Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune-related actinopathies at the cross-road of immunodeficiency, autoimmunity and autoinflammation

Abstract

Actin cytoskeleton remodelling drives the migration of immune cells and their engagement in dynamic cell–cell contacts. The importance of actin cytoskeleton dynamics in immune cell function is highlighted by the discovery of inborn errors of immunity (IEIs) that are caused by defects in individual actin-regulatory proteins, resulting in immune-related actinopathies. In addition to susceptibility to infection, these often present with a vast array of autoimmune and autoinflammatory manifestations. Here, we review the role of actin subnetworks in the activation and function of lymphoid and myeloid cells. We focus on the mechanisms by which actin defects result in aberrant lymphocyte function, including dysregulation of T cell- and B cell-mediated tolerance and biased cytokine production, which can result in autoimmunity. We also highlight the relationship between actin defects and inflammasome activation and other pathomechanisms in myeloid cells as the underlying cause of autoinflammation. Finally, we discuss future avenues for research and therapeutic intervention based on a molecular understanding of immune-related actinopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multistage alterations of T cell and B cell development and homeostasis in immune-related actinopathies.
Fig. 2: Aberrant innate immune responses leading to autoinflammation in immune-related actinopathies.
Fig. 3: Towards an understanding of the multilayered origin of immune dysregulation in immune-related actinopathies.
Fig. 4: Clinical manifestations and cellular defects in WASP, HEM1 and DOCK11 deficiencies.

Similar content being viewed by others

References

  1. Pollard, T. D. Actin and actin-binding proteins. Cold Spring Harb Perspect Biol 8, a018226 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. El Masri, R. & Delon, J. RHO GTPases: from new partners to complex immune syndromes. Nat. Rev. Immunol. 21, 499–513 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Kamnev, A., Lacouture, C., Fusaro, M. & Dupre, L. Molecular tuning of actin dynamics in leukocyte migration as revealed by immune-related actinopathies. Front. Immunol. 12, 750537 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dupre, L., Boztug, K. & Pfajfer, L. Actin dynamics at the T cell synapse as revealed by immune-related actinopathies. Front. Cell Dev. Biol. 9, 665519 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dupre, L. & Prunier, G. Deciphering actin remodelling in immune cells through the prism of actin-related inborn errors of immunity. Eur. J. Cell Biol. 102, 151283 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y., Bhanja, A., Upadhyaya, A., Zhao, X. & Song, W. WASp is crucial for the unique architecture of the immunological synapse in germinal center B-cells. Front. Cell Dev. Biol. 9, 646077 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Papa, R., Penco, F., Volpi, S. & Gattorno, M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front. Immunol. 11, 604206 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Record, J., Saeed, M. B., Venit, T., Percipalle, P. & Westerberg, L. S. Journey to the center of the cell: cytoplasmic and nuclear actin in immune cell functions. Front. Cell Dev. Biol. 9, 682294 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yuseff, M. I., Lankar, D. & Lennon-Dumenil, A. M. Dynamics of membrane trafficking downstream of B and T cell receptor engagement: impact on immune synapses. Traffic 10, 629–636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ashby, K. M. & Hogquist, K. A. A guide to thymic selection of T cells. Nat. Rev. Immunol. 24, 103–117 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Lancaster, J. N., Li, Y. & Ehrlich, L. I. R. Chemokine-mediated choreography of thymocyte development and selection. Trends Immunol. 39, 86–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Allam, A. H., Charnley, M., Pham, K. & Russell, S. M. Developing T cells form an immunological synapse for passage through the β-selection checkpoint. J. Cell Biol. 220, e201908108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wada, T., Schurman, S. H., Garabedian, E. K., Yachie, A. & Candotti, F. Analysis of T-cell repertoire diversity in Wiskott–Aldrich syndrome. Blood 106, 3895–3897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pille, M. et al. The Wiskott–Aldrich syndrome protein is required for positive selection during T-cell lineage differentiation. Front. Immunol. 14, 1188099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cotta-de-Almeida, V. et al. Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc. Natl Acad. Sci. USA 104, 15424–15429 (2007). This study characterizes the critical function of WASP for peripheral T cell function and for T cell development, the latter in conjunction with N-WASP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiow, L. R. et al. The actin regulator Coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat. Immunol. 9, 1307–1315 (2008). This study reports the first case of CORO1A deficiency and establishes a key role of CORO1A in driving T cell egress from the thymus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dobbs, K. et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N. Engl. J. Med. 372, 2409–2422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nehme, N. T. et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 119, 3458–3468 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Lagresle-Peyrou, C. et al. X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. J. Allergy Clin. Immunol. 138, 1681–1689.e8 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Pala, F., Notarangelo, L. D. & Bosticardo, M. Rediscovering the human thymus through cutting-edge technologies. J. Exp. Med. 221, e20230892 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liston, A., Enders, A. & Siggs, O. M. Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nat. Rev. Immunol. 8, 545–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka, A. et al. Construction of a T cell receptor signaling range for spontaneous development of autoimmune disease. J. Exp. Med. 220, e20220386 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Adriani, M. et al. Impaired in vitro regulatory T cell function associated with Wiskott–Aldrich syndrome. Clin. Immunol. 124, 41–48 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maillard, M. H. et al. The Wiskott–Aldrich syndrome protein is required for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Exp. Med. 204, 381–391 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marangoni, F. et al. WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. J. Exp. Med. 204, 369–380 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Humblet-Baron, S. et al. Wiskott–Aldrich syndrome protein is required for regulatory T cell homeostasis. J. Clin. Invest. 117, 407–418 (2007). Together with Adriani et al. (2007), Maillard et al. (2007) and Marangoni et al. (2007), this work reports the in vitro and in vivo defects of regulatory T cells in the context of WASP deficiency in patients and Was−/− mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vasconcelos-Fontes, L. et al. Controlled WASp activity regulates the proliferative response for Treg cell differentiation in the thymus. Eur. J. Immunol. 54, e2350450 (2024).

    Article  PubMed  Google Scholar 

  32. Lexmond, W. S. et al. FOXP3+ Tregs require WASP to restrain TH2-mediated food allergy. J. Clin. Invest. 126, 4030–4044 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Block, J. et al. Systemic inflammation and normocytic anemia in DOCK11 deficiency. N. Engl. J. Med. 389, 527–539 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Boussard, C. et al. DOCK11 deficiency in patients with X-linked actinopathy and autoimmunity. Blood 141, 2713–2726 (2023). Together with Block et al. (2023), this work describes the first cases of DOCK11 deficiency in humans, highlighting multiple cellular defects as underlying mechanisms for systemic inflammation and autoimmunity in this disease entity.

    CAS  PubMed  Google Scholar 

  35. Janssen, E. et al. Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells. J. Allergy Clin. Immunol. 134, 1365–1374 (2014). This study identifies defects in peripheral B cell tolerance and in Treg cell function as underlying mechanisms for the development of autoimmune manifestations in patients with DOCK8 deficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dustin, M. L., Chakraborty, A. K. & Shaw, A. S. Understanding the structure and function of the immunological synapse. Cold Spring Harb. Perspect. Biol. 2, a002311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blumenthal, D. & Burkhardt, J. K. Multiple actin networks coordinate mechanotransduction at the immunological synapse. J. Cell Biol. 219, e201911058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sims, T. N. et al. Opposing effects of PKCθ and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129, 773–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Calvez, R. et al. The Wiskott–Aldrich syndrome protein permits assembly of a focused immunological synapse enabling sustained T-cell receptor signaling. Haematologica 96, 1415–1423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trifari, S. et al. Defective TH1 cytokine gene transcription in CD4+ and CD8+ T cells from Wiskott–Aldrich syndrome patients. J. Immunol. 177, 7451–7461 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Sadhukhan, S., Sarkar, K., Taylor, M., Candotti, F. & Vyas, Y. M. Nuclear role of WASp in gene transcription is uncoupled from its ARP2/3-dependent cytoplasmic role in actin polymerization. J. Immunol. 193, 150–160 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen, D. D. et al. Lymphocyte-dependent and TH2 cytokine-associated colitis in mice deficient in Wiskott–Aldrich syndrome protein. Gastroenterology 133, 1188–1197 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Beck, L. A. et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 371, 130–139 (2014).

    Article  PubMed  Google Scholar 

  44. Alzahrani, F., Miller, H. K., Sacco, K. & Dupuy, E. Severe eczema in Wiskott–Aldrich syndrome-related disorder successfully treated with dupilumab. Pediatr. Dermatol. 41, 143–144 (2024).

    Article  PubMed  Google Scholar 

  45. Castro, C. N. et al. NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J. Exp. Med. 217, e20192275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cook, S. A. et al. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 369, 202–207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salzer, E. et al. The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity. Sci. Immunol. 5, eabc3979 (2020). Together with Cook et al. (2020), this work identifies HEM1 deficiency underlying a previously unknown immune-related actinopathy, revealing the key role of this WAVE complex subunit in tuning T cell and B cell function. This work identifies the pathomechanism of humoral autoimmunity in HEM1 deficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rottner, K., Stradal, T. E. B. & Chen, B. WAVE regulatory complex. Curr. Biol. 31, R512–R517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, M. et al. WAVE2 suppresses mTOR activation to maintain T cell homeostasis and prevent autoimmunity. Science 371, eaaz4544 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Kadzik, R. S., Homa, K. E. & Kovar, D. R. F-actin cytoskeleton network self-organization through competition and cooperation. Annu. Rev. Cell Dev. Biol. 36, 35–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mills, K. H. G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 23, 38–54 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Kaminski, S. et al. Coronin 1A is an essential regulator of the TGFβ receptor/SMAD3 signaling pathway in TH17 CD4+ T cells. J. Autoimmun. 37, 198–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Park, H. et al. A point mutation in the murine Hem1 gene reveals an essential role for hematopoietic protein 1 in lymphopoiesis and innate immunity. J. Exp. Med. 205, 2899–2913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liblau, R. S., Wong, F. S., Mars, L. T. & Santamaria, P. Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity 17, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Collier, J. L., Weiss, S. A., Pauken, K. E., Sen, D. R. & Sharpe, A. H. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat. Immunol. 22, 809–819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Meester, J., Calvez, R., Valitutti, S. & Dupre, L. The Wiskott–Aldrich syndrome protein regulates CTL cytotoxicity and is required for efficient killing of B cell lymphoma targets. J. Leukoc. Biol. 88, 1031–1040 (2010).

    Article  PubMed  Google Scholar 

  57. Houmadi, R. et al. The Wiskott–Aldrich syndrome protein contributes to the assembly of the LFA-1 nanocluster belt at the lytic synapse. Cell Rep. 22, 979–991 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Brown, A. C. et al. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol. 9, e1001152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carisey, A. F., Mace, E. M., Saeed, M. B., Davis, D. M. & Orange, J. S. Nanoscale dynamism of actin enables secretory function in cytolytic cells. Curr. Biol. 28, 489–502.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rak, G. D., Mace, E. M., Banerjee, P. P., Svitkina, T. & Orange, J. S. Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol. 9, e1001151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ritter, A. T. et al. Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity 42, 864–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Irmler, M. et al. Granzyme A is an interleukin 1β-converting enzyme. J. Exp. Med. 181, 1917–1922 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Ronday, H. K. et al. Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatology 40, 55–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Meffre, E. & O’Connor, K. C. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol. Rev. 292, 90–101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, J. et al. The coordination between B cell receptor signaling and the actin cytoskeleton during B cell activation. Front. Immunol. 9, 3096 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Golding, B., Muchmore, A. V. & Blaese, R. M. Newborn and Wiskott–Aldrich patient B cells can be activated by TNP-Brucella abortus: evidence that TNP-Brucella abortus behaves as a T-independent type 1 antigen in humans. J. Immunol. 133, 2966–2971 (1984).

    Article  CAS  PubMed  Google Scholar 

  67. Ochs, H. D. & Thrasher, A. J. The Wiskott–Aldrich syndrome. J. Allergy Clin. Immunol. 117, 725–738; quiz 739 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Castiello, M. C. et al. Wiskott–Aldrich syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans. J. Autoimmun. 50, 42–50 (2014). This study analyses B cell homeostasis in individuals with WAS and reports a series of differentiation and functional defects accounting for the high propensity of patients with WAS to develop autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou, Y. et al. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J. Transl. Med. 18, 131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kolhatkar, N. S. et al. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott–Aldrich syndrome. J. Exp. Med. 212, 1663–1677 (2015). By applying BCR sequencing, this study reveals an aberrant accumulation of self-reactive B cells at the transitional to naive mature B cell stage in individuals with WAS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Facchetti, F. et al. Defective actin polymerization in EBV-transformed B-cell lines from patients with the Wiskott–Aldrich syndrome. J. Pathol. 185, 99–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Westerberg, L. et al. Wiskott–Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response. Blood 105, 1144–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Matsuda, T., Yanase, S., Takaoka, A. & Maruyama, M. The immunosenescence-related gene Zizimin2 is associated with early bone marrow B cell development and marginal zone B cell formation. Immun. Ageing 12, 1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sugiyama, Y. et al. The immunosenescence-related factor DOCK11 is involved in secondary immune responses of B cells. Immun. Ageing 19, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Simon, Q. et al. In-depth characterization of CD24highCD38high transitional human B cells reveals different regulatory profiles. J. Allergy Clin. Immunol. 137, 1577–1584.e10 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Jing, Y. et al. Dedicator of cytokinesis protein 2 couples with lymphoid enhancer-binding factor 1 to regulate expression of CD21 and B-cell differentiation. J. Allergy Clin. Immunol. 144, 1377–1390.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Gu, H. et al. DOCK8 gene mutation alters cell subsets, BCR signaling, and cell metabolism in B cells. Cell Death Dis. 15, 871 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. aan de Kerk, D. J. et al. Aberrant humoral immune reactivity in DOCK8 deficiency with follicular hyperplasia and nodal plasmacytosis. Clin. Immunol. 149, 25–31 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Avalos, A. et al. Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell-specific manner. JCI Insight 7, e153597 (2022). This study establishes a conditional deletion of HEM1 in B cells to identify B cell intrinsic defects in differentiation, migration and function, in line with the initial notion of B cell-driven autoimmunity in human HEM1 deficiency identified by Salzer et al. (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Becker-Herman, S. et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J. Exp. Med. 208, 2033–2042 (2011). This study exploits chimeric mice to unveil the B cell intrinsic role of WASP, thereby characterizing aberrant germinal centre formation, production of autoantibody and severe renal pathology as resulting from WASP deficiency in the B cell compartment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Recher, M. et al. B cell-intrinsic deficiency of the Wiskott–Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood 119, 2819–2828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Descatoire, M. et al. Critical role of WASp in germinal center tolerance through regulation of B cell apoptosis and diversification. Cell Rep. 38, 110474 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Gourlay, C. W. & Ayscough, K. R. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat. Rev. Mol. Cell Biol. 6, 583–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, S. T., Oliveira, T. Y., Gazumyan, A., Cipolla, M. & Nussenzweig, M. C. B cell receptor signaling in germinal centers prolongs survival and primes B cells for selection. Immunity 56, 547–561.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nowosad, C. R., Spillane, K. M. & Tolar, P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17, 870–877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leung, G. et al. ARPC1B binds WASP to control actin polymerization and curtail tonic signaling in B cells. JCI Insight 6, e149376 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nishikimi, A. et al. Zizimin2: a novel, DOCK180-related Cdc42 guanine nucleotide exchange factor expressed predominantly in lymphocytes. FEBS Lett. 579, 1039–1046 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Sakamoto, A. & Maruyama, M. Contribution of DOCK11 to the expansion of antigen-specific populations among germinal center B cells. Immunohorizons 4, 520–529 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Palm, A. E. & Kleinau, S. Marginal zone B cells: from housekeeping function to autoimmunity? J. Autoimmun. 119, 102627 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Meyer-Bahlburg, A. et al. Wiskott–Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis. Blood 112, 4158–4169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bouma, G. et al. Exacerbated experimental arthritis in Wiskott–Aldrich syndrome protein deficiency: modulatory role of regulatory B cells. Eur. J. Immunol. 44, 2692–2702 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Appelgren, D., Eriksson, P., Ernerudh, J. & Segelmark, M. Marginal-zone B-cells are main producers of IgM in humans, and are reduced in patients with autoimmune vasculitis. Front. Immunol. 9, 2242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Keller, B. & Warnatz, K. T-bethighCD21low B cells: the need to unify our understanding of a distinct B cell population in health and disease. Curr. Opin. Immunol. 82, 102300 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Gjertsson, I. et al. A close-up on the expanding landscape of CD21-/low B cells in humans. Clin. Exp. Immunol. 210, 217–229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Isnardi, I. et al. Complement receptor 2/CD21 human naive B cells contain mostly autoreactive unresponsive clones. Blood 115, 5026–5036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Prodeus, A. P. et al. A critical role for complement in maintenance of self-tolerance. Immunity 9, 721–731 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Moisini, I. & Davidson, A. BAFF: a local and systemic target in autoimmune diseases. Clin. Exp. Immunol. 158, 155–163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cancro, M. P. Signalling crosstalk in B cells: managing worth and need. Nat. Rev. Immunol. 9, 657–661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bouafia, A. et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J. Clin. Invest. 129, 1047–1060 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lanzavecchia, A. & Sallusto, F. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr. Opin. Immunol. 13, 291–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Zenewicz, L. A., Abraham, C., Flavell, R. A. & Cho, J. H. Unraveling the genetics of autoimmunity. Cell 140, 791–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. West, M. A. et al. Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  105. Benvenuti, F. et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305, 1150–1153 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Bouma, G., Burns, S. & Thrasher, A. J. Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood 110, 4278–4284 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Pulecio, J. et al. Expression of Wiskott–Aldrich syndrome protein in dendritic cells regulates synapse formation and activation of naive CD8+ T cells. J. Immunol. 181, 1135–1142 (2008). Together with Bouma et al. (2007), this work highlights how WASP deficiency in DCs negatively affects the priming of T cell responses through suboptimal immunological synapse assembly.

    Article  CAS  PubMed  Google Scholar 

  108. Malinova, D. et al. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts. J. Leukoc. Biol. 99, 699–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Comrie, W. A., Li, S., Boyle, S. & Burkhardt, J. K. The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility. J. Cell Biol. 208, 457–473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bouma, G. et al. Cytoskeletal remodeling mediated by WASp in dendritic cells is necessary for normal immune synapse formation and T-cell priming. Blood 118, 2492–2501 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Baptista, M. A. et al. Deletion of Wiskott–Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat. Commun. 7, 12175 (2016). This study identifies that WASP deficiency in DCs leads to an aberrant RAC2-dependent phagosome acidity regulation leading to increased antigen cross-presentation to CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Boulter, E. et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat. Cell Biol. 12, 477–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leithner, A. et al. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nat. Cell Biol. 18, 1253–1259 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Brossard, C. et al. Multifocal structure of the T cell–dendritic cell synapse. Eur. J. Immunol. 35, 1741–1753 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Leithner, A. et al. Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse. J. Cell Biol. 220, e202006081 (2021). This work shows that WASP and the WAVE complex govern distinct actin remodelling activities at the DC synapse, which balance the stability of the contacts these cells establish with T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kramer, D. A., Piper, H. K. & Chen, B. WASP family proteins: molecular mechanisms and implications in human disease. Eur. J. Cell Biol. 101, 151244 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barnett, K. C., Li, S., Liang, K. & Ting, J. P. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186, 2288–2312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Manthiram, K., Zhou, Q., Aksentijevich, I. & Kastner, D. L. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 18, 832–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Lee, P. P. et al. Wiskott–Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells. Nat. Commun. 8, 1576 (2017). This work provides evidence that WASP controls autophagy and inflammasome, thereby explaining the propensity of WASP-deficient monocytes and DCs to overproduce inflammatory cytokines upon bacterial challenge and explaining the clinical phenotype of autoinflammation in patients with WAS.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Standing, A. S. et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J. Exp. Med. 214, 59–71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, M. L. et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J. Exp. Med. 212, 927–938 (2015). Together with Standing et al. (2017), this work highlights in mice and humans that aberrant actin aggregates associated with WDR1 deficiency trigger severe autoinflammation due to over-activation of the inflammasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kuhns, D. B. et al. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128, 2135–2143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pfajfer, L. et al. Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J. Allergy Clin. Immunol. 142, 1589–1604.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Worth, A. J. & Thrasher, A. J. Current and emerging treatment options for Wiskott–Aldrich syndrome. Expert. Rev. Clin. Immunol. 11, 1015–1032 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Moratto, D. et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott–Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980–2009: an international collaborative study. Blood 118, 1675–1684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ozsahin, H. et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott–Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Ggroup for Blood and Marrow Transplantation. Blood 111, 439–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Albert, M. H. et al. Hematopoietic stem cell transplantation for Wiskott–Aldrich syndrome: an EBMT inborn errors working party analysis. Blood 139, 2066–2079 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Mi, N. et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 17, 1112–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Dai, A., Yu, L. & Wang, H. W. WHAMM initiates autolysosome tubulation by promoting actin polymerization on autolysosomes. Nat. Commun. 10, 3699 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rivers, E., Hong, Y., Bajaj-Elliott, M., Worth, A. & Thrasher, A. J. IL-18: a potential inflammation biomarker in Wiskott–Aldrich syndrome. Eur. J. Immunol. 51, 1285–1288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moulding, D. A. et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J. Exp. Med. 204, 2213–2224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Suwankitwat, N. et al. The actin-regulatory protein Hem-1 is essential for alveolar macrophage development. J. Exp. Med. 218, e20200472 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stahnke, S. et al. Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Curr. Biol. 31, 2051–2064.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Schneider, C. et al. Migration-induced cell shattering due to DOCK8 deficiency causes a type 2-biased helper T cell response. Nat. Immunol. 21, 1528–1539 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Huang, W. et al. Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470, 414–418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 19, 177–191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sprenkeler, E. G. G., Tool, A. T. J., Henriet, S. S. V., van Bruggen, R. & Kuijpers, T. W. Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements. Blood 139, 3166–3180 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Cervantes-Luevano, K. E. et al. Neutrophils drive type I interferon production and autoantibodies in patients with Wiskott–Aldrich syndrome. J. Allergy Clin. Immunol. 142, 1605–1617.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Prete, F. et al. Wiskott–Aldrich syndrome protein-mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. J. Exp. Med. 210, 355–374 (2013). Together with Cervantes-Luevano et al. (2018), this work reveals that autoimmune manifestations in WAS might, at least in part, result from overt production of type I interferon by pDCs, which in turn is promoted by spontaneous formation of NETs by neutrophils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Devriendt, K. et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat. Genet. 27, 313–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Keszei, M. et al. Constitutive activation of WASp in X-linked neutropenia renders neutrophils hyperactive. J. Clin. Invest. 128, 4115–4131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ma, F. et al. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death. Nat. Commun. 15, 386 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wagar, L. E. et al. Modeling human adaptive immune responses with tonsil organoids. Nat. Med. 27, 125–135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Recaldin, T. et al. Human organoids with an autologous tissue-resident immune compartment. Nature 633, 165–165 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schwab, C. et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J. Allergy Clin. Immunol. 142, 1932–1946 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vallee, T. C. et al. Wiskott–Aldrich syndrome: a study of 577 patients defines the genotype as a biomarker for disease severity and survival. Blood 143, 2504–2516 (2024).

    Article  CAS  PubMed  Google Scholar 

  147. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Forlin, R., James, A. & Brodin, P. Making human immune systems more interpretable through systems immunology. Trends Immunol. 44, 577–584 (2023). This review presents a road map for the exploitation of multi-omics data as a strategy to reach more precise understanding of immune-related pathologies.

    Article  CAS  PubMed  Google Scholar 

  149. Bosticardo, M. et al. Multiomics dissection of human RAG deficiency reveals distinctive patterns of immune dysregulation but a common inflammatory signature. Sci. Immunol. 10, eadq1697 (2025). This paper represents a exemplary study in the field of IEIs, systematically integrating multi-omics data for a large cohort of patients with different mutations in the RAG1 and RAG2 genes to reach a refined molecular grouping of patients and disease subgroups.

    Article  CAS  PubMed  Google Scholar 

  150. Maassen, W. et al. Curation and expansion of the human phenotype ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching. Front. Immunol. 14, 1215869 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Haimel, M. et al. Curation and expansion of human phenotype ontology for defined groups of inborn errors of immunity. J. Allergy Clin. Immunol. 149, 369–378 (2022).

    Article  PubMed  Google Scholar 

  152. Gasteiger, L. M. et al. Supplementation of the ESID registry working definitions for the clinical diagnosis of inborn errors of immunity with encoded human phenotype ontology (HPO) terms. J. Allergy Clin. Immunol. Pract. 8, 1778 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kim, J. J., Thrasher, A. J., Jones, A. M., Davies, E. G. & Cale, C. M. Rituximab for the treatment of autoimmune cytopenias in children with immune deficiency. Br. J. Haematol. 138, 94–96 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Naviglio, S. et al. Interleukin-1 blockade in patients with Wiskott–Aldrich syndrome: a retrospective multinational case series. Blood 144, 1699–1704 (2024).

    Article  CAS  PubMed  Google Scholar 

  155. Chiang, S. C. C. et al. Screening for Wiskott–Aldrich syndrome by flow cytometry. J. Allergy Clin. Immunol. 142, 333–335.e8 (2018).

    Article  PubMed  Google Scholar 

  156. Ferrua, F. et al. Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott–Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematol. 6, e239–e253 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Magnani, A. et al. Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome. Nat. Med. 28, 71–80 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Labrosse, R. et al. Outcomes of hematopoietic stem cell gene therapy for Wiskott–Aldrich syndrome. Blood 142, 1281–1296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nunoi, H. et al. A heterozygous mutation of β-actin associated with neutrophil dysfunction and recurrent infection. Proc. Natl Acad. Sci. USA 96, 8693–8698 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Latham, S. L. et al. Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat. Commun. 9, 4250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Greve, J. N. et al. Frameshift mutation S368fs in the gene encoding cytoskeletal β-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics. Eur. J. Cell Biol. 101, 151216 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Reed, A. E. et al. β-Actin G342D as a cause of NK cell deficiency impairing lytic synapse termination. J. Immunol. 212, 962–973 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Stritt, S. et al. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 127, 2903–2914 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Mei, Y. et al. Loss of mDia1 causes neutropenia via attenuated CD11b endocytosis and increased neutrophil adhesion to the endothelium. Blood Adv. 1, 1650–1656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kaustio, M. et al. Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. J. Allergy Clin. Immunol. 148, 599–611 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Esmaeilzadeh, H. et al. Homozygous autosomal recessive DIAPH1 mutation associated with central nervous system involvement and aspergillosis: a rare case. Case Rep. Genet. 2022, 4142214 (2022).

    PubMed  PubMed Central  Google Scholar 

  167. Bhattad, S., Ramakrishna, S. H., Kumar, R., Choi, J. M. & Markle, J. G. Immune dysregulation due to bi-allelic mutation of the actin remodeling protein DIAPH1. Front. Immunol. 15, 1406781 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Azizoglu, Z. B. et al. DIAPH1-deficiency is associated with major T, NK and ILC defects in humans. J. Clin. Immunol. 44, 175 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kuijpers, T. W. et al. Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol. 140, 273–277.e10 (2017).

    Article  PubMed  Google Scholar 

  170. Kahr, W. H. et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat. Commun. 8, 14816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Somech, R. et al. Disruption of thrombocyte and T lymphocyte development by a mutation in ARPC1B. J. Immunol. 199, 4036–4045 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Brigida, I. et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood 132, 2362–2374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nunes-Santos, C. J. et al. Inherited ARPC5 mutations cause an actinopathy impairing cell motility and disrupting cytokine signaling. Nat. Commun. 14, 3708 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sindram, E. et al. ARPC5 deficiency leads to severe early-onset systemic inflammation and mortality. Dis. Model. Mech. 16, dmm050145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cortesio, C. L., Wernimont, S. A., Kastner, D. L., Cooper, K. M. & Huttenlocher, A. Impaired podosome formation and invasive migration of macrophages from patients with a PSTPIP1 mutation and PAPA syndrome. Arthritis Rheum. 62, 2556–2558 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Holzinger, D. et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J. Allergy Clin. Immunol. 136, 1337–1345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Badour, K. et al. The Wiskott–Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity 18, 141–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Thrasher, A. J. & Burns, S. O. WASP: a key immunological multitasker. Nat. Rev. Immunol. 10, 182–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Westerberg, L. S. et al. Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. J. Exp. Med. 207, 1145–1152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Marx, D. et al. A gain-of-function variant in the Wiskott–Aldrich syndrome gene is associated with a MYH9-related disease-like syndrome. Blood Adv. 6, 5279–5284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lanzi, G. et al. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J. Exp. Med. 209, 29–34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pfajfer, L. et al. WIP deficiency severely affects human lymphocyte architecture during migration and synapse assembly. Blood 130, 1949–1953 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Al-Mousa, H. et al. Hematopoietic stem cell transplantation corrects WIP deficiency. J. Allergy Clin. Immunol. 139, 1039–1040.e4 (2017).

    Article  PubMed  Google Scholar 

  185. Schober, T. et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat. Commun. 8, 14209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sorte, H. S. et al. A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol. Genet. Genom. Med. 4, 604–616 (2016).

    Article  CAS  Google Scholar 

  187. Wang, Y. et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J. Exp. Med. 213, 2413–2435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Levy, R. et al. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J. Exp. Med. 220, e20220275 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Roncagalli, R. et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J. Exp. Med. 213, 2437–2457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Punwani, D. et al. Coronin-1A: immune deficiency in humans and mice. J. Clin. Immunol. 35, 100–107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jayachandran, R. et al. Disruption of coronin 1 signaling in T cells promotes allograft tolerance while maintaining anti-pathogen immun. Immunity 50, 152–165.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Mace, E. M. & Orange, J. S. Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc. Natl Acad. Sci. USA 111, 6708–6713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Moshous, D. et al. Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J. Allergy Clin. Immunol. 131, 1594–1603 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Stray-Pedersen, A. et al. Compound heterozygous CORO1A mutations in siblings with a mucocutaneous-immunodeficiency syndrome of epidermodysplasia verruciformis-HPV, molluscum contagiosum and granulomatous tuberculoid leprosy. J. Clin. Immunol. 34, 871–890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Millstead, J. et al. WD repeat domain 1 (WDR1) deficiency presenting as a cause of infantile inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 71, e113–e117 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Mahat, U. et al. Lymphocyte cytosolic protein 1 (l-plastin) I232F mutation impairs granulocytic proliferation and causes neutropenia. Blood Adv. 6, 2581–2594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hernandez, R. A. et al. l-Plastin associated syndrome of immune deficiency and hematologic cytopenia. J. Allergy Clin. Immunol. 154, 767–777 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. Garcia-Solis, B. et al. Inherited human ezrin deficiency impairs adaptive immunity. J. Allergy Clin. Immunol. 152, 997–1009.e11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Delmonte, O. M. et al. First case of X-linked moesin deficiency identified after newborn screening for SCID. J. Clin. Immunol. 37, 336–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, M., Luo, S., Zhuo, Z. & Shu, M. Two cases of pediatric primary immunodeficiency caused by a familial moesin (MSN) gene mutation. Clin. Immunol. 258, 109858 (2024).

    Article  CAS  PubMed  Google Scholar 

  201. Kovacs, A. L. et al. Hemizygous nonsense variant in the moesin gene (MSN) leads to a new autoimmune phenotype of immunodeficiency 50. Front. Immunol. 13, 919411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fang, Y., Luo, Y., Liu, Y. & Chen, J. A novel variant of X-linked moesin gene in a boy with inflammatory bowel disease like disease—a case report. Front. Genet. 13, 873635 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bradshaw, G. et al. Exome sequencing diagnoses X-linked moesin-associated immunodeficiency in a primary immunodeficiency case. Front. Immunol. 9, 420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Henrickson, S. E. et al. Hematopoietic stem cell transplant for the treatment of X-MAID. Front. Pediatr. 7, 170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Verdys, P. et al. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. EMBO J. 43, 4822–4845 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gernez, Y. et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J. Allergy Clin. Immunol. 144, 1122–1125.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Martinelli, S. et al. Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am. J. Hum. Genet. 102, 309–320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. van Wijck, R. T. A., Swagemakers, S. M. A., van der Spek, P. J., van Hagen, P. M. & van Daele, P. L. A. A CDC42 stop-loss mutation in a patient with relapsing polychondritis and autoinflammation. J. Clin. Immunol. 43, 69–71 (2023).

    Article  PubMed  Google Scholar 

  209. Chemin, K. et al. Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J. Immunol. 189, 2159–2168 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Nishitani-Isa, M. et al. Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. J. Exp. Med. 219, e20211889 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bekhouche, B. et al. A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. J. Allergy Clin. Immunol. 146, 1201–1204.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Iannuzzo, A. et al. Autoinflammatory patients with Golgi-trapped CDC42 exhibit intracellular trafficking defects leading to STING hyperactivation and ER stress. Nat. Commun. 15, 9940 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Fournier, B. et al. DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J. Allergy Clin. Immunol. 147, 740–743.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Serwas, N. K. et al. Publisher correction: human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat. Commun. 10, 4555 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Ma, X. et al. DOCK2 regulates antifungal immunity by regulating RAC GTPase activity. Cell Mol. Immunol. 19, 602–618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Moens, L. et al. Human DOCK2 deficiency: report of a novel mutation and evidence for neutrophil dysfunction. J. Clin. Immunol. 39, 298–308 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Randall, K. L. et al. DOCK2 deficiency causes defects in antiviral T-cell responses and impaired control of herpes simplex virus infection. J. Infect. Dis. 230, e712–e721 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Engelhardt, K. R. et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 124, 1289–302.e4 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Frede, N. et al. Genetic analysis of a cohort of 275 patients with hyper-IgE syndromes and/or chronic mucocutaneous candidiasis. J. Clin. Immunol. 41, 1804–1838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lambe, T. et al. DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory. Eur. J. Immunol. 41, 3423–3435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Crawford, G. et al. DOCK8 is critical for the survival and function of NKT cells. Blood 122, 2052–2061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jabara, H. H. et al. DOCK8 functions as an adaptor that links TLR–MyD88 signaling to B cell activation. Nat. Immunol. 13, 612–620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mizesko, M. C. et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 131, 840–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wilkie, H. et al. Regulatory T-cell dysfunction and cutaneous exposure to Staphylococcus aureus underlie eczema in DOCK8 deficiency. J. Allergy Clin. Immunol. 154, 143–156 (2024).

    Article  CAS  PubMed  Google Scholar 

  225. Zhang, Q. et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J. Exp. Med. 211, 2549–2566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Accetta, D. et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J. Allergy Clin. Immunol. 127, 535–538.e1–2 (2011).

    Article  CAS  PubMed  Google Scholar 

  227. Ambruso, D. R. et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc. Natl Acad. Sci. USA 97, 4654–4659 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Donko, A. et al. Clinical and functional spectrum of RAC2-related immunodeficiency. Blood 143, 1476–1487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hsu, A. P. et al. Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133, 1977–1988 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lougaris, V. et al. A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J. Allergy Clin. Immunol. 143, 1649–1653.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Abell, A. N. et al. Rac2D57N, a dominant inhibitory Rac2 mutant that inhibits p38 kinase signaling and prevents surface ruffling in bone-marrow-derived macrophages. J. Cell Sci. 117, 243–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  232. Kalinichenko, A. et al. RhoG deficiency abrogates cytotoxicity of human lymphocytes and causes hemophagocytic lymphohistiocytosis. Blood 137, 2033–2045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Crequer, A. et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J. Clin. Invest. 122, 3239–3247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Peng, S. et al. Nascent RHOH acts as a molecular brake on actomyosin-mediated effector functions of inflammatory neutrophils. PLoS Biol. 20, e3001794 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Record, J. et al. Immunodeficiency and severe susceptibility to bacterial infection associated with a loss-of-function homozygous mutation of MKL1. Blood 126, 1527–1535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sprenkeler, E. G. G. et al. MKL1 deficiency results in a severe neutrophil motility defect due to impaired actin polymerization. Blood 135, 2171–2181 (2020).

    Article  PubMed  Google Scholar 

  237. Guennoun, A. et al. A novel STK4 mutation impairs T cell immunity through dysregulation of cytokine-induced adhesion and chemotaxis genes. J. Clin. Immunol. 41, 1839–1852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Moran, I. et al. B cell-intrinsic requirement for STK4 in humoral immunity in mice and human subjects. J. Allergy Clin. Immunol. 143, 2302–2305 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Schipp, C. et al. EBV negative lymphoma and autoimmune lymphoproliferative syndrome like phenotype extend the clinical spectrum of primary immunodeficiency caused by STK4 deficiency. Front. Immunol. 9, 2400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Sharafian, S., Ziaee, V., Shahrooei, M., Ahadi, M. & Parvaneh, N. A novel STK4 mutation presenting with juvenile idiopathic arthritis and epidermodysplasia verruciformis. J. Clin. Immunol. 39, 11–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Dang, T. S. et al. Erratum to: Defective leukocyte adhesion and chemotaxis contributes to combined immunodeficiency in humans with autosomal recessive MST1 deficiency. J. Clin. Immunol. 36, 336–337 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Halacli, S. O. et al. STK4 (MST1) deficiency in two siblings with autoimmune cytopenias: a novel mutation. Clin. Immunol. 161, 316–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  243. Abdollahpour, H. et al. The phenotype of human STK4 deficiency. Blood 119, 3450–3457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Winter, S. et al. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein–Barr virus susceptibility. EMBO Mol. Med. 10, 188–199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Mao, H. et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J. Allergy Clin. Immunol. 142, 595–604.e16 (2018).

    Article  CAS  Google Scholar 

  246. Platt, C. D. et al. Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin. Immunol. 183, 142–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Mansour, R. et al. A novel homozygous mutation in RASGRP1 that predisposes to immune dysregulation and immunodeficiency associated with uncontrolled Epstein–Barr virus-induced B cell proliferation. Clin. Immunol. 257, 109813 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Momenilandi, M., Pourvali, A., Inborn Errors of Immunity Consortium, Shahrooei, M. & Bossuyt, X. Two novel biallelic RASGRP1 mutations presenting with immunodeficiency, Hodgkin’s lymphoma, and autoimmunity. J. Clin. Immunol. 42, 1160–1163 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Somekh, I. et al. Novel mutations in RASGRP1 are associated with immunodeficiency, immune dysregulation, and EBV-induced lymphoma. J. Clin. Immunol. 38, 699–710 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Salzer, E. et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat. Immunol. 17, 1352–1360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Jardine, S., Dhingani, N. & Muise, A. M. TTC7A: steward of intestinal health. Cell Mol. Gastroenterol. Hepatol. 7, 555–570 (2019).

    Article  PubMed  Google Scholar 

  252. Jardine, S. et al. Drug screen identifies leflunomide for treatment of inflammatory bowel disease caused by TTC7A deficiency. Gastroenterology 158, 1000–1015 (2020).

    Article  CAS  PubMed  Google Scholar 

  253. Gajardo, T. et al. Actin dynamics regulation by TTC7A/PI4KIIIα limits DNA damage and cell death under confinement. J. Allergy Clin. Immunol. 152, 949–960 (2023).

    Article  CAS  PubMed  Google Scholar 

  254. Lemoine, R. et al. Immune deficiency-related enteropathy–lymphocytopenia–alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. J. Allergy Clin. Immunol. 134, 1354–1364.e6 (2014).

    Article  CAS  PubMed  Google Scholar 

  255. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Skau, C. T. & Waterman, C. M. Specification of architecture and function of actin structures by actin nucleation factors. Annu. Rev. Biophys. 44, 285–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Chugh, P. & Paluch, E. K. The actin cortex at a glance. J. Cell Sci. 131, jcs186254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Svitkina, T. M. Actin cell cortex: structure and molecular organization. Trends Cell Biol. 30, 556–565 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    Article  PubMed  Google Scholar 

  260. Maiuri, P. et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161, 374–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Bello-Gamboa, A. et al. Actin reorganization at the centrosomal area and the immune synapse regulates polarized secretory traffic of multivesicular bodies in T lymphocytes. J. Extracell. Vesicles 9, 1759926 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Inoue, D. et al. Actin filaments regulate microtubule growth at the centrosome. EMBO J. 38, e99630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Thiam, H. R. et al. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Jayo, A. et al. Fascin regulates nuclear movement and deformation in migrating cells. Dev. Cell 38, 371–383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Thompson, S. B. et al. Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity. eLife 9, e58046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Fung, T. S., Chakrabarti, R. & Higgs, H. N. The multiple links between actin and mitochondria. Nat. Rev. Mol. Cell Biol. 24, 651–667 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Kast, D. J. & Dominguez, R. The cytoskeleton–autophagy connection. Curr. Biol. 27, R318–R326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Wiskott, A. Familiärer, angeborener Morbus Werlhofii? [Familial congenital Werlhof’s disease?] [German]. Monatsschr Kinderheilkd. 68, 212–216 (1937).

    Google Scholar 

  269. Aldrich, R. A., Steinberg, A. G. & Campbell, D. C. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics 13, 133–139 (1954).

    Article  CAS  PubMed  Google Scholar 

  270. Derry, J. M., Ochs, H. D. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78, 635–644 (1994). This article identifies the molecular aetiology of WAS, caused by germline mutations in the WAS gene, as the molecular aetiology of the first immune-related actinopathy initially described by Wiskott (1937) and Aldrich et al. (1954).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by European Research Council (ERC) through an ERC consolidator grant (#820074) to K.B., and the French National Center for Scientific Research (CNRS International Research Project SystAct) and the French National Institute for Health and Medical Research (INSERM International Research Project AdaptAct) to L.D. The authors apologize to colleagues whose work might not have been cited in this Review because of space limitations.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was conceptualized by L.D. and K.B. All authors researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Loïc Dupré or Kaan Boztug.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Wenxia Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Actin comets

Actin structures assembled by some intracellular organisms, such as Listeria and Shigella, to propel themselves across the infected cell cytoplasm. These structures are promoted by the actin polymerization activity of microorganismal proteins that hijack part of the actin cytoskeleton of the host cell.

ARP2/3 complex

A seven-subunit protein complex that nucleates actin and generates branches on existing actin filaments. The nucleation and branching activities of ARP2/3 are controlled by nucleation-promoting factors such as WASP and the WAVE regulatory complex (WRC). ARP2/3 sustains cell motility, phagocytosis and, endocytosis, as well as numerous membrane-trafficking events.

Inflammasome

A cytoplasmic supramolecular complex that senses environmental cues and induces inflammatory responses by promoting pro-inflammatory cytokine release and pyroptosis.

Natural antibodies

Immunoglobulins found in individuals without prior antigenic experience. As such, they represent the first line of defence of newborns. Natural antibodies appear to predominantly target common autoantigens derived from cell debris resulting from apoptosis or senescence.

Pyroptosis

Lytic programmed cell death associated with inflammation. Pyroptosis typically occurs in the context of infections with intracellular pathogens. A molecular hallmark of pyroptosis is the formation of gasdermin pores in the plasma membrane, allowing the secretion of the mature forms of the pro-inflammatory cytokines IL-1β and IL-18.

Type 1 antibody responses

T cell-independent type 1 antibody responses that usually do not involve germinal centre formation or memory B cell generation. T cell-independent type 1 antigens may correspond to microbial ligands that activate B cells through Toll-like receptors (TLRs) to induce a polyclonal, non-antigen-specific B cell response.

WAVE regulatory complex

(WRC). A five-subunit protein complex involved in actin polymerization via stimulation of the ARP2/3 complex. The WRC is present in an autoinhibited state in the cytoplasm and is activated by a vast array of membrane ligands, RHO GTPases, phospholipids and kinases. It is essential for cell protrusions and migration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupré, L., Castanon, I. & Boztug, K. Immune-related actinopathies at the cross-road of immunodeficiency, autoimmunity and autoinflammation. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01214-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01214-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing