Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Immune-mediated strategies to solving the HIV reservoir problem

Abstract

Antiretroviral therapy (ART) has markedly improved the life-expectancy of people living with HIV. However, during both HIV infection of humans and simian immunodeficiency virus infection of macaques, virus replication almost invariably rebounds upon ART interruption, due to the long-term persistency of a pool of latently infected cells harbouring integrated, replication-competent virus (known as the virus reservoir). Solving this ‘HIV reservoir problem’ is the key to achieving a cure (or at least a persistent remission) for HIV infection. Here, we summarize the key scientific evidence supporting the hypothesis that host immune responses, including those mediated by CD8+ T cells, B cells, antibodies and innate immune cells, affect the size, clonality, and cellular, tissue and organ distribution of the HIV reservoir. Importantly, we believe that any solution to the ‘reservoir problem’ must address not only the multifaceted interactions between HIV and the host immune system, but also the complex interplay between the immunobiology of memory CD4+ T helper cells (which form the main virus reservoir) and the molecular mechanisms that regulate HIV latency and reactivation. These concepts provide the rationale to develop new, immune-based approaches to ‘cure’ HIV infection; we review recent efforts to develop such therapies and their efficacy (or lack thereof) in disrupting the establishment and/or persistence of the virus reservoir in preclinical animal models and human clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune-based interventions for preventing, disrupting or controlling the HIV reservoir.
Fig. 2: Immune-based approaches to HIV cure.

Similar content being viewed by others

References

  1. Pino, M., Paiardini, M. & Marconi, V. C. Progress in achieving long-term HIV remission. Curr. Opin. HIV AIDS 13, 435–445 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vanhamel, J., Bruggemans, A. & Debyser, Z. Establishment of latent HIV-1 reservoirs: what do we really know? J. Virus Erad. 5, 3–9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Whitney, J. B. et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512, 74–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lian, X. et al. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe 31, 83–96 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuo, H. H. & Lichterfeld, M. Recent progress in understanding HIV reservoirs. Curr. Opin. HIV AIDS 13, 137–142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Landovitz, R. J., Scott, H. & Deeks, S. G. Prevention, treatment and cure of HIV infection. Nat. Rev. Microbiol. 21, 657–670 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Reeves, D. B. et al. A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat. Commun. 9, 4811 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Immonen, T. T. et al. No evidence for ongoing replication on ART in SIV-infected macaques. Nat. Commun. 15, 5093 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kearney, M. F. et al. Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog. 10, e1004010 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Evans, D. T. & Desrosiers, R. C. Immune evasion strategies of the primate lentiviruses. Immunol. Rev. 183, 141–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Boutwell, C. L., Rolland, M. M., Herbeck, J. T., Mullins, J. I. & Allen, T. M. Viral evolution and escape during acute HIV-1 infection. J. Infect. Dis. 202, S309–S314 (2010).

    Article  PubMed  Google Scholar 

  12. Simon, V., Bloch, N. & Landau, N. R. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 16, 546–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garber, D. A., Silvestri, G. & Feinberg, M. B. Prospects for an AIDS vaccine: three big questions, no easy answers. Lancet Infect. Dis. 4, 397–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Maldarelli, F. et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagner, T. A. et al. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Margolis, D. M. et al. Curing HIV: seeking to target and clear persistent infection. Cell 181, 189–206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewin, S. R. & Rasmussen, T. A. Kick and kill for HIV latency. Lancet 395, 844–846 (2020).

    Article  PubMed  Google Scholar 

  19. Tanaka, K., Kim, Y., Roche, M. & Lewin, S. R. The role of latency reversal in HIV cure strategies. J. Med. Primatol. 51, 278–283 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim, Y., Anderson, J. L. & Lewin, S. R. Getting the “Kill” into “Shock and Kill”: strategies to eliminate latent HIV. Cell Host Microbe 23, 14–26 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alto, A. et al. The combination of venetoclax and ixazomib selectively and efficiently kills HIV-infected cell lines but has unacceptable toxicity in primary cell models. J. Virol. 95, e00138-21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chandrasekar, A. P., Cummins, N. W. & Badley, A. D. The role of the BCL-2 family of proteins in HIV-1 pathogenesis and persistence. Clin. Microbiol. Rev. 33, e00107–e00119 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cummins, N. W. et al. Maintenance of the HIV reservoir is antagonized by selective BCL2 inhibition. J. Virol. 91, e00012–e00017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren, Y. et al. Selective BCL-XL antagonists eliminate infected cells from a primary-cell model of HIV latency but not from ex vivo reservoirs. J. Virol. 95, e0242520 (2021).

    Article  PubMed  Google Scholar 

  25. Ren, Y. et al. BCL-2 antagonism sensitizes cytotoxic T cell-resistant HIV reservoirs to elimination ex vivo. J. Clin. Invest. 130, 2542–2559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Contreras, X. et al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J. Biol. Chem. 284, 6782–6789 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kulkosky, J. et al. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98, 3006–3015 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Vibholm, L. et al. Short-course Toll-like receptor 9 agonist treatment impacts innate immunity and plasma viremia in individuals with human immunodeficiency virus infection. Clin. Infect. Dis. 64, 1686–1695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spivak, A. M. et al. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin. Infect. Dis. 58, 883–890 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Zerbato, J. M., Purves, H. V., Lewin, S. R. & Rasmussen, T. A. Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr. Opin. Virol. 38, 1–9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. McBrien, J. B. et al. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells. Nature 578, 154–159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mutascio, S. et al. CD8+ T cells promote HIV latency by remodeling CD4+ T cell metabolism to enhance their survival, quiescence, and stemness. Immunity 56, 1132–1147 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zanoni, M. et al. Innate, non-cytolytic CD8+ T cell-mediated suppression of HIV replication by MHC-independent inhibition of virus transcription. PLoS Pathog. 16, e1008821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wallace, J., Narasipura, S. D., Sha, B. E., French, A. L. & Al-Harthi, L. Canonical Wnts mediate CD8+ T cell noncytolytic anti-HIV-1 activity and correlate with HIV-1 clinical status. J. Immunol. 205, 2046–2055 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Crotty, S. Do memory CD4 T cells keep their cell-type programming: plasticity versus fate commitment? Complexities of interpretation due to the heterogeneity of memory CD4 T cells, including T follicular helper cells. Cold Spring Harb. Perspect. Biol. 10, a032102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Grydziuszko, E., Phelps, A., Bruton, K., Jordana, M. & Koenig, J. F. E. Heterogeneity, subsets, and plasticity of T follicular helper cells in allergy. J. Allergy Clin. Immunol. 150, 990–998 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, J. & Paul, W. E. Heterogeneity and plasticity of T helper cells. Cell Res. 20, 4–12 (2010).

    Article  PubMed  Google Scholar 

  39. Pinzone, M. R. et al. Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication. JCI Insight 6, e150794 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dalod, M. et al. Broad, intense anti-human immunodeficiency virus (HIV) ex vivo CD8+ responses in HIV type 1-infected patients: comparison with anti-Epstein–Barr virus responses and changes during antiretroviral therapy. J. Virol. 73, 7108–7116 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gea-Banacloche, J. C. et al. Maintenance of large numbers of virus-specific CD8+ T cells in HIV-infected progressors and long-term nonprogressors. J. Immunol. 165, 1082–1092 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Betts, M. R. et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Batorsky, R., Sergeev, R. A. & Rouzine, I. M. The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations. PLoS Comput. Biol. 10, e1003878 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Althaus, C. L. & De Boer, R. J. Dynamics of immune escape during HIV/SIV infection. PLoS Comput. Biol. 4, e1000103 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roberts, E. R. et al. Collapse of cytolytic potential in SIV-specific CD8+ T cells following acute SIV infection in rhesus macaques. PLoS Pathog. 12, e1006135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 10, e1004251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Okoye, A. A. & Picker, L. J. CD4+ T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol. Rev. 254, 54–64 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Petersen, J. L., Morris, C. R. & Solheim, J. C. Virus evasion of MHC class I molecule presentation. J. Immunol. 171, 4473–4478 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Migueles, S. A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl Acad. Sci. USA 97, 2709–2714 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Quiros, J. C. et al. Resistance to replication of human immunodeficiency virus challenge in SCID-Hu mice engrafted with peripheral blood mononuclear cells of nonprogressors is mediated by CD8+ T cells and associated with a proliferative response to p24 antigen. J. Virol. 74, 2023–2028 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kaslow, R. A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Kaseke, C., Tano-Menka, R., Senjobe, F. & Gaiha, G. D. The emerging role for CTL epitope specificity in HIV cure efforts. J. Infect. Dis. 223, 32–37 (2021).

    Article  PubMed  Google Scholar 

  54. Gaiha, G. D. et al. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Science 364, 480–484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin, M. P. et al. Killer cell immunoglobulin-like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. J. Clin. Invest. 128, 1903–1912 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pawlak, E. N. & Dikeakos, J. D. HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion. Biochim. Biophys. Acta 1850, 733–741 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Dikeakos, J. D. et al. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Mol. Biol. Cell 23, 2184–2197 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blagoveshchenskaya, A. D., Thomas, L., Feliciangeli, S. F., Hung, C. H. & Thomas, G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111, 853–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Schaefer, M. R., Wonderlich, E. R., Roeth, J. F., Leonard, J. A. & Collins, K. L. HIV-1 Nef targets MHC-I and CD4 for degradation via a final common β-COP-dependent pathway in T cells. PLoS Pathog. 4, e1000131 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Apps, R. et al. Influence of HLA-C expression level on HIV control. Science 340, 87–91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blais, M. E. et al. High frequency of HIV mutations associated with HLA-C suggests enhanced HLA-C-restricted CTL selective pressure associated with an AIDS-protective polymorphism. J. Immunol. 188, 4663–4670 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Macatangay, B. J. & Rinaldo, C. R. Preserving HIV-specific T cell responses: does timing of antiretroviral therapy help? Curr. Opin. HIV AIDS 10, 55–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Warren, J. A. et al. The HIV-1 latent reservoir is largely sensitive to circulating T cells. eLife 9, e57246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Statzu, M. et al. CD8+ lymphocytes do not impact SIV reservoir establishment under ART. Nat. Microbiol. 8, 299–308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, S. H. et al. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J. Clin. Invest. 128, 876–889 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Abrahams, M. R. et al. The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation. Sci. Transl. Med. 11, eaaw5589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rutishauser, R. L. et al. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight 6, e136648 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Strongin, Z. et al. Distinct SIV-specific CD8+ T cells in the lymph node exhibit simultaneous effector and stem-like profiles and are associated with limited SIV persistence. Nat. Immunol. 25, 1245–1256 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Armani-Tourret, M. et al. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat. Rev. Microbiol. 22, 328–344 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, V. H. et al. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4+ T cell reservoir. Nat. Immunol. 24, 359–370 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Einkauf, K. B. et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J. Clin. Invest. 129, 988–998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Patro, S. C. et al. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proc. Natl Acad. Sci. USA 116, 25891–25899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Armani-Tourret, M. et al. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 187, 1238–1254 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blazkova, J. et al. Immunologic and virologic parameters associated with human immunodeficiency virus (HIV) DNA reservoir size in people with HIV receiving antiretroviral therapy. J. Infect. Dis. 229, 1770–1780 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Sun, W. et al. Footprints of innate immune activity during HIV-1 reservoir cell evolution in early-treated infection. J. Exp. Med. 221, e20241091 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khoury, G., Kulpa, D. A. & Parsons, M. S. Potential utility of natural killer cells for eliminating cells harboring reactivated latent HIV-1 following the removal of CD8+ T cell-mediated pro-latency effect(s). Viruses 13, 1451 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Veenhuis, R. T. et al. Monocyte-derived macrophages contain persistent latent HIV reservoirs. Nat. Microbiol. 8, 833–844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kruize, Z. & Kootstra, N. A. The role of macrophages in HIV-1 persistence and pathogenesis. Front. Microbiol. 10, 2828 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Groot, F., Welsch, S. & Sattentau, Q. J. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111, 4660–4663 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Banga, R. et al. Lymph node dendritic cells harbor inducible replication-competent HIV despite years of suppressive ART. Cell Host Microbe 31, 1714–1731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abrahem, R. et al. The role of dendritic cells in TB and HIV Infection. J. Clin. Med. 9, 2661 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miller, C. J. Host and viral factors influencing heterosexual HIV transmission. Rev. Reprod. 3, 42–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Manches, O., Frleta, D. & Bhardwaj, N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol. 35, 114–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 3, 975–983 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, L. & KewalRamani, V. N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat. Rev. Immunol. 6, 859–868 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mikulak, J., Oriolo, F., Zaghi, E., Di Vito, C. & Mavilio, D. Natural killer cells in HIV-1 infection and therapy. AIDS 31, 2317–2330 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Bastidas-Legarda, L. Y. & Khakoo, S. I. Conserved and variable natural killer cell receptors: diverse approaches to viral infections. Immunology 156, 319–328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yewdell, J. W. & Hill, A. B. Viral interference with antigen presentation. Nat. Immunol. 3, 1019–1025 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Forthal, D. N. & Finzi, A. Antibody-dependent cellular cytotoxicity in HIV infection. AIDS 32, 2439–2451 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Ferrari, G., Pollara, J., Tomaras, G. D. & Haynes, B. F. Humoral and innate antiviral immunity as tools to clear persistent HIV infection. J. Infect. Dis. 215, S152–S159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Manickam, C., Shah, S. V., Nohara, J., Ferrari, G. & Reeves, R. K. Monkeying around: using non-human primate models to study NK cell biology in HIV infections. Front. Immunol. 10, 1124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vieira, V. A., Herbert, N., Cromhout, G., Adland, E. & Goulder, P. Role of early life cytotoxic T lymphocyte and natural killer cell immunity in paediatric HIV cure/remission in the anti-retroviral therapy era. Front. Immunol. 13, 886562 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hartana, C. A. et al. Immune correlates of HIV-1 reservoir cell decline in early-treated infants. Cell Rep. 40, 111126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garcia-Broncano, P. et al. Early antiretroviral therapy in neonates with HIV-1 infection restricts viral reservoir size and induces a distinct innate immune profile. Sci. Transl. Med. 11, eaax7350 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harper, J. et al. IL-21 and IFNα therapy rescues terminally differentiated NK cells and limits SIV reservoir in ART-treated macaques. Nat. Commun. 12, 2866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nagasawa, M., Spits, H. & Ros, X. R. Innate lymphoid cells (ILCs): cytokine hubs regulating immunity and tissue homeostasis. Cold Spring Harb. Perspect. Biol. 10, a030304 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Moretti, S. et al. HIV-1-host interaction in gut-associated lymphoid tissue (GALT): effects on local environment and comorbidities. Int. J. Mol. Sci. 24, 12193 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kloverpris, H. N. et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity 44, 391–405 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hutter, G. et al. Long-term control of HIV by CCR5 Δ32/Δ32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Article  PubMed  Google Scholar 

  101. Yukl, S. A. et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 9, e1003347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gupta, R. K. et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568, 244–248 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gupta, R. K. et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7, e340–e347 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hsu, J. et al. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell 186, 1115–1126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jensen, B. O. et al. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat. Med. 29, 583–587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hussein, M., Molina, M. A., Berkhout, B. & Herrera-Carrillo, E. A CRISPR-cas cure for HIV/AIDS. Int. J. Mol. Sci. 24, 1563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pauza, C. D., Huang, K. & Bordon, J. Advances in cell and gene therapy for HIV disease: it is good to be specific. Curr. Opin. HIV AIDS 16, 83–87 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Kitawi, R., Ledger, S., Kelleher, A. D. & Ahlenstiel, C. L. Advances in HIV gene therapy. Int. J. Mol. Sci. 25, 2771 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Swanstrom, A. E. et al. Antibody-mediated depletion of viral reservoirs is limited in SIV-infected macaques treated early with antiretroviral therapy. J. Clin. Invest. 131, e142421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Veenhuis, R. T. et al. CD4+ depletion results in robust CNS rebound and larger macrophage reservoirs [CROI Abstract 129]. Abstracts from CROI 2022 Conference on Retroviruses and Opportunistic Infections (2022).

  111. Clark, I. C. et al. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature 614, 318–325 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sun, W. et al. Phenotypic signatures of immune selection in HIV-1 reservoir cells. Nature 614, 309–317 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harper, J. et al. CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption. Nat. Med. 26, 519–528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rahman, S. A. et al. PD-1 blockade and vaccination provide therapeutic benefit against SIV by inducing broad and functional CD8+ T cells in lymphoid tissue. Sci. Immunol. 6, eabh3034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dashti, A. et al. AZD5582 plus SIV-specific antibodies reduce lymph node viral reservoirs in antiretroviral therapy-suppressed macaques. Nat. Med. 29, 2535–2546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lim, S. Y. et al. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci. Transl Med. 10, eaao4521 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bekerman, E. et al. PD-1 blockade and TLR7 activation lack therapeutic benefit in chronic simian immunodeficiency virus-infected macaques on antiretroviral therapy. Antimicrob. Agents Chemother. 63, e01163–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Del Prete, G. Q. et al. TLR7 agonist administration to SIV-infected macaques receiving early initiated cART does not induce plasma viremia. JCI Insight 4, e127717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Miller, J. S. et al. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat. Med. 28, 392–400 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Ho, Y. C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Siliciano, J. D. & Siliciano, R. F. Low inducibility of latent human immunodeficiency virus type 1 proviruses as a major barrier to cure. J. Infect. Dis. 223, 13–21 (2021).

    Article  PubMed  Google Scholar 

  122. Henrich, T. J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161, 319–327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Frattari, G. S., Caskey, M. & Sogaard, O. S. Broadly neutralizing antibodies for HIV treatment and cure approaches. Curr. Opin. HIV AIDS 18, 157–163 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Caskey, M., Klein, F. & Nussenzweig, M. C. Broadly neutralizing antibodies for HIV-1 prevention or immunotherapy. N. Engl. J. Med. 375, 2019–2021 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Gaebler, C. et al. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 606, 368–374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sneller, M. C. et al. Combination anti-HIV antibodies provide sustained virological suppression. Nature 606, 375–381 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Corey, L. et al. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N. Engl. J. Med. 384, 1003–1014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gilbert, P. B. et al. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat. Med. 28, 1924–1932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pegu, A. et al. A meta-analysis of passive immunization studies shows that serum-neutralizing antibody titer associates with protection against SHIV challenge. Cell Host Microbe 26, 336–346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Niessl, J. et al. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nat. Med. 26, 222–227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nishimura, Y. et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature 543, 559–563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gunst, J. D. et al. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nat. Med. 28, 2424–2435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rosas-Umbert, M. et al. Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8+ T cell immunity. Nat. Commun. 13, 6473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Reece, J. et al. An “escape clock” for estimating the turnover of SIV DNA in resting CD4+ T cells. PLoS Pathog. 8, e1002615 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Barouch, D. H. et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Borducchi, E. N. et al. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature 563, 360–364 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shingai, M. et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J. Exp. Med. 211, 2061–2074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Julg, B. et al. Safety and antiviral effect of a triple combination of HIV-1 broadly neutralizing antibodies: a phase 1/2a trial. Nat. Med. 30, 3534–3543 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bar, K. J. et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cohen, Y. Z. et al. Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. J. Exp. Med. 215, 2311–2324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Riddler, S. A. et al. Randomized clinical trial to assess the impact of the broadly neutralizing HIV-1 monoclonal antibody VRC01 on HIV-1 persistence in individuals on effective ART. Open Forum Infect. Dis. 5, ofy242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wagh, K. & Seaman, M. S. Divide and conquer: broadly neutralizing antibody combinations for improved HIV-1 viral coverage. Curr. Opin. HIV AIDS 18, 164–170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Julg, B. et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat. Med. 28, 1288–1296 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561, 479–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Parikh, U. M., Bacheler, L., Koontz, D. & Mellors, J. W. The K65R mutation in human immunodeficiency virus type 1 reverse transcriptase exhibits bidirectional phenotypic antagonism with thymidine analog mutations. J. Virol. 80, 4971–4977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rajashekar, J. K. et al. Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir. Cell Host Microbe 29, 904–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sekaly, R. et al. Dual blockade of IL-10 and PD-1 leads to control of SIV viral rebound following analytical treatment interruption. Nat. Immunol. 25, 1900–1912 (2023).

    Google Scholar 

  148. Lim, S. Y. et al. Induction of durable remission by dual immunotherapy in SHIV-infected ART-suppressed macaques. Science 383, 1104–1111 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chandrasekar, A. P. et al. The BCL-2 inhibitor venetoclax augments immune effector function mediated by fas ligand, TRAIL, and perforin/granzyme B, resulting in reduced plasma viremia and decreased HIV reservoir size during acute HIV infection in a humanized mouse model. J. Virol. 96, e0173022 (2022).

    Article  PubMed  Google Scholar 

  150. Cummins, N. W. et al. Prime, shock, and kill: priming CD4 T cells from HIV patients with a BCL-2 antagonist before HIV reactivation reduces HIV reservoir size. J. Virol. 90, 4032–4048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Szaniawski, M. A. & Spivak, A. M. Senotherapeutics for HIV and aging. Curr. Opin. HIV AIDS 15, 83–93 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sanchez-Diaz, L., Espinosa-Sanchez, A., Blanco, J. R. & Carnero, A. Senotherapeutics in cancer and HIV. Cells 11, 1222 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Blackbourn, D. J. et al. Suppression of HIV replication by lymphoid tissue CD8+ cells correlates with the clinical state of HIV-infected individuals. Proc. Natl Acad. Sci. USA 93, 13125–13130 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Blazek, D., Teque, F., Mackewicz, C., Peterlin, M. & Levy, J. A. The CD8+ cell non-cytotoxic antiviral response affects RNA polymerase II-mediated human immunodeficiency virus transcription in infected CD4+ cells. J. Gen. Virol. 97, 220–224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Levy, J. A., Mackewicz, C. E. & Barker, E. Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol. Today 17, 217–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Mackewicz, C. & Levy, J. A. CD8+ cell anti-HIV activity: nonlytic suppression of virus replication. AIDS Res. Hum. Retroviruses 8, 1039–1050 (1992).

    Article  CAS  PubMed  Google Scholar 

  157. Mackewicz, C. E., Blackbourn, D. J. & Levy, J. A. CD8+ T cells suppress human immunodeficiency virus replication by inhibiting viral transcription. Proc. Natl Acad. Sci. USA 92, 2308–2312 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mackewicz, C. E., Craik, C. S. & Levy, J. A. The CD8+ cell noncytotoxic anti-HIV response can be blocked by protease inhibitors. Proc. Natl Acad. Sci. USA 100, 3433–3438 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mackewicz, C. E., Garovoy, M. R. & Levy, J. A. HLA compatibility requirements for CD8+-T-cell-mediated suppression of human immunodeficiency virus replication. J. Virol. 72, 10165–10170 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mackewicz, C. E., Ortega, H. & Levy, J. A. Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell Immunol. 153, 329–343 (1994).

    Article  CAS  PubMed  Google Scholar 

  161. Mackewicz, C. E., Patterson, B. K., Lee, S. A. & Levy, J. A. CD8+ cell noncytotoxic anti-human immunodeficiency virus response inhibits expression of viral RNA but not reverse transcription or provirus integration. J. Gen. Virol. 81, 1261–1264 (2000).

    CAS  PubMed  Google Scholar 

  162. Mackewicz, C. E. et al. Lack of the CD8+ cell anti-HIV factor in CD8+ cell granules. Blood 102, 180–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Yang, O. O. et al. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J. Virol. 71, 3120–3128 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Klatt, N. R. et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 6, e1000747 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wong, J. K. et al. In vivo CD8+ T-cell suppression of siv viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog. 6, e1000748 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Elemans, M. et al. Why don’t CD8+ T cells reduce the lifespan of SIV-infected cells in vivo? PLoS Comput. Biol. 7, e1002200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Seich Al Basatena, N. K. et al. Can non-lytic CD8+ T cells drive HIV-1 escape? PLoS Pathog. 9, e1003656 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Cartwright, E. K. et al. CD8+ lymphocytes are required for maintaining viral suppression in SIV-infected macaques treated with short-term antiretroviral therapy. Immunity 45, 656–668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mavigner, M. et al. CD8 lymphocyte depletion enhances the latency reversal activity of the SMAC mimetic AZD5582 in ART-suppressed SIV-infected rhesus macaques. J. Virol. 95, e01429-20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01-AI125064 to G.S., R01-AI143414 to D.A.K. and UM1 164562 to M.P. The authors thank A. Chahroudi, D. Margolis, R. Sekaly, F. Simonetti and C. Van Lint for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Guido Silvestri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulpa, D.A., Paiardini, M. & Silvestri, G. Immune-mediated strategies to solving the HIV reservoir problem. Nat Rev Immunol 25, 542–553 (2025). https://doi.org/10.1038/s41577-025-01136-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-025-01136-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing