Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrating natural commensals and pathogens into preclinical mouse models

Abstract

Fundamental discoveries in many aspects of mammalian physiology have been made using laboratory mice as research models. These studies have been facilitated by the genetic tractability and inbreeding of such mice, the large set of immunological reagents that are available, and the establishment of environmentally controlled, high-throughput facilities. Such facilities typically include barriers to keep the mouse colonies free of pathogens and the frequent re-derivation of the mice severely limits their commensal flora. Because humans have co-evolved with microorganisms and are exposed to a variety of pathogens, a growing community of researchers posits that preclinical disease research can be improved by studying mice in the context of the microbiota and pathogens that they would encounter in the natural world. Here, we provide a perspective of how these different approaches can be combined and integrated to improve existing mouse models to enhance our understanding of disease mechanisms and develop new therapies for humans. We also propose that the term ‘mice with natural microbiota’ is more appropriate for describing these models than existing terms such as ‘dirty mice’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Use of mouse models with natural microbiota in translational research.

Similar content being viewed by others

References

  1. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Welsh, R. M., Che, J. W., Brehm, M. A. & Selin, L. K. Heterologous immunity between viruses. Immunol. Rev. 235, 244–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weldon, L. et al. The gut microbiota of wild mice. PLoS One 10, e0134643 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abolins, S. et al. The ecology of immune state in a wild mammal, Mus musculus domesticus. PLoS Biol. 16, e2003538 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu, Q. et al. Leveraging dirty mice that have microbial exposure to improve preclinical models of human immune status and disease. Nat. Immunol. 25, 947–950 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, T. A. et al. Codiversification of gut microbiota with humans. Science 377, 1328–1332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanders, J. G. et al. Widespread extinctions of co-diversified primate gut bacterial symbionts from humans. Nat. Microbiol. 8, 1039–1050 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carter, M. M. et al. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell 186, 3111–3124.e13 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fenneman, A. C., Weidner, M., Chen, L. A., Nieuwdorp, M. & Blaser, M. J. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 20, 81–100 (2023).

    Article  PubMed  Google Scholar 

  17. Levin, D. et al. Diversity and functional landscapes in the microbiota of animals in the wild. Science 372, eabb5352 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sarkar, A. et al. Microbial transmission in the social microbiome and host health and disease. Cell 187, 17–43 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marsh, K. J. et al. Synchronous seasonality in the gut microbiota of wild mouse populations. Front. Microbiol. 13, 809735 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reese, A. T. et al. Effects of domestication on the gut microbiota parallel those of human industrialization. eLife 10, e60197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Babayan, S. A. et al. Wild immunology: converging on the real world. Ann. N. Y. Acad. Sci. 1236, 17–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Flies, A. S. & Wild Comparative Immunology Consortium. Rewilding immunology. Science 369, 37–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. French, S. S., Johnston, G. I. H. & Moore, M. C. Immune activity suppresses reproduction in food-limited female tree lizards Urosaurus ornatus. Funct. Ecol. 21, 1115–1122 (2007).

    Article  Google Scholar 

  26. Stockmaier, S., Dechmann, D. K., Page, R. A. & O’Mara, M. T. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Lett. 11, 20150576 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Graham, A. L. et al. Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 330, 662–665 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Leivesley, J. A. et al. Survival costs of reproduction are mediated by parasite infection in wild Soay sheep. Ecol. Lett. 22, 1203–1213 (2019).

    Article  PubMed  Google Scholar 

  29. Viney, M., Lazarou, L. & Abolins, S. The laboratory mouse and wild immunology. Parasite Immunol. 37, 267–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Link, V. M. et al. Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nat. Med. 30, 560–572 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Artwohl, J. E., Cera, L. M., Wright, M. F., Medina, L. V. & Kim, L. J. The efficacy of a dirty bedding sentinel system for detecting Sendai virus infection in mice: a comparison of clinical signs and seroconversion. Lab. Anim. Sci. 44, 73–75 (1994).

    CAS  PubMed  Google Scholar 

  32. Graham, A. L. Naturalizing mouse models for immunology. Nat. Immunol. 22, 111–117 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Downie, A. E. et al. Spatiotemporal-social association predicts immunological similarity in rewilded mice. Sci. Adv. 9, eadh8310 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, Y. H. et al. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci. Immunol. 8, eadd6910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arnesen, H. et al. Naturalizing laboratory mice by housing in a farmyard-type habitat confers protection against colorectal carcinogenesis. Gut Microbes 13, 1993581 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arnesen, H. et al. Microbial experience through housing in a farmyard-type environment alters intestinal barrier properties in mouse colons. Sci. Rep. 13, 13701 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arnesen, H. et al. A model system for feralizing laboratory mice in large farmyard-like pens. Front. Microbiol. 11, 615661 (2020).

    Article  PubMed  Google Scholar 

  38. Sanders, A. E. et al. Comparison of mouse models of microbial experience reveals differences in microbial diversity and response to vaccination. mSphere 9, e0065423 (2024).

    Article  PubMed  Google Scholar 

  39. Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pierson, M., Merley, A. & Hamilton, S. E. Generating mice with diverse microbial experience. Curr. Protoc. 1, e53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burger, S. et al. Natural microbial exposure from the earliest natural time point enhances immune development by expanding immune cell progenitors and mature immune cells. J. Immunol. 210, 1740–1751 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Tabilas, C. et al. Early microbial exposure shapes adult immunity by altering CD8+ T cell development. Proc. Natl Acad. Sci. USA 119, e2212548119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chandra, S. et al. Transcriptomes and metabolism define mouse and human MAIT cell populations. Sci. Immunol. 8, eabn8531 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fay, E. J. et al. Natural rodent model of viral transmission reveals biological features of virus population dynamics. J. Exp. Med. 219, e20211220 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Hild, B. et al. Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat. Metab. 3, 1042–1057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reese, T. A. et al. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 19, 713–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berton, R. R., Jensen, I. J., Harty, J. T., Griffith, T. S. & Badovinac, V. P. Inflammation controls susceptibility of immune-experienced mice to sepsis. Immunohorizons 6, 528–542 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Lanzer, K. G. et al. Sequential early-life infections alter peripheral blood transcriptomics in aging female mice but not the response to de novo infection with influenza virus or M. tuberculosis. Immunohorizons 7, 562–576 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gray, J. I. & Farber, D. L. Tissue-resident immune cells in humans. Annu. Rev. Immunol. 40, 195–220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huggins, M. A. et al. Microbial exposure enhances immunity to pathogens recognized by TLR2 but increases susceptibility to cytokine storm through TLR4 sensitization. Cell Rep. 28, 1729–1743.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sadler, R. et al. Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain Behav. Immun. 66, 23–30 (2017).

    Article  PubMed  Google Scholar 

  55. Ericsson, A. C. et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS One 10, e0116704 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rausch, P. et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int. J. Med. Microbiol. 306, 343–355 (2016).

    Article  PubMed  Google Scholar 

  57. Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl Acad. Sci. USA 113, 2235–2240 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Servick, K. Of mice and microbes. Science 353, 741–743 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 534, 191–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Threadgill, D. W., Miller, D. R., Churchill, G. A. & de Villena, F. P. The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J. 52, 24–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA 104, 5878–5882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, J. et al. Fetal and adult progenitors give rise to unique populations of CD8+ T cells. Blood 128, 3073–3082 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stolley, J. M. et al. Depleting CD103+ resident memory T cells in vivo reveals immunostimulatory functions in oral mucosa. J. Exp. Med. 220, e20221853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wijeyesinghe, S. & Masopust, D. Resident memory T cells are a Notch above the rest. Nat. Immunol. 17, 1337–1338 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, D. J. et al. Assessment of need for improved identification of a culprit drug in stevens-johnson syndrome/toxic epidermal necrolysis. JAMA Dermatol. 159, 830–836 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Divito, S. J. et al. Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host disease. J. Clin. Invest. 130, 4624–4636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Q. et al. Crosstalk between skin microbiota and immune system in health and disease. Nat. Immunol. 24, 895–898 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neil, J. A. et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat. Microbiol. 4, 1737–1749 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beura, L. K. et al. Novel lymphocytic choriomeningitis virus strain sustains abundant exhausted progenitor CD8 T cells without systemic viremia. J. Immunol. 209, 1691–1702 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Block, K. E. et al. Physiological microbial exposure transiently inhibits mouse lung ILC2 responses to allergens. Nat. Immunol. 23, 1703–1713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma, J. et al. Laboratory mice with a wild microbiota generate strong allergic immune responses. Sci. Immunol. 8, eadf7702 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Black, G. F. et al. Patterns and implications of naturally acquired immune responses to environmental and tuberculous mycobacterial antigens in northern Malawi. J. Infect. Dis. 184, 322–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Levine, M. M. Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol. 8, 129 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lopman, B. A. et al. Post-licensure experience with rotavirus vaccination in high and middle income countries; 2006 to 2011. Curr. Opin. Virol. 2, 434–442 (2012).

    Article  PubMed  Google Scholar 

  78. Fiege, J. K. et al. Mice with diverse microbial exposure histories as a model for preclinical vaccine testing. Cell Host Microbe 29, 1815–1827.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Sjaastad, F. V. et al. Reduced T cell priming in microbially experienced “Dirty” mice results from limited IL-27 production by XCR1+ dendritic cells. J. Immunol. 209, 2149–2159 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Li, Y. et al. Sequential early-life viral infections modulate the microbiota and adaptive immune responses to systemic and mucosal vaccination. PLoS Pathog. 20, e1012557 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bello, M. G. D., Knight, R., Gilbert, J. A. & Blaser, M. J. Preserving microbial diversity. Science 362, 33–34 (2018).

    Article  PubMed  Google Scholar 

  83. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ito, E. et al. Sulfated bile acid is a host-derived ligand for MAIT cells. Sci. Immunol. 9, eade6924 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martin, M. D. et al. CD115+ monocytes protect microbially experienced mice against E. coli-induced sepsis. Cell Rep. 42, 113345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun, D. G. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 12, 3049–3062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beyersdorf, N., Hanke, T., Kerkau, T. & Hunig, T. CD28 superagonists put a break on autoimmunity by preferentially activating CD4+CD25+ regulatory T cells. Autoimmun. Rev. 5, 40–45 (2006).

    Article  PubMed  Google Scholar 

  88. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lo, B. C. et al. Microbiota-dependent activation of CD4+ T cells induces CTLA-4 blockade-associated colitis via Fcγ receptors. Science 383, 62–70 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Leung, J. M. et al. Rapid environmental effects on gut nematode susceptibility in rewilded mice. PLoS Biol. 16, e2004108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lin, J. D. et al. Rewilding Nod2 and Atg16l1 mutant mice uncovers genetic and environmental contributions to microbial responses and immune cell composition. Cell Host Microbe 27, 830–840.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yeung, F. et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 27, 809–822.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Camell, C. D. et al. Senolytics reduce coronavirus-related mortality in old mice. Science 373, eabe4832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oyesola, O. et al. Genetic and environmental interactions contribute to immune variation in rewilded mice. Nat. Immunol. 25, 1270–1282 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Labuda, J. C., Fong, K. D. & McSorley, S. J. Cohousing with dirty mice increases the frequency of memory T cells and has variable effects on intracellular bacterial infection. Immunohorizons 6, 184–190 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Zarek, C. M. et al. Preexisting helminth challenge exacerbates infection and reactivation of gammaherpesvirus in tissue resident macrophages. PLoS Pathog. 19, e1011691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cardilli, A. et al. Impact of high salt-intake on a natural gut ecosystem in wildling mice. Nutrients 15, 1565 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Takeda, A. J. et al. Human PI3Kγ deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat. Commun. 10, 4364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Masopust, D., Sivula, C. P. & Jameson, S. C. Of mice, dirty mice, and men: using mice to understand human immunology. J. Immunol. 199, 383–388 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Qian Liu, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) for comments. This work was supported by the intramural research program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH (to B.R.), National Science Foundation grant DEB-2153923 and funds from the State of New Jersey (to A.L.G.), NIH grant R01 AI150600 (to D.M.) and NIH grant R01AI155468 (to S.E.H.).

Author information

Authors and Affiliations

Authors

Contributions

B.R. conceptualized the review. B.R. and S.E.H. wrote the main body with additions by A.L.G. and constructive comments from D.M. B.R. prepared the figure. All authors contributed to editing of the manuscript, researching data for the tables and providing references. All authors approved the submitted version of the article.

Corresponding author

Correspondence to Barbara Rehermann.

Ethics declarations

Competing interests

B.R. discloses that the National Institute of Diabetes and Digestive and Kidney Diseases granted a license on the WildR mice to Taconic Biosciences and has a Collaborative Research Agreement and Development Award with Genentech. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks S. Rosshart and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehermann, B., Graham, A.L., Masopust, D. et al. Integrating natural commensals and pathogens into preclinical mouse models. Nat Rev Immunol 25, 385–397 (2025). https://doi.org/10.1038/s41577-024-01108-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-024-01108-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology