.M. were reviewed and are managed by Massachusetts General Hospital, and Massachusetts General Brigham in accordance with their conflict-of-interest policies.

Peer review

Peer review information

Nature Reviews Immunology thanks Philip Anton van der Merwe, Daniel Abate-Daga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minguet, S., Maus, M.V. & Schamel, W.W. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 25, 212–224 (2025). https://doi.org/10.1038/s41577-024-01093-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-024-01093-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research