Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trained immunity in chronic inflammatory diseases and cancer

Abstract

A decade after the term ‘trained immunity’ (TRIM) was coined to reflect the long-lasting hyper-responsiveness of innate immune cells with an epigenetically imprinted ‘memory’ of earlier stimuli, our understanding has broadened to include the potential implications of TRIM in health and disease. Here, after summarizing the well-documented beneficial effects of TRIM against infections, we discuss emerging evidence that TRIM is also a major underlying mechanism in chronic inflammation-related disorders such as periodontitis, rheumatoid arthritis and cardiovascular disease. Furthermore, mounting evidence indicates that the induction of TRIM by certain agonists confers protective antitumour responses. Although the mechanisms underlying TRIM require further study, the current knowledge enables the experimental development of innovative therapeutic approaches to stimulate or inhibit TRIM in a context-appropriate manner, such as the stimulation of TRIM in cancer or its inhibition in inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Central and peripheral trained immunity.
Fig. 2: Induction and recall of inflammatory memory in the bone marrow: the inflammatory bone loss paradigm.
Fig. 3: Mechanisms for the exacerbation of disease by maladaptive trained myelopoiesis.
Fig. 4: Induction of central trained immunity by IL-1.
Fig. 5: Maladaptive versus beneficial trained immunity in the context of cancer.
Fig. 6: The antitumour actions of β-glucan-induced trained immunity.

Similar content being viewed by others

References

  1. Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benn, C. S., Netea, M. G., Selin, L. K. & Aaby, P. A small jab-a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 34, 431–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Reimer-Michalski, E. M. & Conrath, U. Innate immune memory in plants. Semin. Immunol. 28, 319–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hajishengallis, G., Netea, M. G. & Chavakis, T. Innate immune memory, trained immunity and nomenclature clarification. Nat. Immunol. 24, 1393–1394 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. de Laval, B. et al. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 26, 657–674.e8 (2020).

    Article  PubMed  Google Scholar 

  8. Jentho, E. et al. Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proc. Natl Acad. Sci. USA 118, e2102698118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014). References 9–11 are key studies documenting the importance of epigenetic modifications in the development of peripheral TRIM.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bannister, S. et al. Neonatal BCG vaccination is associated with a long-term DNA methylation signature in circulating monocytes. Sci. Adv. 8, eabn4002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheong, J.-G. et al. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 186, 3882–3902.e3824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kleinnijenhuis, J. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immun. 6, 152–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161 e112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190 e119 (2018). References 15 and 16 establish the concept of central TRIM — that inflammation-adapted, long-lived haematopoietic progenitors in the bone marrow represent a persistent reservoir of innate immune memory.

    Article  CAS  PubMed  Google Scholar 

  17. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.e1617 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Lercher, A. et al. Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 infection ameliorates secondary influenza A virus disease. Immunity 57, 2530–2546.e13 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Kleinnijenhuis, J. et al. BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clin. Immunol. 155, 213–219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moorlag, S. et al. β-Glucan induces protective trained immunity against mycobacterium tuberculosis infection: a key role for IL-1. Cell Rep. 31, 107634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nankabirwa, V., Tumwine, J. K., Mugaba, P. M., Tylleskär, T. & Sommerfelt, H. Child survival and BCG vaccination: a community based prospective cohort study in Uganda. BMC Public. Health 15, 175 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buffen, K. et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLOS Pathog. 10, e1004485 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100.e105 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kleinnijenhuis, J. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodridge, H. S. et al. Harnessing the beneficial heterologous effects of vaccination. Nat. Rev. Immunol. 16, 392–400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Penkov, S., Mitroulis, I., Hajishengallis, G. & Chavakis, T. Immunometabolic crosstalk: an ancestral principle of trained immunity? Trends Immunol. 40, 1–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771–785.e712 (2020). This study shows that the beneficial effects of central TRIM go beyond protection from reinfection and include the ability to protect against future cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Puffelen, J. H. et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol. 17, 513–525 (2020).

    Article  PubMed  Google Scholar 

  30. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bekkering, S. et al. Trained immunity: linking obesity and cardiovascular disease across the life-course? Trends Endocrinol. Metab. 31, 378–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Chavakis, T., Wielockx, B. & Hajishengallis, G. Inflammatory modulation of hematopoiesis: linking trained immunity and clonal hematopoiesis with chronic disorders. Annu. Rev. Physiol. 84, 183–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Chavakis, T., Mitroulis, I. & Hajishengallis, G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20, 802–811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727.e1718 (2022). This study establishes the concept that maladaptive TRIM is a common mechanistic basis that links various inflammatory comorbidities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, Z. et al. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur. Heart J. 45, 669–684 (2023).

    Article  Google Scholar 

  36. Hata, M. et al. Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 379, 45–62 (2023). This report shows that diet-induced obesity can lead to persistent epigenetic changes in macrophages, even after weight gain and metabolic alterations are normalized, that can thereby aggravate neuroinflammation.

    Article  CAS  PubMed  Google Scholar 

  37. Govindarajah, V. et al. Gestational diabetes in mice induces hematopoietic memory that impacts the long-term health of the offspring. J. Clin. Invest. 134, e169730 (2023).

    Article  Google Scholar 

  38. Simats, A. et al. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell 187, 4637–4655.e26 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Nakayama, Y. et al. Heart failure promotes multimorbidity through innate immune memory. Sci. Immunol. 9, eade3814 (2024). References 38 and 39 show that cardiac dysfunction can be promoted by acute brain ischaemia or heart failure, respectively, owing to early inflammatory or stress responses that trigger persistent epigenetic rewiring of haematopoietic progenitors.

    Article  CAS  PubMed  Google Scholar 

  40. Blanden, R. V., Lefford, M. J. & Mackaness, G. B. The host response to Calmette-Guérin bacillus infection in mice. J. Exp. Med. 129, 1079–1107 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aaby, P. et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J. Infect. Dis. 204, 245–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Prentice, S. et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomised controlled trial. Lancet Infect. Dis. 21, 993–1003 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walk, J. et al. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun. 10, 874 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Naeslund, C. Resultats des experience de vaccination par le BCG poursuivies dans le Norrbotten (Suede) Septembre 1927– Decembre 1931. Vaccination Preventative de la Tuberculose de I’Homme et des Animaux par le BCG: Rapports et Documents Provenant des Divers Pays (Ia France exceptee) 274–281 (1932).

  45. Biering-Sorensen, S. et al. Early BCG-Denmark and neonatal mortality among infants weighing <2500 g: a randomized controlled trial. Clin. Infect. Dis. 65, 1183–1190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schaltz-Buchholzer, F. et al. Early BCG vaccination, hospitalizations, and hospital deaths: analysis of a secondary outcome in 3 randomized trials from guinea-bissau. J. Infect. Dis. 219, 624–632 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Silva, M. V. T. et al. The role of IL-32 in Bacillus Calmette-Guerin (BCG)-induced trained immunity in infections caused by different Leishmania spp. Microb. Pathog. 158, 105088 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Higgins, J. P. T. et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ 355, i5170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zimmermann, P., Finn, A. & Curtis, N. Does BCG vaccination protect against nontuberculous mycobacterial infection? A systematic review and meta-analysis. J. Infect. Dis. 218, 679–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Stensballe, L. G. et al. BCG vaccination at birth and early childhood hospitalisation: a randomised clinical multicentre trial. Arch. Dis. Child. 102, 224–231 (2017).

    Article  PubMed  Google Scholar 

  51. Messina, N. L. et al. Neonatal bacille Calmette-Guérin vaccination and infections in the first year of life: the MIS BAIR randomized controlled trial. J. Infect. Dis. 224, 1115–1127 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Giamarellos-Bourboulis, E. J. et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 183, 315–323.e319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Netea, M. G. et al. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell 181, 969–977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsilika, M. et al. ACTIVATE-2: a double-blind randomized trial of BCG vaccination against COVID-19 in individuals at risk. Front. Immunol. 13, 873067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ten Doesschate, T. et al. Bacillus Calmette-Guerin vaccine to reduce healthcare worker absenteeism in COVID-19 pandemic, a randomized controlled trial. Clin. Microbiol. Infect. 28, 1278–1285 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moorlag, S. et al. Efficacy of BCG vaccination against respiratory tract infections in older adults during the coronavirus disease 2019 pandemic. Clin. Infect. Dis. 75, e938–e946 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Upton, C. M. et al. Safety and efficacy of BCG re-vaccination in relation to COVID-19 morbidity in healthcare workers: a double-blind, randomised, controlled, phase 3 trial. EClinicalMedicine 48, 101414 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aaby, P., Netea, M. G. & Benn, C. S. Beneficial non-specific effects of live vaccines against COVID-19 and other unrelated infections. Lancet Infect. Dis. 23, e34–e42 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Joosten, S. A. et al. Harnessing donor unrestricted T-cells for new vaccines against tuberculosis. Vaccine 37, 3022–3030 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ndiaye, B. P. et al. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 3, 190–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Verrall, A. J. et al. Early clearance of Mycobacterium tuberculosis is associated with increased innate immune responses. J. Infect. Dis. 221, 1342–1350 (2020).

    CAS  PubMed  Google Scholar 

  63. Suliman, S. et al. Bacillus Calmette-Guérin (BCG) revaccination of adults with latent mycobacterium tuberculosis infection induces long-lived BCG-reactive NK cell responses. J. Immunol. 197, 1100–1110 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Röring, R. J. et al. MMR vaccination induces trained immunity via functional and metabolic reprogramming of γδ T cells. J. Clin. Invest. 134, e170848 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wimmers, F. et al. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 184, 3915–3935 e3921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Debisarun, P. A. et al. Induction of trained immunity by influenza vaccination-impact on COVID-19. PLoS Pathog. 17, e1009928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thomas, M. et al. A cross-sectional study from Qatar on the effect of influenza vaccination on the severity of COVID-19. Medicine 102, e35107 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arunachalam, P. S. et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 596, 410–416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Murphy, D. M. et al. Trained immunity is induced in humans after immunization with an adenoviral vector COVID-19 vaccine. J. Clin. Invest. 133, e162581 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Benn, C. S., Schaltz-Buchholzer, F., Nielsen, S., Netea, M. G. & Aaby, P. Randomized clinical trials of COVID-19 vaccines: do adenovirus-vector vaccines have beneficial non-specific effects? iScience 26, 106733 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Joosten, S. A. et al. Mycobacterial growth inhibition is associated with trained innate immunity. J. Clin. Invest. 128, 1837–1851 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Ziogas, A. & Netea, M. G. Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. Trends Mol. Med. 28, 497–512 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Piret, J. & Boivin, G. The impact of trained immunity in respiratory viral infections. Rev. Med. Virol. 34, e2510 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Dagenais, A., Villalba-Guerrero, C. & Olivier, M. Trained immunity: a “new” weapon in the fight against infectious diseases. Front. Immunol. 14, 1147476 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25, 13–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Hajishengallis, G. & Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21, 426–440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maceiras, A. R., Silvério, D., Gonçalves, R., Cardoso, M. S. & Saraiva, M. Infection with hypervirulent Mycobacterium tuberculosis triggers emergency myelopoiesis but not trained immunity. Front. Immunol. 14, 1211404 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Takizawa, H. et al. Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell 21, 225–240.e225 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, H. et al. Sepsis induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Rep. 6, 940–956 (2016).

    Article  CAS  Google Scholar 

  81. Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Kampen, E., Jaminon, A., van Berkel, T. J. & Van Eck, M. Diet-induced (epigenetic) changes in bone marrow augment atherosclerosis. J. Leukoc. Biol. 96, 833–841 (2014).

    Article  PubMed  Google Scholar 

  83. Fu, J. & Wu, H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 41, 301–316 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coppin, E. et al. Peripheral ischemia imprints epigenetic changes in hematopoietic stem cells to propagate inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 43, 889–906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cao, J. et al. DNA-sensing inflammasomes cause recurrent atherosclerotic stroke. Nature 633, 433–441 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kain, B. N. et al. Hematopoietic stem and progenitor cells confer cross-protective trained immunity in mouse models. iScience 26, 107596 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Khan, N. et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell 183, 752–770.e722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cottam, M. A., Caslin, H. L., Winn, N. C. & Hasty, A. H. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat. Commun. 13, 2950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Caslin, H. L., Cottam, M. A., Pinon, J. M., Boney, L. Y. & Hasty, A. H. Weight cycling induces innate immune memory in adipose tissue macrophages. Front. Immunol. 13, 984859 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Edgar, L. et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation 144, 961–982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yan, J. et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat. Commun. 9, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Riksen, N. P., Bekkering, S., Mulder, W. J. M. & Netea, M. G. Trained immunity in atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 20, 799–811 (2023).

    Article  PubMed  Google Scholar 

  93. Saaoud, F. et al. Cigarette smoke modulates inflammation and immunity via reactive oxygen species-regulated trained immunity and trained tolerance mechanisms. Antioxid. Redox Signal. 38, 1041–1069 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dallio, M. et al. Environmental bisphenol A exposure triggers trained immunity-related pathways in monocytes. Front. Immunol. 14, 1270391 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Movassagh, H. et al. Proinflammatory polarization of monocytes by particulate air pollutants is mediated by induction of trained immunity in pediatric asthma. Allergy 78, 1922–1933 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. van der Heijden, C. D. C. C. et al. Catecholamines induce trained immunity in monocytes in vitro and in vivo. Circ. Res. 127, 269–283 (2020).

    Article  PubMed  Google Scholar 

  97. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grigoriou, M. et al. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann. Rheum. Dis. 79, 242–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Jeljeli, M. et al. Trained immunity modulates inflammation-induced fibrosis. Nat. Commun. 10, 5670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lechner, A. et al. Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma. J. Allergy Clin. Immunol. 149, 2078–2090 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, B. et al. Sepsis induces non-classic innate immune memory in granulocytes. Cell Rep. 42, 113044 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Bhattarai, S. et al. TLR4 is a regulator of trained immunity in a murine model of Duchenne muscular dystrophy. Nat. Commun. 13, 879 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Petrof, B. J., Podolsky, T., Bhattarai, S., Tan, J. & Ding, J. Trained immunity as a potential target for therapeutic immunomodulation in Duchenne muscular dystrophy. Front. Immunol. 14, 1183066 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Koelwyn, G. J. et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med. 26, 1452–1458 (2020). This study shows that maladaptive trained myelopoiesis is not necessarily associated with increased immune responsiveness but may also be linked to immune suppression, such as when myocardial infarction leads to epigenetic reprogramming of bone marrow progenitors and progeny monocytes that acquire an immunosuppressive phenotype and promote cancer progression.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Noz, M. P. et al. Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. eLife 9, e60939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ling, M. R., Chapple, I. L. & Matthews, J. B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun. 21, 714–725 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Radvar, M., Tavakkol-Afshari, J., Bajestan, M. N., Naseh, M. R. & Arab, H. R. The effect of periodontal treatment on IL-6 production of peripheral blood monocytes in aggressive periodontitis and chronic periodontitis patients. Iran. J. Immunol. 5, 100–106 (2008).

    CAS  PubMed  Google Scholar 

  110. Gustafsson, A., Ito, H., Asman, B. & Bergstrom, K. Hyper-reactive mononuclear cells and neutrophils in chronic periodontitis. J. Clin. Periodontol. 33, 126–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Fokkema, S. J., Loos, B. G., Hart, A. A. M. & Van Der Velden, U. Long-term effect of full-mouth tooth extraction on the responsiveness of peripheral blood monocytes. J. Clin. Periodontol. 30, 756–760 (2003).

    Article  PubMed  Google Scholar 

  112. Matthews, J. B. et al. Neutrophil hyper-responsiveness in periodontitis. J. Dent. Res. 86, 718–722 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Johnstone, A. M., Koh, A., Goldberg, M. B. & Glogauer, M. A hyperactive neutrophil phenotype in patients with refractory periodontitis. J. Periodontol. 78, 1788–1794 (2007).

    Article  PubMed  Google Scholar 

  114. Figueredo, C. M., Gustafsson, A., Asman, B. & Bergstrom, K. Expression of intracellular elastase activity in peripheral neutrophils from patients with adult periodontitis. J. Clin. Periodontol. 27, 572–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334.e325 (2020). This study provides human relevance to earlier studies in mice that established the concept of central TRIM by showing that BCG vaccination imprints a persistent myeloid-differentiation bias on human haematopoietic progenitors, which in turn give rise to epigenetically reprogrammed and trained myeloid progeny.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ishai, A. et al. Periodontal disease associates with arterial inflammation via potentiation of a hematopoietic-arterial axis. JACC Cardiovasc. Imaging 12, 2271–2273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Van Dyke, T. E. et al. Inflammation of the periodontium associates with risk of future cardiovascular events. J. Periodontol. 92, 348–358 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bernelot Moens, S. J. et al. Unexpected arterial wall and cellular inflammation in patients with rheumatoid arthritis in remission using biological therapy: a cross-sectional study. Arthritis Res. Ther. 18, 115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bekkering, S. et al. Treatment with statins does not revert trained immunity in patients with familial hypercholesterolemia. Cell Metab. 30, 1–2 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Fok, E. T. et al. A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation. Nat. Gen. 56, 85–99 (2023).

    Article  Google Scholar 

  121. Rong, H. et al. Association between IL1B polymorphisms and the risk of rheumatoid arthritis. Int. Immunopharmacol. 83, 106401 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Huang, X.-L. et al. Association of interleukin-1 family cytokines single nucleotide polymorphisms with susceptibility to systemic sclerosis: an independent case–control study and a meta-analysis. Immunol. Res. 64, 1041–1052 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Mooney, R. E. et al. Association of TGFB1 rs1800469 and BCMO1 rs6564851 with coronary heart disease and IL1B rs16944 with all-cause mortality in men from the Northern Ireland PRIME study. PLoS ONE 17, e0273333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu, X. et al. Association of interleukin-1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities. J. Periodontal Res. 50, 52–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Weber, B. N., Giles, J. T. & Liao, K. P. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat. Rev. Rheumatol. 19, 417–428 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cappuccio, F. P., Cooper, D., D’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur. Heart J. 32, 1484–1492 (2011).

    Article  PubMed  Google Scholar 

  128. Gozal, D. & Kheirandish-Gozal, L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am. J. Respir. Crit. Care Med. 177, 369–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Hinterdobler, J., Schunkert, H., Kessler, T. & Sager, H. B. Impact of acute and chronic psychosocial stress on vascular inflammation. Antioxid. Redox Signal. 35, 1531–1550 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schloss, M. J., Swirski, F. K. & Nahrendorf, M. Modifiable cardiovascular risk, hematopoiesis, and innate immunity. Circ. Res. 126, 1242–1259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kalafati, L., Hatzioannou, A., Hajishengallis, G. & Chavakis, T. The role of neutrophils in trained immunity. Immunol. Rev. 314, 142–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Axelrad, J. E., Lichtiger, S. & Yajnik, V. Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol. 22, 4794–4801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lega, I. C. & Lipscombe, L. L. Review: diabetes, obesity, and cancer-pathophysiology and clinical implications. Endocr. Rev. 41, bnz014 (2020).

    Article  PubMed  Google Scholar 

  135. McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fridman, W. H., Zitvogel, L., Sautès-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou, J. et al. Tumor-associated macrophages: recent insights and therapies. Front. Oncol. 10, 188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wildes, T. J., DiVita Dean, B. & Flores, C. T. Myelopoiesis during solid cancers and strategies for immunotherapy. Cells 10, 968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu, C., Hua, Q. & Zheng, L. Generation of myeloid cells in cancer: the spleen matters. Front. Immunol. 11, 1126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Casbon, A. J. et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl Acad. Sci. USA 112, E566–E575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aliazis, K., Yenyuwadee, S., Phikulsod, P. & Boussiotis, V. A. Emergency myelopoiesis in solid cancers. Br. J. Haematol. 205, 798–811 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bui, T. M. et al. Tissue-specific reprogramming leads to angiogenic neutrophil specialization and tumor vascularization in colorectal cancer. J. Clin. Invest. 134, e174545 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. LaMarche, N. M. et al. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 625, 166–174 (2024). This report shows that tumours can reprogramme bone marrow myelopoiesis and shift myeloid cells towards an immunosuppressive phenotype, driven by locally produced IL-4.

    Article  CAS  PubMed  Google Scholar 

  147. Zilio, S., Bicciato, S., Weed, D. & Serafini, P. CCR1 and CCR5 mediate cancer-induced myelopoiesis and differentiation of myeloid cells in the tumor. J. Immunother. Cancer 10, e003131 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Atallah, A. et al. Systemic versus localized Bacillus Calmette Guérin immunotherapy of bladder cancer promotes an anti-tumoral microenvironment: novel role of trained immunity. Int. J. Cancer 155, 352–364 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Han, J., Gu, X., Li, Y. & Wu, Q. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed. Pharmacother. 129, 110393 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Graham, C. H. et al. Innate immune memory is associated with increased disease-free survival in bladder cancer patients treated with bacillus Calmette-Guérin. Can. Urol. Assoc. J. 15, E412–E417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Singh, A. K. et al. Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nat. Commun. 13, 878 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Engel-Riedel, W. et al. A randomized, controlled trial evaluating the efficacy and safety of BTH1677 in combination with bevacizumab, carboplatin, and paclitaxel in first-line treatment of advanced non-small cell lung cancer. J. Immunother. Cancer 6, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Steimbach, L. et al. Fungal beta-glucans as adjuvants for treating cancer patients - a systematic review of clinical trials. Clin. Nutr. 40, 3104–3113 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Broquet, A. et al. Sepsis-trained macrophages promote antitumoral tissue-resident T cells. Nat. Immunol. 25, 802–819 (2024). This study shows that induction of peripheral TRIM in tissue-resident alveolar macrophages by experimental sepsis leads to the accumulation of CXCR6+ tissue-resident T cells with antitumour activity, and provides evidence that survivors of sepsis have reduced incidence of malignancies.

    Article  CAS  PubMed  Google Scholar 

  155. Geller, A. E. et al. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13, 759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Vuscan, P. et al. Potent induction of trained immunity by Saccharomyces cerevisiae β-glucans. Front. Immunol. 15, 1323333 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ding, C. et al. Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nat. Immunol. 24, 239–254 (2023). This study shows that β-glucan-induced training of bone marrow-derived lung interstitial macrophages, mediated by the metabolite S1P, leads to inhibition of tumour metastasis to the lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146.e139 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Liu, Y. et al. Squalene-epoxidase-catalyzed 24(S),25-epoxycholesterol synthesis promotes trained-immunity-mediated antitumor activity. Cell Rep. 43, 114094 (2024).

    Article  CAS  PubMed  Google Scholar 

  160. Dos Santos, J. C. et al. Leishmania braziliensis enhances monocyte responses to promote anti-tumor activity. Cell Rep. 43, 113932 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wang, T. et al. Influenza-trained mucosal-resident alveolar macrophages confer long-term antitumor immunity in the lungs. Nat. Immunol. 24, 423–438 (2023). This study shows IFNγ-mediated induction of peripheral TRIM in alveolar macrophages by prior influenza A virus infection of the lung; the trained macrophages have increased phagocytic and tumoricidal activity despite the immunosuppressive TME and thereby block tumour metastasis to the lung.

    Article  CAS  PubMed  Google Scholar 

  162. Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat. Immunol. 21, 145–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Iliakis, C. S. et al. The role of recruitment versus training in influenza-induced lasting changes to alveolar macrophage function. Nat. Immunol. 24, 1639–1641 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu, G. et al. Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity. Nat. Nanotechnol. 19, 387–398 (2024).

    Article  CAS  PubMed  Google Scholar 

  165. Liang, J. et al. Outer membrane vesicle-based nanohybrids target tumor-associated macrophages to enhance trained immunity-related vaccine-generated antitumor activity. Adv. Mater. 35, e2306158 (2023).

    Article  PubMed  Google Scholar 

  166. Chen, Z. et al. Engineered probiotic-based personalized cancer vaccine potentiates antitumor immunity through initiating trained immunity. Adv. Sci. 11, e2305081 (2024).

    Article  Google Scholar 

  167. Priem, B. et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183, 786–801.e719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zent, C. S. et al. Early treatment of high risk chronic lymphocytic leukemia with alemtuzumab, rituximab and poly-(1–6)-β-glucotriosyl-(1-3)-β-glucopyranose beta-glucan is well tolerated and achieves high complete remission rates. Leuk. Lymphoma 56, 2373–2378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chan, A. S. H. et al. Imprime PGG enhances anti-tumor effects of tumor-targeting, anti-angiogenic, and immune checkpoint inhibitor antibodies. Front. Oncol. 12, 869078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. O’Day, S. J. et al. IMPRIME 1 (NCT02981303): a novel phase 2 study in second-line+, metastatic triple negative breast cancer patients shows promising clinical benefit for the combination of the immune checkpoint inhibitor, pembrolizumab (pembro), with the novel innate immune activator, Imprime PGG. Cancer Res. 80, Abstr. CT073 (2020).

    Article  Google Scholar 

  171. Hajishengallis, G. & Chavakis, T. Central trained immunity and its impact on chronic inflammatory and autoimmune diseases. J. Allergy Clin. Immunol. 154, 1113–1116 (2024).

    Article  CAS  PubMed  Google Scholar 

  172. Bulut, O., Kilic, G., Domínguez-Andrés, J. & Netea, M. G. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int. Immunol. 32, 741–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Berendsen, M. L. T. et al. Bacillus Calmette-Guerin vaccination induces a trained innate immunity phenotype in adults over 50 years of age: a randomized trial in Guinea-Bissau. Vaccine 42, 126439 (2024).

    Article  CAS  PubMed  Google Scholar 

  174. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang, H. et al. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell 187, 3690–3711.e3619 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mills, T. S. et al. A distinct metabolic and epigenetic state drives trained immunity in HSC-derived macrophages from autoimmune mice. Cell Stem Cell 31, 1630–1649.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  177. Ziogas, A., Bruno, M., van der Meel, R., Mulder, W. J. M. & Netea, M. G. Trained immunity: target for prophylaxis and therapy. Cell Host Microbe 31, 1776–1791 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Eskan, M. A. et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat. Immunol. 13, 465–473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dutzan, N. et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl. Med. 10, eaat0797 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Tsukasaki, M. et al. Host defense against oral microbiota by bone-damaging T cells. Nat. Commun. 9, 701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Mitroulis, I., Hajishengallis, G. & Chavakis, T. Bone marrow inflammatory memory in cardiometabolic disease and inflammatory comorbidities. Cardiovasc. Res. 119, 2801–2812 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  182. Herre, J., Gordon, S. & Brown, G. D. Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol. Immunol. 40, 869–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e1758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by grants from the NIH (DE031206 and DE033643 to G.H.), the Deutsche Forschungsgemeinschaft (SFB-TRR 332, project B4 and SFB-TRR369, project C3 to T.C.), the ‘Exzellenzförderprogramm für etablierte Wissenschaftlerinnen und Wissenschaftler’ of the ‘Deutsche Krebshilfe’ (to T.C.), the Saxon State Ministry of Science, Culture, and Tourism-SMWK (Sonderzuweisung zur Unterstützung profilbestimmender Struktureinheiten der TUD to T.C.) and Spinoza grant of the Netherlands Organization for Scientific Research (to M.G.N.). The figures in the submitted version of the manuscript were created using BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to George Hajishengallis, Mihai G. Netea or Triantafyllos Chavakis.

Ethics declarations

Competing interests

M.G.N. is scientific founder of Lemba, TTxD and Biotrip. G.H. and T.C. declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Arthur Liesz, Michael Sieweke and Fred Sheedy for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajishengallis, G., Netea, M.G. & Chavakis, T. Trained immunity in chronic inflammatory diseases and cancer. Nat Rev Immunol 25, 497–514 (2025). https://doi.org/10.1038/s41577-025-01132-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-025-01132-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research