Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

New insights into the noncanonical inflammasome point to caspase-4 as a druggable target

Abstract

Recent studies indicate that the human lipopolysaccharide sensor caspase-4, unlike its mouse homologue caspase-11, is constitutively expressed and activates pro-IL-18 as well as gasdermin D-mediated pyroptosis. Activation of human caspase-4 causes vascular leakage systemically and at the blood–brain barrier in mice and is implicated in the pathogenesis of a range of inflammatory diseases for which there are currently no effective therapies. These results suggest the therapeutic potential of modulating caspase-4 activity, and structural studies indicate that the caspase-4 exosite might be a promising inhibitory target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence and domain structure of the noncanonical inflammasome caspases.
Fig. 2: The noncanonical inflammasome pathway.
Fig. 3: Caspase-4 structure and substrate recognition.

Similar content being viewed by others

References

  1. Ross, C. et al. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu. Rev. Immunol. 40, 1–21 (2022).

    Article  Google Scholar 

  2. Coll, R. C. & Schroder, K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat. Rev. Immunol. 25, 22–41 (2024).

    Article  PubMed  Google Scholar 

  3. Martinon, F., Burns, K. & Tschopp, J. The inflammasome a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Fu, J., Schroder, K. & Wu, H. Mechanistic insights from inflammasome structures. Nat. Rev. Immunol. 24, 518–535 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215, 827–840 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Ross, C., Chan, A. H., Pein, J. V., Boucher, D. & Schroder, K. Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome. Life Sci. Alliance 1, e201800237 (2018).

    Article  PubMed  Google Scholar 

  8. Lee, B. L. et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J. Exp. Med. 215, 2279–2288 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Chan, A. H. et al. Caspase-4 dimerisation and D289 auto-processing elicit an interleukin-1β-converting enzyme. Life Sci. Alliance 6, e202301908 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug. Discov. 20, 384–405 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Miao, R. et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity 56, 2523–2541 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Zanoni, I., Tan, Y., Gioia, M. D., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, D., Liwinski, T. & Elinav, E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6, 36 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Wu, J., Fernandes-Alnemri, T. & Alnemri, E. S. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol. 30, 693–702 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1 activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Rathinam, V. A. K., Zhao, Y. & Shao, F. Innate immunity to intracellular LPS. Nat. Immunol. 20, 527–533 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Akuma, D. C. et al. Catalytic activity and autoprocessing of murine caspase-11 mediate noncanonical inflammasome assembly in response to cytosolic LPS. eLife 13, e83725 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Sharif, H. et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570, 338–343 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Andreeva, L. et al. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184, 6299–6312 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Hollingsworth, L. R. et al. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature 592, 778–783 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Paidimuddala, B. et al. Mechanism of NAIP—NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Nat. Struct. Mol. Biol. 30, 159–166 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Z. et al. Structural basis for thioredoxin-mediated suppression of NLRP1 inflammasome. Nature 622, 188–194 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Xiao, L., Magupalli, V. G. & Wu, H. Cryo-EM structures of the active NLRP3 inflammasome disc. Nature 613, 595–600 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Vanaja, S. K. et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165, 1106–1119 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Santos, J. C. et al. LPS targets host guanylate‐binding proteins to the bacterial outer membrane for non‐canonical inflammasome activation. EMBO J. 37, e98089 (2018).

    Article  PubMed  Google Scholar 

  32. Wandel, M. P. et al. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat. Immunol. 21, 880–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Santos, J. C. et al. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat. Commun. 11, 3276 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, S. et al. Native architecture of a human GBP1 defense complex for cell-autonomous immunity to infection. Science 383, eabm9903 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Kuhm, T. et al. Structural basis of antimicrobial membrane coat assembly by human GBP1. Nat. Struct. Mol. Biol. 32, 172–184. (2024).

    Article  PubMed  Google Scholar 

  36. Hara, H. et al. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates Gram-positive pathogen infection. Cell 175, 1651–1664 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Chaves, M. M. et al. Non-canonical NLRP3 inflammasome activation and IL-1β signaling are necessary to L. amazonensis control mediated by P2X7 receptor and leukotriene B4. PLoS Pathog. 15, e1007887 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. de Carvalho, R. V. H. et al. Leishmania lipophosphoglycan triggers caspase-11 and the non-canonical activation of the NLRP3 inflammasome. Cell Rep. 26, 429–437 (2019).

    Article  PubMed  Google Scholar 

  39. Celias, D. P. et al. Cathepsin L3 from fasciola hepatica induces NLRP3 inflammasome alternative activation in murine dendritic cells. Front. Immunol. 10, 552 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, W. et al. Apaf-1 pyroptosome senses mitochondrial permeability transition. Cell Metab. 33, 424–436 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Chukai, Y., Ito, G., Konno, M., Sakata, Y. & Ozaki, T. Mitochondrial calpain-5 truncates caspase-4 during endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 608, 156–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Chu, L. H. et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat. Commun. 9, 996 (2018).

    Article  PubMed  Google Scholar 

  44. Zhivaki, D. & Kagan, J. C. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat. Rev. Immunol. 22, 322–330 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  46. Schmid‐Burgk, J. L. et al. Caspase‐4 mediates non‐canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol. 45, 2911–2917 (2015).

    Article  PubMed  Google Scholar 

  47. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Fernandes-Alnemri, T. et al. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J. Immunol. 191, 3995–3999 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Benaoudia, S. et al. A genome‐wide screen identifies IRF2 as a key regulator of caspase‐4 in human cells. EMBO Rep. 20, e48235 (2019).

    Article  PubMed  Google Scholar 

  50. Kayagaki, N. et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 12, eaax4917 (2019).

    Article  PubMed  Google Scholar 

  51. Shi, X. et al. Recognition and maturation of IL-18 by caspase-4 noncanonical inflammasome. Nature 624, 442–450 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Eckhart, L. et al. Identification of a novel exon encoding the amino-terminus of the predominant caspase-5 variants. Biochem. Biophys. Res. Commun. 348, 682–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, X. Y., Choi, M. S. K. & Porter, A. G. Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-γ. J. Biol. Chem. 275, 39920–39926 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Kajiwara, Y. et al. A critical role for human caspase-4 in endotoxin sensitivity. J. Immunol. 193, 335–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Wei, C. et al. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 629, 893–900 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Lagrange, B. et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat. Commun. 9, 242 (2018).

    Article  PubMed  Google Scholar 

  57. Warren, H. S. et al. Resilience to bacterial infection: difference between species could be due to proteins in serum. J. Infect. Dis. 201, 223–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Marshall, J. C. Why have clinical trials in sepsis failed? Trends Mol. Med. 20, 195–203 (2014).

    Article  PubMed  Google Scholar 

  59. Conner, J. R., Smirnova, I. I. & Poltorak, A. A mutation in Irak2c identifies IRAK-2 as a central component of the TLR regulatory network of wild-derived mice. J. Exp. Med. 206, 1615–1631 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Schroder, K. et al. Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc. Natl Acad. Sci. 109, E944–E953 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Rojas-Lopez, M. et al. NLRP11 is a pattern recognition receptor for bacterial lipopolysaccharide in the cytosol of human macrophages. Sci. Immunol. 8, eabo4767 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN- γ production. Nature 386, 619–623 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Margolin, N. et al. Substrate and inhibitor specificity of interleukin-1β-converting enzyme and related caspases. J. Biol. Chem. 272, 7223–7228 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Bibo-Verdugo, B., Snipas, S. J., Kolt, S., Poreba, M. & Salvesen, G. S. Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. J. Biol. Chem. 295, 11292–11302 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Devant, P. et al. Structural insights into cytokine cleavage by inflammatory caspase-4. Nature 624, 451–459 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Exconde, P. M. et al. The tetrapeptide sequence of IL-18 and IL-1β regulates their recruitment and activation by inflammatory caspases. Cell Rep. 42, 113581 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Li, Z. et al. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature 599, 290–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Cheng, K. T. et al. Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J. Clin. Invest. 127, 4124–4135 (2017).

    Article  PubMed  Google Scholar 

  71. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Napier, B. A. et al. Complement pathway amplifies caspase-11–dependent cell death and endotoxin-induced sepsis severity. J. Exp. Med. 213, 2365–2382 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Gyawali, B., Ramakrishna, K. & Dhamoon, A. S. Sepsis: the evolution in definition, pathophysiology, and management. SAGE Open Med. 7, 2050312119835043 (2019).

    Article  PubMed  Google Scholar 

  76. Wang, M., Feng, J., Zhou, D. & Wang, J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur. J. Méd. Res. 28, 339 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Meurens, F., Summerfield, A., Nauwynck, H., Saif, L. & Gerdts, V. The pig: a model for human infectious diseases. Trends Microbiol. 20, 50–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Rutai, A. et al. A porcine sepsis model with numerical scoring for early prediction of severity. Front. Med. 9, 867796 (2022).

    Article  Google Scholar 

  79. Amali, A. A. et al. Extracorporeal membrane oxygenation–dependent fulminant melioidosis from caspase 4 mutation reversed by interferon γ therapy. Clin. Infect. Dis. 78, 94–97 (2023).

    Article  Google Scholar 

  80. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Jorgensen, I., Zhang, Y., Krantz, B. A. & Miao, E. A. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213, 2113–2128 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Guo, Q. et al. Organism type of infection is associated with prognosis in sepsis: an analysis from the MIMIC-IV database. BMC Infect. Dis. 23, 431 (2023).

    Article  PubMed  Google Scholar 

  83. Xu, G. et al. Gasdermin D protects against Streptococcus equi subsp. zooepidemicus infection through macrophage pyroptosis. Front. Immunol. 13, 1005925 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Eltobgy, M. M. et al. Caspase-4/11 exacerbates disease severity in SARS–CoV-2 infection by promoting inflammation and immunothrombosis. Proc. Natl Acad. Sci. 119, e2202012119 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, Y. et al. Caspase-4/11–mediated pulmonary artery endothelial cell pyroptosis contributes to pulmonary arterial hypertension. Hypertension 79, 536–548 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Zasłona, Z. et al. Caspase-11 promotes allergic airway inflammation. Nat. Commun. 11, 1055 (2020).

    Article  PubMed  Google Scholar 

  87. Flood, B. et al. Altered expression of caspases‐4 and ‐5 during inflammatory bowel disease and colorectal cancer: diagnostic and therapeutic potential. Clin. Exp. Immunol. 181, 39–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Kanai, T. et al. Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn’s disease. Gastroenterology 119, 1514–1523 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Haep, L. et al. Interferon gamma counteracts the angiogenic switch and induces vascular permeability in dextran sulfate sodium colitis in mice. Inflamm. Bowel Dis. 21, 2360–2371 (2015).

    PubMed  Google Scholar 

  90. Naseer, N. et al. Salmonella enterica serovar Typhimurium induces NAIP/NLRC4- and NLRP3/ASC-independent, caspase-4-dependent inflammasome activation in human intestinal epithelial cells. Infect. Immun. 90, e00663–21 (2022).

    Article  PubMed  Google Scholar 

  91. Shi, H. et al. GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ. Res. 129, 383–396 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Yanpiset, P. et al. Gasdermin D-mediated pyroptosis in myocardial ischemia and reperfusion injury: cumulative evidence for future cardioprotective strategies. Acta Pharm. Sin. B 13, 29–53 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Hisahara, S., Yuan, J., Momoi, T., Okano, H. & Miura, M. Caspase-11 mediates oligodendrocyte cell death and pathogenesis of autoimmune-mediated demyelination. J. Exp. Med. 193, 111–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Kang, S. J., Sanchez, I., Jing, N. & Yuan, J. Dissociation between neurodegeneration and caspase-11-mediated activation of caspase-1 and caspase-3 in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 23, 5455–5460 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Yin, P. et al. Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains. Acta Neuropathol. 137, 919–937 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Landy, E., Carol, H., Ring, A. & Canna, S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat. Rev. Rheumatol. 20, 33–47 (2024).

    Article  CAS  PubMed  Google Scholar 

  97. Moran, B. et al. Targeting the NLRP3 inflammasome reduces inflammation in hidradenitis suppurativa skin. Br. J. Dermatol. 189, 447–458 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Wannamaker, W. et al. (S)-1-((S)-2-{[1-(4-Amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1β and IL-18. J. Pharmacol. Exp. Ther. 321, 509–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Méthot, N. et al. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation. J. Biol. Chem. 279, 27905–27914 (2004).

    Article  PubMed  Google Scholar 

  101. Méthot, N. et al. Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J. Exp. Med. 199, 199–207 (2004).

    Article  PubMed  Google Scholar 

  102. McStay, G. P., Salvesen, G. S. & Green, D. R. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 15, 322–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Hardy, J. A. & Wells, J. A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Hardy, J. A., Lam, J., Nguyen, J. T., O’Brien, T. & Wells, J. A. Discovery of an allosteric site in the caspases. Proc. Natl Acad. Sci. USA 101, 12461–12466 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Scheer, J. M., Romanowski, M. J. & Wells, J. A. A common allosteric site and mechanism in caspases. Proc. Natl Acad. Sci. USA 103, 7595–7600 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, X. et al. A small molecule binding HMGB1 inhibits caspase-11-mediated lethality in sepsis. Cell Death Dis. 12, 402 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Sun, W. et al. Beclin1 controls caspase-4 inflammsome activation and pyroptosis in mouse myocardial reperfusion-induced microvascular injury. Cell Commun. Signal. 19, 107 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Alrumayyan, N. et al. Prolidase deficiency, a rare inborn error of immunity, clinical phenotypes, immunological features, and proposed treatments in twins. Allergy Asthma Clin. Immunol. 18, 17 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Coppola, S. et al. Mutations at the C-terminus of CDC42 cause distinct hematopoietic and autoinflammatory disorders. J. Allergy Clin. Immunol. 150, 223–228 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Z. et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51, 43–49 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health (NIH) grants CA240955 (to J.L.), and AI182369 and CA287076 (to H.W. and J.L.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding authors

Correspondence to Michael A. Crackower or Judy Lieberman.

Ethics declarations

Competing interests

All the authors are associated with Ventus Therapeutics (E.E., F.G.G. and M.A.C. as employees; H.W. and J.L. as cofounders and advisers) and have stock options.

Peer review

Peer review information

Nature Reviews Immunology thanks Dave Boucher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkayam, E., Gervais, F.G., Wu, H. et al. New insights into the noncanonical inflammasome point to caspase-4 as a druggable target. Nat Rev Immunol 25, 558–568 (2025). https://doi.org/10.1038/s41577-025-01142-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-025-01142-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research