Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Transposable elements as instructors of the immune system

Abstract

Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different levels of transposable element influence on cell biology.
Fig. 2: Harnessing transposable elements for immunotherapy.

Similar content being viewed by others

References

  1. Feschotte, C. Transposable elements: McClintock’s legacy revisited. Nat. Rev. Genet. 24, 797–800 (2023).

    Article  PubMed  CAS  Google Scholar 

  2. Bruno, M., Mahgoub, M. & Macfarlan, T. S. The arms race between KRAB-zinc finger proteins and endogenous retroelements and its impact on mammals. Annu. Rev. Genet. 53, 393–416 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. Wells, J. N. & Feschotte, C. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 54, 539–561 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kojima, S. et al. Mobile element variation contributes to population-specific genome diversification, gene regulation and disease risk. Nat. Genet. 55, 939–951 (2023).

    Article  PubMed  CAS  Google Scholar 

  5. Ostertag, E. M. & Kazazian, H. H. Jr Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. Szak, S. T. et al. Molecular archeology of L1 insertions in the human genome. Genome Biol. 3, research0052 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Loreto, E. L. S. & Pereira, C. M. Somatizing the transposons action. Mob. Genet. Elem. 7, 1–9 (2017).

    Article  CAS  Google Scholar 

  8. Haig, D. Transposable elements: self-seekers of the germline, team-players of the soma. Bioessays 38, 1158–1166 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Gusa, A. et al. Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen Cryptococcus deneoformans. Proc. Natl Acad. Sci. USA 120, e2209831120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hirochika, H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12, 2521–2528 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. & Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad. Sci. USA 93, 7783–7788 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Paquin, C. E. & Williamson, V. M. Temperature effects on the rate of ty transposition. Science 226, 53–55 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. Gusa, A. et al. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc. Natl Acad. Sci. USA 117, 9973–9980 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sehgal, A., Lee, C. Y. & Espenshade, P. J. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast. PLoS Genet. 3, e131 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gusa, A. & Jinks-Robertson, S. Mitotic recombination and adaptive genomic changes in human pathogenic fungi. Genes 10, 901 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang, T. et al. Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox. Cell 187, 3741–3760.e3730 (2024).

    Article  PubMed  CAS  Google Scholar 

  18. Thawani, A., Ariza, A. J. F., Nogales, E. & Collins, K. Template and target-site recognition by human LINE-1 in retrotransposition. Nature 626, 186–193 (2024).

    Article  PubMed  CAS  Google Scholar 

  19. Baldwin, E. T. et al. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 626, 194–206 (2024).

    Article  PubMed  CAS  Google Scholar 

  20. Ewing, A. D. & Kazazian, H. H. Jr. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20, 1262–1270 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sekine, K., Onoguchi, M. & Hamada, M. Transposons contribute to the acquisition of cell type-specific cis-elements in the brain. Commun. Biol. 6, 631 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Muotri, A. R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Muotri, A. R., Zhao, C., Marchetto, M. C. & Gage, F. H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19, 1002–1007 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Muotri, A. R. & Gage, F. H. Generation of neuronal variability and complexity. Nature 441, 1087–1093 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Maggioni, E. et al. Investigating the impact of L1 retrotransposons on behavior: a pilot study on young twins. Schizophr. Res. 271, 353–354 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. van Dongen, J. et al. Identical twins carry a persistent epigenetic signature of early genome programming. Nat. Commun. 12, 5618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Takahashi, T. et al. LINE-1 activation in the cerebellum drives ataxia. Neuron 110, 3278–3287.e3278 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shpyleva, S., Melnyk, S., Pavliv, O., Pogribny, I. & Jill James, S. Overexpression of LINE-1 retrotransposons in autism brain. Mol. Neurobiol. 55, 1740–1749 (2018).

    Article  PubMed  CAS  Google Scholar 

  31. Guo, C. et al. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 23, 2874–2880 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bundo, M. et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81, 306–313 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Cajuso, T. et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat. Commun. 10, 4022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Helman, E. et al. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res. 24, 1053–1063 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tubio, J. M. C. et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rodic, N. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat. Med. 21, 1060–1064 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Doucet-O’Hare, T. T. et al. Somatically acquired LINE-1 insertions in normal esophagus undergo clonal expansion in esophageal squamous cell carcinoma. Hum. Mutat. 37, 942–954 (2016).

    Article  PubMed  Google Scholar 

  38. Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gozuacik, D. & Kimchi, A. DAPk protein family and cancer. Autophagy 2, 74–79 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. Michie, A. M., McCaig, A. M., Nakagawa, R. & Vukovic, M. Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J. 277, 74–80 (2010).

    Article  PubMed  CAS  Google Scholar 

  41. Lu, Y., Wajapeyee, N., Turker, M. S. & Glazer, P. M. Silencing of the DNA mismatch repair gene MLH1 induced by hypoxic stress in a pathway dependent on the histone demethylase LSD1. Cell Rep. 8, 501–513 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Machado, H. E. et al. Diverse mutational landscapes in human lymphocytes. Nature 608, 724–732 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gorbunova, V. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43–53 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu, X., Fang, H., Gladysz, K., Barbour, J. A. & Wong, J. W. H. Overexpression of transposable elements is associated with immune evasion and poor outcome in colorectal cancer. Eur. J. Cancer 157, 94–107 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Szpakowski, S. et al. Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 448, 151–167 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kong, Y. et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, W. et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 307ra153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  51. Li, X. et al. Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Arch. Biochem. Biophys. 488, 23–33 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    Article  PubMed  CAS  Google Scholar 

  53. Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885 e875 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bonte, P. E. et al. Selective control of transposable element expression during T cell exhaustion and anti-PD-1 treatment. Sci. Immunol. 8, eadf8838 (2023).

    Article  PubMed  CAS  Google Scholar 

  55. Larouche, J. D. et al. Transposable elements regulate thymus development and function. eLife 12, e91037 (2024).

    Article  Google Scholar 

  56. Marasca, F. et al. LINE1 are spliced in non-canonical transcript variants to regulate T cell quiescence and exhaustion. Nat. Genet. 54, 180–193 (2022).

    Article  PubMed  CAS  Google Scholar 

  57. Young, G. R., Mavrommatis, B. & Kassiotis, G. Microarray analysis reveals global modulation of endogenous retroelement transcription by microbes. Retrovirology 11, 59 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Macchietto, M. G., Langlois, R. A. & Shen, S. S. Virus-induced transposable element expression up-regulation in human and mouse host cells. Life Sci. Alliance 3, e201900536 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sorek, M., Meshorer, E. & Schlesinger, S. Impaired activation of transposable elements in SARS-CoV-2 infection. EMBO Rep. 23, e55101 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lima-Junior, D. S. et al. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 184, 3794–3811.e3719 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jang, H. J. et al. Epigenetic therapy potentiates transposable element transcription to create tumor-enriched antigens in glioblastoma cells. Nat. Genet. 56, 1903–1913 (2024).

    Article  PubMed  CAS  Google Scholar 

  62. Bonaventura, P. et al. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8, eabj3671 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Attig, J. et al. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29, 1578–1590 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Cosby, R. L. et al. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 371, eabc6405 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Larouche, J. D. et al. Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues. Genome Med. 12, 40 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Shah, N. M. et al. Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements. Nat. Genet. 55, 631–639 (2023).

    Article  PubMed  CAS  Google Scholar 

  67. Kobayashi, S. et al. Proteogenomic identification of an immunogenic antigen derived from human endogenous retrovirus in renal cell carcinoma. JCI Insight 8, e167712 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Saini, S. K. et al. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat. Commun. 11, 5660 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Laumont, C. M. et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516 (2018).

    Article  PubMed  CAS  Google Scholar 

  70. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).

    Article  PubMed  CAS  Google Scholar 

  71. Ng, K. W. et al. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 616, 563–573 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Arribas, Y. A. et al. Transposable element exonization generates a reservoir of evolving and functional protein isoforms. Cell 187, 7603–7620.e7622 (2024).

    Article  PubMed  CAS  Google Scholar 

  73. Pasquesi, G. I. M. et al. Regulation of human interferon signaling by transposon exonization. Cell 187, 7621–7636.e7619 (2024).

    Article  PubMed  CAS  Google Scholar 

  74. Ueda, M. T. et al. Functional and dynamic profiling of transcript isoforms reveals essential roles of alternative splicing in interferon response. Cell Genom. 4, 100654 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Goyal, A. et al. DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts. Nat. Commun. 14, 6731 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Daskalakis, M. et al. Reactivation of endogenous retroviral elements via treatment with DNMT- and HDAC-inhibitors. Cell Cycle 17, 811–822 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cordaux, R., Udit, S., Batzer, M. A. & Feschotte, C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc. Natl Acad. Sci. USA 103, 8101–8106 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Newman, J. C., Bailey, A. D., Fan, H. Y., Pavelitz, T. & Weiner, A. M. An abundant evolutionarily conserved CSB–PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet. 4, e1000031 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lin, R. et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302–1305 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Henaff, E. et al. Extensive amplification of the E2F transcription factor binding sites by transposons during evolution of Brassica species. Plant. J. 77, 852–862 (2014).

    Article  PubMed  CAS  Google Scholar 

  84. Sundaram, V. et al. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nat. Commun. 8, 14550 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mukherjee, K. & Moroz, L. L. Transposon-derived transcription factors across metazoans. Front. Cell Dev. Biol. 11, 1113046 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Majumdar, S., Singh, A. & Rio, D. C. The human THAP9 gene encodes an active P-element DNA transposase. Science 339, 446–448 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Henssen, A. G. et al. Genomic DNA transposition induced by human PGBD5. eLife 4, e10565 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  PubMed  CAS  Google Scholar 

  89. Fugmann, S. D. The origins of the Rag genes-from transposition to V(D)J recombination. Semin. Immunol. 22, 10–16 (2010).

    Article  PubMed  CAS  Google Scholar 

  90. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Jacques, P. E., Jeyakani, J. & Bourque, G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 9, e1003504 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Brini, A. T., Lee, G. M. & Kinet, J. P. Involvement of Alu sequences in the cell-specific regulation of transcription of the gamma chain of Fc and T cell receptors. J. Biol. Chem. 268, 1355–1361 (1993).

    Article  PubMed  CAS  Google Scholar 

  95. Hambor, J. E., Mennone, J., Coon, M. E., Hanke, J. H. & Kavathas, P. Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol. Cell. Biol. 13, 7056–7070 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Donnard, E. et al. Comparative analysis of immune cells reveals a conserved regulatory lexicon. Cell Syst. 6, 381–394.e387 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Adoue, V. et al. The histone methyltransferase SETDB1 controls T helper cell lineage integrity by repressing endogenous retroviruses. Immunity 50, 629–644.e628 (2019).

    Article  PubMed  CAS  Google Scholar 

  99. Simon, M. et al. Single-cell chromatin accessibility and transposable element landscapes reveal shared features of tissue-residing immune cells. Immunity 57, 1975–1993.e1910 (2024).

    Article  PubMed  CAS  Google Scholar 

  100. Ye, M. et al. Specific subfamilies of transposable elements contribute to different domains of T lymphocyte enhancers. Proc. Natl Acad. Sci. USA 117, 7905–7916 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    Article  PubMed  CAS  Google Scholar 

  103. Delacher, M. et al. Precursors for nonlymphoid-tissue treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity 52, 295–312.e211 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Delacher, M. et al. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 54, 702–720.e717 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. DiSpirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3, eaat5861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504.e497 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Burton, O. T. et al. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 57, 1586–1602.e1510 (2024).

    Article  PubMed  CAS  Google Scholar 

  109. Hayatsu, N. et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47, 268–283.e269 (2017).

    Article  PubMed  CAS  Google Scholar 

  110. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. Cell 174, 285–299e212 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Karttunen, K. et al. Transposable elements as tissue-specific enhancers in cancers of endodermal lineage. Nat. Commun. 14, 5313 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Li, X. et al. LINE-1 transcription activates long-range gene expression. Nat. Genet. 56, 1494–1502 (2024).

    Article  PubMed  CAS  Google Scholar 

  114. Lu, J. Y. et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 31, 613–630 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Attig, J. et al. Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174, 1067–1081 e1017 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Liu, N. et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228–232 (2018).

    Article  PubMed  CAS  Google Scholar 

  117. Sakashita, A. et al. Transcription of MERVL retrotransposons is required for preimplantation embryo development. Nat. Genet. 55, 484–495 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wallin, J. et al. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 122, 23–30 (1996).

    Article  PubMed  CAS  Google Scholar 

  119. Yamazaki, Y. et al. PAX1 is essential for development and function of the human thymus. Sci. Immunol. 5, eaax1036 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Akhtar, M. Z., Sutherland, A. I., Huang, H., Ploeg, R. J. & Pugh, C. W. The role of hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities. Am. J. Transpl. 14, 1481–1487 (2014).

    Article  CAS  Google Scholar 

  121. Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Deniz, O., Frost, J. M. & Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).

    Article  PubMed  CAS  Google Scholar 

  123. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  PubMed  CAS  Google Scholar 

  124. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116–117 (1998).

    Article  PubMed  CAS  Google Scholar 

  125. Bertozzi, T. M., Elmer, J. L., Macfarlan, T. S. & Ferguson-Smith, A. C. KRAB zinc finger protein diversification drives mammalian interindividual methylation variability. Proc. Natl Acad. Sci. USA 117, 31290–31300 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Silver, M. J. et al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol. 16, 118 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  PubMed  CAS  Google Scholar 

  128. Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    Article  PubMed  CAS  Google Scholar 

  129. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  PubMed  CAS  Google Scholar 

  130. Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem. 93, 57–67 (2004).

    Article  PubMed  CAS  Google Scholar 

  131. Greger, J. G., Katz, R. A., Ishov, A. M., Maul, G. G. & Skalka, A. M. The cellular protein daxx interacts with avian sarcoma virus integrase and viral DNA to repress viral transcription. J. Virol. 79, 4610–4618 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Katz, R. A. et al. High-frequency epigenetic repression and silencing of retroviruses can be antagonized by histone deacetylase inhibitors and transcriptional activators, but uniform reactivation in cell clones is restricted by additional mechanisms. J. Virol. 81, 2592–2604 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Peek, G. W. & Tollefsbol, T. O. The transposon-driven evolutionary origin and basis of histone deacetylase functions and limitations in disease prevention. Clin. Epigenetics 2, 97–112 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Daujat, S. et al. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat. Struct. Mol. Biol. 16, 777–781 (2009).

    Article  PubMed  CAS  Google Scholar 

  135. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).

    Article  PubMed  CAS  Google Scholar 

  138. Leung, D. C. et al. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc. Natl Acad. Sci. USA 108, 5718–5723 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Ilik, I. A. et al. Autonomous transposons tune their sequences to ensure somatic suppression. Nature 626, 1116–1124 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Farmiloe, G., Lodewijk, G. A., Robben, S. F., van Bree, E. J. & Jacobs, F. M. J. Widespread correlation of KRAB zinc finger protein binding with brain-developmental gene expression patterns. Philos. Trans. R. Soc. Lond. B 375, 20190333 (2020).

    Article  CAS  Google Scholar 

  143. Truby, N. L. et al. A zinc finger transcription factor enables social behaviors while controlling transposable elements and immune response in prefrontal cortex. Transl. Psychiatry 14, 59 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Huntley, S. et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 16, 669–677 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yang, P., Wang, Y. & Macfarlan, T. S. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends Genet. 33, 871–881 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Wolf, G. et al. KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage. eLife 9, e56337 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Fabry, M. H. et al. piRNA-guided co-transcriptional silencing coopts nuclear export factors. eLife 8, e47999 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Le Thomas, A. et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27, 390–399 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  PubMed  CAS  Google Scholar 

  150. Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319–331.e318 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    Article  PubMed  CAS  Google Scholar 

  152. Senft, A. D. & Macfarlan, T. S. Transposable elements shape the evolution of mammalian development. Nat. Rev. Genet. 22, 691–711 (2021).

    Article  PubMed  CAS  Google Scholar 

  153. Eckersley-Maslin, M. A., Alda-Catalinas, C. & Reik, W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 19, 436–450 (2018).

    Article  PubMed  CAS  Google Scholar 

  154. Modzelewski, A. J. et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 184, 5541–5558.e5522 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Oomen, M. E. et al. An atlas of transcription initiation reveals regulatory principles of gene and transposable element expression in early mammalian development. Cell 188, 1156–1174.e1120 (2025).

    Article  PubMed  CAS  Google Scholar 

  156. Lavialle, C. et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. B 368, 20120507 (2013).

    Article  Google Scholar 

  157. Blaise, S., de Parseval, N., Benit, L. & Heidmann, T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl Acad. Sci. USA 100, 13013–13018 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Blaise, S., de Parseval, N. & Heidmann, T. Functional characterization of two newly identified Human Endogenous Retrovirus coding envelope genes. Retrovirology 2, 19 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lokossou, A. G. et al. Endogenous retrovirus-encoded Syncytin-2 contributes to exosome-mediated immunosuppression of T cells†. Biol. Reprod. 102, 185–198 (2020).

    PubMed  Google Scholar 

  160. Tolosa, J. M. et al. The endogenous retroviral envelope protein syncytin-1 inhibits LPS/PHA-stimulated cytokine responses in human blood and is sorted into placental exosomes. Placenta 33, 933–941 (2012).

    Article  PubMed  CAS  Google Scholar 

  161. Hu, G. et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 23, 837–848 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Cheng, B., Ren, X. & Kerppola, T. K. KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol. Cell Biol. 34, 2075–2091 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article  PubMed  CAS  Google Scholar 

  164. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    Article  PubMed  CAS  Google Scholar 

  165. Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    Article  PubMed  CAS  Google Scholar 

  166. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) Projektnummer 324392634-TRR 221 to M.F.

Author information

Authors and Affiliations

Authors

Contributions

L.S., P.S. and M.F. conceptualized the review. L.S., P.S. and M.F. wrote the main body. All authors contributed to editing of the manuscript and providing references. All authors approved the submitted version of the article.

Corresponding author

Correspondence to Markus Feuerer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks J. Mathai, D. Schatz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CRISPR activation

(CRISPRa). A modified CRISPR–Cas9 system using a deactivated Cas9 (dCas9) fused to a transcriptional activator to enhance the expression of genes without affecting the DNA sequence.

CRISPR–Cas9

A genetic engineering system that induces double-stranded breaks in a sequence-specific manner by duplexing a Cas9 nuclease with a guide RNA. Genetic alterations are induced through non-homologous end joining and homology-directed repair.

CRISPR–Cas-derived base editors

A catalytically impaired CRISPR–Cas system that induces targeted point mutations without double-stranded DNA breaks.

CRISPR interference

(CRISPRi). A modified CRISPR–Cas9 system using a deactivated Cas9 (dCas9) fused to a repressor construct that can be used to silence the transcription of genes without altering the DNA sequence.

Domestication

An evolutionary process during which foreign material is integrated into the genome to fulfil a function that is beneficial to the host organism, for instance, the integration of transposons into the genome to form the RAG genes.

Endogenous retroviruses

(ERVs). Retrotransposons of the long-terminal repeat (LTR) subclass derived from retroviruses.

Host–transposase fusion (HTF) genes or proteins

Genes or proteins that are comprised partially of host and partially of transposon material. Many transcription factors are HTF genes, combining transposable element-derived DNA-binding domains with host regulatory domains.

JETs

Non-canonical splice junctions involving exons and transposable elements (junctions between exons and transposable elements).

Lancelets

A group of primitive chordates; a frequently used animal model system used to study evolution.

LINE-1

Long interspersed nuclear element-1 also known as L1, both a retrotransposon and a group of retrotransposons of the non-long-terminal repeat (LTR) family and LINE subfamily.

Metastable epialleles

Loci that show systemic variable DNA methylation among individuals without underlying genetic differences.

MHC class I-associated peptides

(MAPs). Peptides that can be presented by MHC class I molecules and recognized by CD8 T cells.

Micro-evolution

Small-scale evolutionary changes that occur over a relatively short period of time. An example of micro-evolution is the development of antibiotic resistance in bacteria.

TE exonization

The process of incorporating transposable elements (TEs) from non-coding regions, predominantly introns, into new exons, using splicing signal sequences.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidleithner, L., Stüve, P. & Feuerer, M. Transposable elements as instructors of the immune system. Nat Rev Immunol 25, 696–706 (2025). https://doi.org/10.1038/s41577-025-01172-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-025-01172-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing