Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Connection and communication between the nervous and immune systems

Subjects

Abstract

Connections between the nervous and immune systems are increasingly recognized as central to brain–body physiology. In this Review, we examine how these systems collaborate to detect and respond to both internal and external stimuli — such as psychological stress, circadian cues, infection, and tissue injury. Rather than operating in isolation, the nervous and immune systems form an integrated network that is more than the sum of its parts. They share a common architecture and vocabulary, enabling bidirectional connection and communication that modulate immune cell characteristics throughout the body. We review immune–nervous interactions within two complementary frameworks: first, a spatial framework that distinguishes communication in the brain, communication within peripheral organs, and communication across distance; and second, a temporal framework that maps nervous system influence across the operational lifespan of the immune system — specifically focusing on how the nervous system impacts immune cell development, distribution, and execution of functions. Finally, we highlight key tools, clinical applications, and questions for future research on how both systems coordinate to respond to somatic and environmental stressors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensing stimuli and communicating them between the nervous and immune systems.
Fig. 2: Nervous and immune system interactions in the brain.
Fig. 3: Nervous and immune system interactions in the bone marrow, spleen, and lymph nodes.
Fig. 4: Nervous and immune system interactions in the lung, gut and skin.
Fig. 5: Nervous and immune system interactions in relation to immune cell development, distribution, and execution and memory.
Fig. 6: Central control of immune processes.

Similar content being viewed by others

References

  1. Dhabhar, F. S. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res. 58, 193–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Haykin, H. & Rolls, A. The neuroimmune response during stress: a physiological perspective. Immunity 54, 1933–1947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chan, K. L., Poller, W. C., Swirski, F. K. & Russo, S. J. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 24, 591–604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koren, T. & Rolls, A. Immunoception: defining brain-regulated immunity. Neuron 110, 3425–3428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002). This paper defines the ‘inflammatory reflex’, a neural circuit by which the vagus nerve can tune down and modulate immune responses.

    Article  CAS  PubMed  Google Scholar 

  6. Dantzer, R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 98, 477–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Bateman, A., Singh, A., Kral, T. & Solomon, S. The immune–hypothalamic–pituitary–adrenal axis. Endocr. Rev. 10, 92–112 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Blalock, J. E. The immune system as the sixth sense. J. Intern. Med. 257, 126–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Blalock, J. E. & Smith, E. M. Conceptual development of the immune system as a sixth sense. Brain Behav. Immun. 21, 23–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Dantzer, R. & Kelley, K. W. Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun. 21, 153–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Godinho-Silva, C., Cardoso, F. & Veiga-Fernandes, H. Neuro-immune cell units: a new paradigm in physiology. Annu. Rev. Immunol. 37, 19–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Turnbull, A. V. & Rivier, C. L. Regulation of the hypothalamic–pituitary–adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79, 1–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buchanan, J., da Costa, N. M. & Cheadle, L. Emerging roles of oligodendrocyte precursor cells in neural circuit development and remodeling. Trends Neurosci. 46, 628–639 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doron, A. et al. Hippocampal astrocytes encode reward location. Nature 609, 772–778 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Morales-Sanchez, A., Shissler, S. C., Cowan, J. E. & Bhandoola, A. Revelations in thymic epithelial cell biology and heterogeneity from single-cell RNA sequencing and lineage tracing methodologies. Methods Mol. Biol. 2580, 25–49 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Behan, P. O. & Behan, W. M. Neuroimmunology. Practitioner 226, 2044–2052 (1982).

    CAS  PubMed  Google Scholar 

  20. Payan, D. G., McGillis, J. P. & Goetzl, E. J. Neuroimmunology. Adv. Immunol. 39, 299–323 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu, C., Artis, D. & Chiu, I. M. Neuro-immune interactions in the tissues. Immunity 52, 464–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Izumi, M., Nakanishi, Y., Kang, S. & Kumanogoh, A. Peripheral and central regulation of neuro-immune crosstalk. Inflamm. Regen. 44, 41 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schiller, M., Ben-Shaanan, T. L. & Rolls, A. Neuronal regulation of immunity: why, how and where? Nat. Rev. Immunol. 21, 20–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Logan, R. W. & McClung, C. A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 20, 49–65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl Acad. Sci. USA 111, 16136–16141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sial, O. K., Warren, B. L., Alcantara, L. F., Parise, E. M. & Bolanos-Guzman, C. A. Vicarious social defeat stress: bridging the gap between physical and emotional stress. J. Neurosci. Methods 258, 94–103 (2016).

    Article  PubMed  Google Scholar 

  33. Sim, J. H. et al. Immune cell-stromal circuitry in lupus photosensitivity. J. Immunol. 206, 302–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Brumm, H., Goymann, W., Deregnaucourt, S., Geberzahn, N. & Zollinger, S. A. Traffic noise disrupts vocal development and suppresses immune function. Sci. Adv. 7, eabe2405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, A. et al. The immune system can hear noise. Front. Immunol. 11, 619189 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Flayer, C. H. et al. A gammadelta T cell–IL-3 axis controls allergic responses through sensory neurons. Nature 634, 440–446 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oetjen, L. K. et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171, 217–228.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, F. & Kim, B. S. Itch: a paradigm of neuroimmune crosstalk. Immunity 52, 753–766 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, F. et al. A basophil-neuronal axis promotes itch. Cell 184, 422–440.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, Z. H. et al. Mechanisms of the PD-1/PD-L1 pathway in itch: from acute itch model establishment to the role in chronic itch in mouse. Eur. J. Pharmacol. 960, 176128 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Eberl, G. A new age for (mucosal) neuroimmunology. Mucosal Immunol. 15, 1052–1055 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Fiore, N. T., Debs, S. R., Hayes, J. P., Duffy, S. S. & Moalem-Taylor, G. Pain-resolving immune mechanisms in neuropathic pain. Nat. Rev. Neurol. 19, 199–220 (2023).

    PubMed  Google Scholar 

  43. Poller, W. C. et al. Brain motor and fear circuits regulate leukocytes during acute stress. Nature 607, 578–584 (2022). This study demonstrates how stress and motor circuits can influence rapid leukocyte redistribution in response to acute stress, profoundly influencing disease outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Franco, R., Pacheco, R., Lluis, C., Ahern, G. P. & O’Connell, P. J. The emergence of neurotransmitters as immune modulators. Trends Immunol. 28, 400–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hodo, T. W., de Aquino, M. T. P., Shimamoto, A. & Shanker, A. Critical neurotransmitters in the neuroimmune network. Front. Immunol. 11, 1869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amado, J. A. et al. Blood levels of cytokines in brain-dead patients: relationship with circulating hormones and acute-phase reactants. Metabolism 44, 812–816 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Schwarz, P. et al. Brain death-induced inflammatory activity is similar to sepsis-induced cytokine release. Cell Transpl. 27, 1417–1424 (2018).

    Article  Google Scholar 

  49. Weiss, S. et al. Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am. J. Transpl. 7, 1584–1593 (2007).

    Article  CAS  Google Scholar 

  50. Weiss, M. G. et al. Activation of the innate immune system in brain-dead donors can be reduced by luminal intestinal preservation during organ procurement surgery — a porcine model. Transpl. Int. 37, 13569 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zitur, L. J. et al. Brain death enhances activation of the innate immune system and leads to reduced renal metabolic gene expression. Transplantation 103, 1821–1833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watts, R. P., Thom, O. & Fraser, J. F. Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J. Transpl. 2013, 521369 (2013).

    Google Scholar 

  53. D’Aragon, F. et al. Effect of corticosteroid administration on neurologically deceased organ donors and transplant recipients: a systematic review and meta-analysis. BMJ Open 7, e014436 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kotsch, K. et al. Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial. Ann. Surg. 248, 1042–1050 (2008).

    Article  PubMed  Google Scholar 

  55. Kuecuek, O. et al. Significant reduction of proinflammatory cytokines by treatment of the brain-dead donor. Transpl. Proc. 37, 387–388 (2005).

    Article  CAS  Google Scholar 

  56. Sowers, K. L., Gayda-Chelder, C. A. & Galantino, M. L. Self-reported cognitive impairment in individuals with primary immunodeficiency disease. Brain Behav. Immun. Health 9, 100170 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sun, C.-L. et al. Adverse psychological outcomes in long-term survivors of hematopoietic cell transplantation: a report from the bone marrow transplant survivor study (BMTSS). Blood 118, 4723–4731 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Titman, P. et al. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies. Blood 112, 3907–3913 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Balaguer-Rosello, A. et al. Noninfectious neurologic complications after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 25, 1818–1824 (2019).

    Article  Google Scholar 

  60. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frederick, N. M., Tavares, G. A. & Louveau, A. Neuroimmune signaling at the brain borders. Immunol. Rev. 311, 9–25 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cathomas, F. et al. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature 626, 1108–1115 (2024). This work identifies monocyte-sourced MMP8 as a fundamental cytokine driving chronic stress-related inflammation in the brain as well as depression-like behaviors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McKim, D. B. et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol. Psychiatry 23, 1421–1431 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Wohleb, E. S. et al. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol. Psychiatry 75, 970–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Wohleb, E. S., Powell, N. D., Godbout, J. P. & Sheridan, J. F. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J. Neurosci. 33, 13820–13833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Riazi, K. et al. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl Acad. Sci. USA 105, 17151–17156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Varvel, N. H. et al. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc. Natl Acad. Sci. USA 113, E5665–E5674 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chung, E. N. et al. Psychedelic control of neuroimmune interactions governing fear. Nature 641, 1276–1286 (2025).

    Article  CAS  PubMed  Google Scholar 

  72. D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Huynh, P. et al. Myocardial infarction augments sleep to limit cardiac inflammation and damage. Nature 635, 168–177 (2024). This paper demonstrates that myocardial infarction induces monocytes to invade the brain, release TNF and induce sleep via TNF-sensing glutamatergic neurons, which protects against inflammation and cardiac damage.

    Article  CAS  PubMed  Google Scholar 

  74. Thorp, E. B. et al. CCR2+ monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav. Immun. 119, 818–835 (2024). This study, together with that by Huynh et al. (2024), shows that monocytes to invade the brain via the choroid plexus after myocardial infarction, which can lead to white matter injury and cognitive dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garre, J. M., Silva, H. M., Lafaille, J. J. & Yang, G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat. Med. 23, 714–722 (2017). This work shows that under inflammatory conditions, CX3CR1+ monocytes can home to the brain, release TNF-α and influence dendritic spine remodeling and cognitive dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pinho-Ribeiro, F. A. et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 615, 472–481 (2023). This study describes a novel way of bacteria to promote brain invasion by tricking nociceptive neurons to suppress meningeal macrophage inflammation via CGRP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, B. et al. Meningeal neutrophil immune signaling influences behavioral adaptation following threat. Neuron 113, 260–276 (2024).

    Article  PubMed  Google Scholar 

  78. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Kipnis, J., Gadani, S. & Derecki, N. C. Pro-cognitive properties of T cells. Nat. Rev. Immunol. 12, 663–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Walsh, J. T. et al. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J. Clin. Invest. 125, 699–714 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xia, M. et al. Elevated IL-22 as a result of stress-induced gut leakage suppresses septal neuron activation to ameliorate anxiety-like behavior. Immunity 58, 218–231.e12 (2025).

    Article  CAS  PubMed  Google Scholar 

  83. Prescott, S. L. & Liberles, S. D. Internal senses of the vagus nerve. Neuron 110, 579–599 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kressel, A. M. et al. Identification of a brainstem locus that inhibits tumor necrosis factor. Proc. Natl Acad. Sci. USA 117, 29803–29810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Olofsson, P. S. et al. α7 nicotinic acetylcholine receptor (α7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol. Med. 18, 539–543 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Pavlov, V. A. & Tracey, K. J. The vagus nerve and the inflammatory reflex-linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, Z., Han, B., Li, P., Wang, Z. & Fan, Q. Activation of α7nAChR by nicotine reduced the Th17 response in CD4+ T lymphocytes. Immunol. Invest. 43, 667–674 (2014).

    Article  PubMed  Google Scholar 

  89. Zhou, L. et al. Acetylcholine regulates the development of experimental autoimmune encephalomyelitis via the CD4+ cells proliferation and differentiation. Int. J. Neurosci. 130, 788–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Teratani, T. et al. The liver–brain–gut neural arc maintains the Tregcell niche in the gut. Nature 585, 591–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Zhu, Y. et al. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 385, eadk1679 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matteoli, G. et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63, 938–948 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Fielding, C. et al. Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis. Nat. Commun. 13, 543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Su, Y. et al. Brainstem Dbh+ neurons control allergen-induced airway hyperreactivity. Nature 631, 601–609 (2024). This works maps the entire vagal circuit leading to bronchoconstriction following allergen exposure, regulated by adrenergic neurons in the nucleus of the solitary tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alkaslasi, M. R. et al. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat. Commun. 12, 2471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Veerakumar, A., Yung, A. R., Liu, Y. & Krasnow, M. A. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 606, 739–746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cox, M. A. et al. Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science 363, 639–644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Devi, S. et al. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 54, 1219–1230.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Mendez-Ferrer, S., Chow, A., Merad, M. & Frenette, P. S. Circadian rhythms influence hematopoietic stem cells. Curr. Opin. Hematol. 16, 235–242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nevin, J. T., Moussa, M., Corwin, W. L., Mandoiu, I. I. & Srivastava, P. K. Sympathetic nervous tone limits the development of myeloid-derived suppressor cells. Sci. Immunol. 5, eaay9368 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Ho, Y.-H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sestan, M. et al. Neuronal–ILC2 interactions regulate pancreatic glucagon and glucose homeostasis. Science 387, eadi3624 (2025).

    Article  CAS  PubMed  Google Scholar 

  106. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stanley, S. et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc. Natl Acad. Sci. USA 107, 7024–7029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ziegler, K. A. et al. Immune-mediated denervation of the pineal gland underlies sleep disturbance in cardiac disease. Science 381, 285–290 (2023). This paper describes a mechanism by which immune cells infiltrate the SNS-associated superior cervical ganglia during choric cardiac disease; axons that project from the superior cervical ganglia to the pineal gland are damaged, resulting in denervation of the pineal gland and disrupted sleep.

    Article  CAS  PubMed  Google Scholar 

  109. Baral, P., Udit, S. & Chiu, I. M. Pain and immunity: implications for host defence. Nat. Rev. Immunol. 19, 433–447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Filtjens, J. et al. Nociceptive sensory neurons promote CD8 T cell responses to HSV-1 infection. Nat. Commun. 12, 2936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Trankner, D., Hahne, N., Sugino, K., Hoon, M. A. & Zuker, C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc. Natl Acad. Sci. USA 111, 11515–11520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cohen, J. A. et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178, 919–932.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lu, Y. Z. et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 628, 604–611 (2024). This study shows how CGRP+ sensory neurons drive tissue repair by recruiting neutrophils and macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kulalert, W. et al. The neuroimmune CGRP–RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc. Natl Acad. Sci. USA 121, e2322574121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Perner, C. et al. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity 53, 1063–1077.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hoeffel, G. et al. Sensory neuron-derived TAFA4 promotes macrophage tissue repair functions. Nature 594, 94–99 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180, 33–49.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Yang, D. et al. Nociceptor neurons direct goblet cells via a CGRP–RAMP1 axis to drive mucus production and gut barrier protection. Cell 185, 4190–4205.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and gammadelta T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24, 417–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mathur, S. et al. Nociceptor neurons promote IgE class switch in B cells. JCI Insight 6, e148510 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Nagashima, H. et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51, 682–695.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Talbot, S. et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87, 341–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wallrapp, A. et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity 51, 709–723.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013). This work shows that bacterial activation of sensory neurons modulates pain and immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Crosson, T. et al. FcepsilonR1-expressing nociceptors trigger allergic airway inflammation. J. Allergy Clin. Immunol. 147, 2330–2342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Serhan, N. et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20, 1435–1443 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tamari, M. et al. Sensory neurons promote immune homeostasis in the lung. Cell 187, 44–61.e17 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Crosson, T. et al. Cytokines reprogram airway sensory neurons in asthma. Cell Rep. 43, 115045 (2024).

    Article  CAS  PubMed  Google Scholar 

  132. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Wu, M. et al. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 187, 2935–2951.e19 (2024). This work highlights a previously unexplored splenic nociceptive neurons critically enhancing germinal centre responses and antibody affinity.

    Article  CAS  PubMed  Google Scholar 

  134. Hou, Y. et al. Neuropeptide signalling orchestrates T cell differentiation. Nature 635, 444–452 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hanc, P. et al. Multimodal control of dendritic cell functions by nociceptors. Science 379, eabm5658 (2023). This work reports direct electrical coupling, CCL2 and CGRP signalling as three distinct ways by which nociceptors regulate dendritic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wulfing, C. & Gunther, H. S. Dendritic cells and macrophages neurally hard-wired in the lymph node. Sci. Rep. 5, 16866 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017). This study identifies cardiac macrophages as key players in maintaining electrical conduction stability in the heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hulsmans, M. et al. Recruited macrophages elicit atrial fibrillation. Science 381, 231–239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Andersson, U. & Tracey, K. J. Neural reflexes in inflammation and immunity. J. Exp. Med. 209, 1057–1068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jarret, A. et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell 180, 50–63.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024). This study describes previously unexplored cell populations in the vagal complex that control the inflammatory reflex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tracey, K. J. et al. Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantly acute anorexia. J. Clin. Invest. 86, 2014–2024 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Blomqvist, A. Prostaglandin E2production by brain endothelial cells and the generation of fever. DNA Cell Biol. 42, 107–112 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Conti, B., Tabarean, I., Andrei, C. & Bartfai, T. Cytokines and fever. Front. Biosci. 9, 1433–1449 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Li, S. et al. The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2−/−, but not in cyclooxygenase-1−/− mice. Brain Res. 825, 86–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Blatteis, C. M. & Sehic, E. Cytokines and fever. Ann. N. Y. Acad. Sci. 840, 608–618 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Luan, H. H. et al. GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell 178, 1231–1244.e11 (2019). This paper shows that an immune cell product (GDF15) of inflammation signals to the area postrema in the brain and promotes sympathetic nervous system tone during sepsis, promoting cardiac function and survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008). This paper underscores the importance of the sympathetic nervous system tone in regulating circadian stem cell egress out of the bone marrow.

    Article  CAS  PubMed  Google Scholar 

  149. Farzi, A., Reichmann, F. & Holzer, P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol. 213, 603–627 (2015).

    Article  CAS  Google Scholar 

  150. Procaccini, C., Pucino, V., De Rosa, V., Marone, G. & Matarese, G. Neuro-endocrine networks controlling immune system in health and disease. Front. Immunol. 5, 143 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Couvineau, A. et al. Orexins as novel therapeutic targets in inflammatory and neurodegenerative diseases. Front. Endocrinol. 10, 709 (2019).

    Article  Google Scholar 

  152. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019). This work demonstrates how sleep modulates hypocretin production, controlling haematopoiesis and reducing cardiovascular inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sulek, K. Nobel prize for Edward Calvin Kendall, Thaddeus Reichstein and Philip Showalter Hench in 1950 for their discoveries related to adrenal cortex hormones, their structure and biological activity. Wiad. Lek. 21, 1885–1887 (1968).

    CAS  PubMed  Google Scholar 

  154. Buttgereit, F. & Scheffold, A. Rapid glucocorticoid effects on immune cells. Steroids 67, 529–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell Endocrinol. 335, 2–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Aguilera, G. & Liu, Y. The molecular physiology of CRH neurons. Front. Neuroendocrinol. 33, 67–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Berson, S. A. & Yalow, R. S. Radioimmunoassay of ACTH in plasma. J. Clin. Invest. 47, 2725–2751 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sheng, J. A. et al. The hypothalamic–pituitary–adrenal axis: development, programming actions of hormones, and maternal-fetal interactions. Front. Behav. Neurosci. 14, 601939 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Janssen, H., Koekkoek, L. L. & Swirski, F. K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat. Rev. Cardiol. 21, 157–169 (2024).

    Article  PubMed  Google Scholar 

  161. Chrousos, G. P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Dimsdale, J. E. & Moss, J. Plasma catecholamines in stress and exercise. JAMA 243, 340–342 (1980).

    Article  CAS  PubMed  Google Scholar 

  163. Nicholls, A. J., Wen, S. W., Hall, P., Hickey, M. J. & Wong, C. H. Y. Activation of the sympathetic nervous system modulates neutrophil function. J. Leukoc. Biol. 103, 295–309 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Ao, T. et al. Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation. Int. Immunol. 32, 727–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, S. et al. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation. Blood 127, 1024–1035 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Fu, W., Meng, G., Yang, X., Yu, L. & Jiang, H. Bone marrow sympathetic activation regulates post-myocardial infarction megakaryocyte expansion but not platelet production. Biochem. Biophys. Res. Commun. 513, 99–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Butterworth, M., McClellan, B. & Allansmith, M. Influence of sex in immunoglobulin levels. Nature 214, 1224–1225 (1967).

    Article  CAS  PubMed  Google Scholar 

  168. Forsyth, K. S., Jiwrajka, N., Lovell, C. D., Toothacre, N. E. & Anguera, M. C. The conneXion between sex and immune responses. Nat. Rev. Immunol. 24, 487–502 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Borba, V. V., Zandman-Goddard, G. & Shoenfeld, Y. Prolactin and autoimmunity. Front. Immunol. 9, 73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 35, 347–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Taneja, V. Sex hormones determine immune response. Front. Immunol. 9, 1931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wenzek, C. et al. The interplay of thyroid hormones and the immune system — where we stand and why we need to know about it. Eur. J. Endocrinol. 186, R65–R77 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Palin, K. et al. Interleukin-6 activates arginine vasopressin neurons in the supraoptic nucleus during immune challenge in rats. Am. J. Physiol. Endocrinol. Metab. 296, E1289–E1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Froemke, R. C. & Young, L. J. Oxytocin, neural plasticity, and social behavior. Annu. Rev. Neurosci. 44, 359–381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Boyd, J. H., Holmes, C. L., Wang, Y., Roberts, H. & Walley, K. R. Vasopressin decreases sepsis-induced pulmonary inflammation through the V2R. Resuscitation 79, 325–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Jankowski, M. et al. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res. Cardiol. 105, 205–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Oliveira-Pelegrin, G. R., Saia, R. S., Carnio, E. C. & Rocha, M. J. Oxytocin affects nitric oxide and cytokine production by sepsis-sensitized macrophages. Neuroimmunomodulation 20, 65–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Mehdi, S. F. et al. Oxytocin and related peptide hormones: candidate anti-inflammatory therapy in early stages of sepsis. Front. Immunol. 13, 864007 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Poutahidis, T. et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS ONE 8, e78898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bai, H. et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat. Commun. 13, 1928 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yuan, J. & Ofengeim, D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 25, 379–395 (2024).

    Article  CAS  PubMed  Google Scholar 

  184. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Moreau, H. D., Piel, M., Voituriez, R. & Lennon-Dumenil, A. M. Integrating physical and molecular insights on immune cell migration. Trends Immunol. 39, 632–643 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, S. et al. Macrophages in immunoregulation and therapeutics. Signal. Transduct. Target. Ther. 8, 207 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Lam, N., Lee, Y. & Farber, D. L. A guide to adaptive immune memory. Nat. Rev. Immunol. 24, 810–829 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Paludan, S. R., Pradeu, T., Masters, S. L. & Mogensen, T. H. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat. Rev. Immunol. 21, 137–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Vivier, E. & Malissen, B. Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Immunol. 6, 17–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Maryanovich, M., Takeishi, S. & Frenette, P. S. Neural regulation of bone and bone marrow. Cold Spring Harb. Perspect. Med. 8, 2971–2973 (2018).

    Article  Google Scholar 

  193. Ryu, V. et al. An atlas of brain–bone sympathetic neural circuits in mice. eLife 13, e95727 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Garcia-Garcia, A. et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 133, 224–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gerhardt, T., Huynh, P. & McAlpine, C. S. Neuroimmune circuits in the plaque and bone marrow regulate atherosclerosis. Cardiovasc. Res. 120, 2395–2407 (2024).

    Article  Google Scholar 

  199. Gao, X. et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591–596 (2021). This work highlights the role of nociceptive nerves in regulating haematopoietic stem cell egress from the bone marrow.

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020). This study reveals that tonic activation of brain stress centers can enhance antibody affinity following immunization.

    Article  CAS  PubMed  Google Scholar 

  201. De Virgiliis, F., Oliva, V. M., Kizil, B. & Scheiermann, C. Control of lymph node activity by direct local innervation. Trends Neurosci. 45, 704–712 (2022).

    Article  PubMed  Google Scholar 

  202. Pender, M. P. & Rist, M. J. Apoptosis of inflammatory cells in immune control of the nervous system: role of glia. Glia 36, 137–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Yshii, L., Gebauer, C., Bernard-Valnet, R. & Liblau, R. Neurons and T cells: understanding this interaction for inflammatory neurological diseases. Eur. J. Immunol. 45, 2712–2720 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Flugel, A. et al. Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol. 10, 353–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Wagner, J. U. G. et al. Aging impairs the neurovascular interface in the heart. Science 381, 897–906 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Simats, A., Sager, H. B. & Liesz, A. Heart–brain axis in health and disease: role of innate and adaptive immunity. Cardiovasc. Res. 120, 2325–2335 (2025).

    Article  PubMed  Google Scholar 

  207. Akinyemi, D. E., Chevre, R. & Soehnlein, O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol. 45, 597–608 (2024).

    Article  CAS  PubMed  Google Scholar 

  208. Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012). This paper demonstrates how adrenergic nerves control circadian oscillatory leukocyte trafficking into lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Druzd, D. et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Dhabhar, F. S., Malarkey, W. B., Neri, E. & McEwen, B. S. Stress-induced redistribution of immune cells — from barracks to boulevards to battlefields: a tale of three hormones–Curt Richter Award winner. Psychoneuroendocrinology 37, 1345–1368 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Shi, D.-D. et al. Stress-induced red nucleus attenuation induces anxiety-like behavior and lymph node CCL5 secretion. Nat. Commun. 14, 6923 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114.e17 (2019). This study links dietary intake to changes in the inflammatory monocyte pool and systemic immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cavalcanti de Albuquerque, J. P. et al. Brain sensing of metabolic state regulates circulating monocytes. Sci. Immunol. 10, eadr3226 (2025).

    Article  CAS  PubMed  Google Scholar 

  217. Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

    Article  CAS  PubMed  Google Scholar 

  218. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019). This paper illustrates how there are different subpopulations of tissue resident macrophages in tissues that are in close proximity to nerves, suggesting an important role for tissue nerve homeostasis.

    Article  CAS  PubMed  Google Scholar 

  219. Fonseca, R. C. et al. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain Behav. Immun. 81, 444–454 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hu, D. et al. Distribution of nerve fibers and nerve-immune cell association in mouse spleen revealed by immunofluorescent staining. Sci. Rep. 10, 9850 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Iwai, H. et al. Tissue-resident M2 macrophages directly contact primary sensory neurons in the sensory ganglia after nerve injury. J. Neuroinflammation 18, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kolter, J. et al. A subset of skin macrophages contributes to the surveillance and regeneration of local nerves. Immunity 50, 1482–1497.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Xue, Y. et al. The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunol. 11, 1496–1511 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mallesh, S. et al. Sympathetic denervation alters the inflammatory response of resident muscularis macrophages upon surgical trauma and ameliorates postoperative ileus in mice. Int. J. Mol. Sci. 22, 6872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Russo, S. et al. Stress-activated brain–gut circuits disrupt intestinal barrier integrity and social behaviour. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3459170/v1 (2023).

  227. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022). This paper describes how a brain–body circuit of sensory afferent TRPV neurons and sympathetic efferent neurons senses and modulates leukocyte distribution and function in the adventitia of large vessels during atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  228. Mohanta, S. K., Yin, C., Weber, C. & Habenicht, A. J. R. Neuroimmune cardiovascular interfaces in atherosclerosis. Front. Cell Dev. Biol. 11, 1117368 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Kim, J. & Padanilam, B. J. Renal denervation prevents long-term sequelae of ischemic renal injury. Kidney Int. 87, 350–358 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Richards, A. M., Floyd, D. C., Terenghi, G. & McGrouther, D. A. Cellular changes in denervated tissue during wound healing in a rat model. Br. J. Dermatol. 140, 1093–1099 (1999).

    Article  CAS  PubMed  Google Scholar 

  231. Xiao, L. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117, 547–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Huerta, T. S. et al. Neural representation of cytokines by vagal sensory neurons. Nat. Commun. 16, 3840 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Florsheim, E. B. et al. Immune sensing of food allergens promotes avoidance behaviour. Nature 620, 643–650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Perrotta, S. et al. A heart–brain–spleen axis controls cardiac remodeling to hypertensive stress. Immunity 58, 648–665.e7 (2025).

    Article  CAS  PubMed  Google Scholar 

  235. Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat. Commun. 9, 2723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Carnevale, D. et al. The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension. Immunity 41, 737–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  238. Carnevale, D. et al. A cholinergic–sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat. Commun. 7, 13035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Merlo, S. A., Belluscio, M. A., Pedreira, M. E. & Merlo, E. Memory persistence: from fundamental mechanisms to translational opportunities. Transl. Psychiatry 14, 98 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Koren, T. et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 184, 5902–5915.e17 (2021). This paper suggests that the brain has the capacity to store immune challenges as memories and that this has an impact on disease.

    Article  CAS  PubMed  Google Scholar 

  243. Rolls, A. Immunoception: the insular cortex perspective. Cell Mol. Immunol. 20, 1270–1276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Simats, A. et al. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell 187, 4637–4655.e26 (2024).

    Article  CAS  PubMed  Google Scholar 

  246. Sammons, M. et al. Brain-body physiology: local, reflex, and central communication. Cell 187, 5877–5890 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Rae-Grant, A. et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology 90, 777–788 (2018).

    Article  PubMed  Google Scholar 

  248. Peterson, D. et al. Clinical safety and feasibility of a novel implantable neuroimmune modulation device for the treatment of rheumatoid arthritis: initial results from the randomized, double-blind, sham-controlled RESET-RA study. Bioelectron. Med. 10, 8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Samuel, C., Cornman, H., Kambala, A. & Kwatra, S. G. A review on the safety of using JAK inhibitors in dermatology: clinical and laboratory monitoring. Dermatol. Ther. 13, 729–749 (2023).

    Article  Google Scholar 

  250. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. Wheeler, M. A. & Quintana, F. J. The neuroimmune connectome in health and disease. Nature 638, 333–342 (2025).

    Article  CAS  PubMed  Google Scholar 

  252. Kioussis, D. & Pachnis, V. Immune and nervous systems: more than just a superficial similarity? Immunity 31, 705–710 (2009).

    Article  CAS  PubMed  Google Scholar 

  253. Toni, R. The neuroendocrine system: organization and homeostatic role. J. Endocrinol. Invest. 27, 35–47 (2004).

    CAS  PubMed  Google Scholar 

  254. Chapman, C. R., Tuckett, R. P. & Song, C. W. Pain and stress in a systems perspective: reciprocal neural, endocrine, and immune interactions. J. Pain 9, 122–145 (2008).

    Article  PubMed  Google Scholar 

  255. Byron, N. & Sakata, S. Fiber photometry-based investigation of brain function and dysfunction. Neurophotonics 11, S11502 (2024).

    CAS  PubMed  Google Scholar 

  256. Zong, W. et al. Large-scale two-photon calcium imaging in freely moving mice. Cell 185, 1240–1256.e30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Russell, D. M., McCormick, D., Taberner, A. J., Malpas, S. C. & Budgett, D. M. A high bandwidth fully implantable mouse telemetry system for chronic ECG measurement. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 7666–7669 (2011).

    PubMed  Google Scholar 

  258. Berul, C. I., Aronovitz, M. J., Wang, P. J. & Mendelsohn, M. E. In vivo cardiac electrophysiology studies in the mouse. Circulation 94, 2641–2648 (1996).

    Article  CAS  PubMed  Google Scholar 

  259. DeNardo, L. A. et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Saleeba, C., Dempsey, B., Le, S., Goodchild, A. & McMullan, S. A student’s guide to neural circuit tracing. Front. Neurosci. 13, 897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Engel, E. A., Card, J. P. & Enquist, L. W. Transneuronal circuit analysis with pseudorabies viruses. Curr. Protoc. 3, e841 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Pomeranz, L. E., Reynolds, A. E. & Hengartner, C. J. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. 69, 462–500 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Wojaczynski, G. J., Engel, E. A., Steren, K. E., Enquist, L. W. & Patrick Card, J. The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties. Brain Struct. Funct. 220, 1395–1420 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61–79 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Winer, M. M. et al. In vivo noninvasive microscopy of human leucocytes. Sci. Rep. 7, 13031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  270. Ben-Shaanan, T., Schiller, M. & Rolls, A. Studying brain-regulation of immunity with optogenetics and chemogenetics; a new experimental platform. Brain Behav. Immun. 65, 1–8 (2017).

    Article  CAS  PubMed  Google Scholar 

  271. Kalogriopoulos, N. A. et al. Synthetic GPCRs for programmable sensing and control of cell behaviour. Nature 637, 230–239 (2025).

    Article  CAS  PubMed  Google Scholar 

  272. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  273. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).

    Article  PubMed  Google Scholar 

  275. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Yan, Y. et al. Macrophages excite muscle spindles with glutamate to bolster locomotion. Nature 637, 698–707 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Granton, E. et al. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 187, 1874–1888.e14 (2024).

    Article  CAS  PubMed  Google Scholar 

  279. Wang, A. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Raison, C. L. & Miller, A. H. The evolutionary significance of depression in pathogen host defense (PATHOS-D). Mol. Psychiatry 18, 15–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  281. Zhu, X. A. et al. A neuroimmune circuit mediates cancer cachexia-associated apathy. Science 388, eadm8857 (2025).

    Article  CAS  PubMed  Google Scholar 

  282. O’Sullivan, D. et al. Fever supports CD8+ effector T cell responses by promoting mitochondrial translation. Proc. Natl Acad. Sci. USA 118, e2023752118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Eisenberger, N. I. et al. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol. Psychiatry 68, 748–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Maier, S. F. & Watkins, L. R. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol. Rev. 105, 83–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  285. Miller, A. H., Haroon, E., Raison, C. L. & Felger, J. C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress. Anxiety 30, 297–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  286. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Imeri, L. & Opp, M. R. How (and why) the immune system makes us sleep. Nat. Rev. Neurosci. 10, 199–210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Ilanges, A. et al. Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour. Nature 609, 761–771 (2022). This work reveals the role of ADCYAP1+ neurons in orchestrating sickness behaviour during systemic inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Osterhout, J. A. et al. A preoptic neuronal population controls fever and appetite during sickness. Nature 606, 937–944 (2022). This study identifies the preoptic nucleus of the hypothalamus as a master regulator of fever and appetite during illness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Bin, N. R. et al. An airway-to-brain sensory pathway mediates influenza-induced sickness. Nature 615, 660–667 (2023). This paper describes a neural population of sensory neurons in the upper airways controlling sickness behaviour related to viral infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Boyle, C. C. et al. Inflammation and dimensions of reward processing following exposure to the influenza vaccine. Psychoneuroendocrinology 102, 16–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  292. Jolink, T. A. et al. Inflammatory reactivity to the influenza vaccine is associated with changes in automatic social behavior. Brain Behav. Immun. 99, 339–349 (2022).

    Article  CAS  PubMed  Google Scholar 

  293. Lasselin, J. Back to the future of psychoneuroimmunology: studying inflammation-induced sickness behavior. Brain Behav. Immun. Health 18, 100379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Lindsay, E. K. Small “doses” of inflammation initiate social sickness behavior. Brain Behav. Immun. 102, 40–41 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.L. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) no. 559481340. F.K.S. is funded by NHBLI grants P01 HL131478 and 1P01 HL142494. The authors wish to thank all members of the Swirski Lab who provided valuable input during discussions about this review. The authors thank K. Joyes for editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Alexander Leunig or Filip K. Swirski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks A. Rolls, C. Scheiermann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Atrioventricular node

A collection of cardiomyocytes that electrically connects the heart’s atria and ventricles to coordinate heart beating.

Blalock’s ‘sixth sense’

The concept that the immune system acts like a sensory organ — detecting pathogens and inflammation — and communicates this information to the nervous system via shared signalling molecules.

Blood–brain barrier

The blood–brain barrier (BBB) comprises multiple protective layers including endothelial cells and astrocytes, which play critical roles in regulating permeability and trafficking of cells and molecule between the blood and central nervous system.

Choline acetyltransferase

An enzyme responsible for the synthesis of the neurotransmitter acetylcholine.

Emergency haematopoiesis

A complex state of haematopoiesis consisting of a general expansion of haematopoietic stem and progenitor cells and a shift towards the myeloid lineage common to many inflammatory states.

Exaptatic adaptations

Evolutionary repurposing of existing biological traits for new functions, such as immune molecules co-opted from developmental or metabolic pathways to serve host defence roles.

Glymphatic system

A newly defined brain clearance pathway that is thought to remove waste and deliver nutrients to the brain.

Inflammatory reflex

A neural feedback circuit, mediated by the vagus nerve, that detects and downregulates inflammation.

Neuroimmune cell units

Anatomically distinct micro domains where immune cells and neurons interact to regulate normal the local tissue environment.

Nucleus accumbens

A portion of the ventral striatum that receives dopamine innervation to coordinate responses to rewarding and aversive stimuli.

Nucleus ambiguus

One of the two motor nuclei of the vagus nerve, projecting to internal organs like the heart and the lung.

Paraventricular nucleus of the hypothalamus

Hypothalamic region that integrates neuroendocrine, autonomic and behavioural responses to stress, infection and inflammation by regulating the HPA axis and sympathetic tone.

Red nucleus

A structure in the rostral midbrain involved in motor coordination.

Suprachiasmatic nucleus

(SCN). A small region of the brain in the hypothalamus that is responsible for coordinating circadian rhythms. It receives light inputs from the retina, as well as inputs from other brain regions.

Thalamus

A brain region that serves as a relay station to integrate sensory/motor information between the cortex and brainstem.

Trained immunity

The long-term functional reprogramming of innate immune cells and bone marrow progenitors, which is evoked by exogenous or endogenous insults. It leads to an altered innate immune cell response towards a second challenge after the cell has returned to a non-activated state.

Vagus nerve

The tenth cranial nerve, one of the major components of the parasympathetic nervous system, which regulates organ functions in the head, thoracic and abdominal cavity, and mediates communication between the brain and immune system, including the inflammatory reflex.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leunig, A., Gianeselli, M., Russo, S.J. et al. Connection and communication between the nervous and immune systems. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01199-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01199-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing