Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targets of protective immunity and opportunities in hepatitis C virus vaccine development

Abstract

Hepatitis C virus (HCV) remains a serious global health burden that affects nearly 50 million people worldwide. Despite the availability of highly effective direct-acting antiviral drugs, the lack of an effective HCV vaccine hinders control and elimination worldwide, wherein new infections and overall prevalence remain high. HCV vaccine development faces challenges including high genetic diversity of the virus, unclear correlates of protective immunity, and lack of robust in vivo models for vaccine testing. Despite these obstacles, the landscape of HCV vaccine development is rapidly evolving. Innovative strategies, including subunit, virus-like particle, viral vector, DNA and RNA vaccines, show promising results, and controlled human infection models offer a unique, albeit ethically complex, opportunity to accelerate vaccine development. Collaborative efforts among academia, industry, governmental agencies and regulatory bodies are crucial for optimizing vaccine strategies, overcoming current challenges and effecting advances towards global HCV elimination through vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of immune responses to infection.
Fig. 2: HCV envelope proteins, structures and targets of neutralization.
Fig. 3: Phylogenetic trees of HCV, influenza A, HIV-1 and HBV and potential targets of T cell-based HCV vaccines.
Fig. 4: Genomic structure of the IFNL gene family and associated polymorphisms impacting HCV clearance.

Similar content being viewed by others

References

  1. World Health Organization. Global Hepatitis Report 2024 (WHO, 2024).

  2. Martinello, M. et al. Hepatitis C. Lancet 402, 1085–1096 (2023).

    Article  PubMed  Google Scholar 

  3. Trickey, A. et al. The contribution of injection drug use to hepatitis C virus transmission globally, regionally, and at country level: a modelling study. Lancet Gastroenterol. Hepatol. 4, 435–444 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ly, K. N. et al. Deaths associated with hepatitis C virus infection among residents in 50 states and the District of Columbia, 2016-2017. Clin. Infect. Dis. 71, 1149–1160 (2020).

    Article  PubMed  Google Scholar 

  5. Hensel, N. et al. Memory-like HCV-specific CD8+ T cells retain a molecular scar after cure of chronic HCV infection. Nat. Immunol. 22, 229–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Tonnerre, P. et al. Differentiation of exhausted CD8+ T cells after termination of chronic antigen stimulation stops short of achieving functional T cell memory. Nat. Immunol. 22, 1030–1041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, S. Y. & Shin, E. C. Reply to: “Regulatory T cell dynamics during and after chronic hepatitis C treatment”. J. Hepatol. 81, e250 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Vo-Quang, E. & Pawlotsky, J. M. ‘Unusual’ HCV genotype subtypes: origin, distribution, sensitivity to direct-acting antiviral drugs and behaviour on antiviral treatment and retreatment. Gut 73, 1570–1582 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Farci, P. New insights into the HCV quasispecies and compartmentalization. Semin. Liver Dis. 31, 356–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Rauch, A. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138, 1338–1345 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Prokunina-Olsson, L. et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 45, 164–171 (2013). This work identifies the novel IFNL4 gene, created by a variant upstream of IFNL3, which advances our understanding of genetic factors affecting hepatitis C virus clearance and therapeutic outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eslam, M. et al. IFN-λ3, not IFN-λ4, likely mediates IFNL3–IFNL4 haplotype-dependent hepatic inflammation and fibrosis. Nat. Genet. 49, 795–800 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Rehermann, B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat. Med. 19, 859–868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hajarizadeh, B., Grebely, J. & Dore, G. J. Epidemiology and natural history of HCV infection. Nat. Rev. Gastroenterol. Hepatol. 10, 553–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Schulze zur Wiesch, J. et al. Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes. J. Immunol. 175, 3603–3613 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Pestka, J. M. et al. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc. Natl Acad. Sci. USA 104, 6025–6030 (2007). This work shows that rapid induction of neutralizing antibodies in acute HCV infection correlates with viral clearance, providing key insights for vaccine strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lindenbach, B. D. & Rice, C. M. The ins and outs of hepatitis C virus entry and assembly. Nat. Rev. Microbiol. 11, 688–700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong, L. et al. Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen. Proc. Natl Acad. Sci. USA 113, 12768–12773 (2016). This work shows that structural flexibility of HCV E2 at the conserved CD81-binding site challenges vaccine design, emphasizing the need for stabilization to elicit broadly neutralizing antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dowd, K. A. et al. Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. Gastroenterology 136, 2377–2386 (2009). This work shows that neutralizing antibodies drive viral evolution during acute HCV infection, shaping outcomes and underscoring their significance for vaccine development.

    Article  CAS  PubMed  Google Scholar 

  23. El-Diwany, R. et al. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1. PLoS Pathog. 13, e1006235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frumento, N., Flyak, A. I. & Bailey, J. R. Mechanisms of HCV resistance to broadly neutralizing antibodies. Curr. Opin. Virol. 50, 23–29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishio, A. et al. Serum neutralization activity declines but memory B cells persist after cure of chronic hepatitis C. Nat. Commun. 13, 5446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raghuraman, S. et al. Spontaneous clearance of chronic hepatitis C virus infection is associated with appearance of neutralizing antibodies and reversal of T-cell exhaustion. J. Infect. Dis. 205, 763–771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meuleman, P. et al. In vivo evaluation of the cross-genotype neutralizing activity of polyclonal antibodies against hepatitis C virus. Hepatology 53, 755–762 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Bukh, J. et al. Immunoglobulin with high-titer in vitro cross-neutralizing hepatitis C virus antibodies passively protects chimpanzees from homologous, but not heterologous, challenge. J. Virol. 89, 9128–9132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farci, P. et al. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc. Natl Acad. Sci. USA 93, 15394–15399 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vieyres, G., Dubuisson, J. & Patel, A. H. Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein. J. Gen. Virol. 92, 494–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bankwitz, D. et al. Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes. J. Virol. 84, 5751–5763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prentoe, J. et al. Hypervariable region 1 shielding of hepatitis C virus is a main contributor to genotypic differences in neutralization sensitivity. Hepatology 64, 1881–1892 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Goffard, A. & Dubuisson, J. Glycosylation of hepatitis C virus envelope proteins. Biochimie 85, 295–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kong, L. et al. Hepatitis C virus E2 envelope glycoprotein core structure. Science 342, 1090–1094 (2013). This paper shows that the first partial structural resolution of HCV envelope proteins provides crucial insight into HCV infection, followed by other publications with additional structural details.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alzua, G. P. et al. Identification of novel neutralizing determinants for protection against HCV. Hepatology 77, 982–996 (2023).

    Article  PubMed  Google Scholar 

  36. Yan, Y. et al. A nanoparticle-based hepatitis C virus vaccine with enhanced potency. J. Infect. Dis. 221, 1304–1314 (2020).

    CAS  PubMed  Google Scholar 

  37. Broering, T. J. et al. Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus. J. Virol. 83, 12473–12482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morin, T. J. et al. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees. PLoS Pathog. 8, e1002895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keck, Z. et al. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein. J. Virol. 87, 37–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stroh, L. J., Nagarathinam, K. & Krey, T. Conformational flexibility in the CD81-binding site of the hepatitis C virus glycoprotein E2. Front. Immunol. 9, 1396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tzarum, N., Wilson, I. A. & Law, M. The neutralizing face of hepatitis C virus E2 envelope glycoprotein. Front. Immunol. 9, 1315 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flint, M. et al. Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J. Virol. 73, 6235–6244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ray, R. et al. Characterization of antibodies induced by vaccination with hepatitis C virus envelope glycoproteins. J. Infect. Dis. 202, 862–866 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Sabo, M. C. et al. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step. J. Virol. 85, 7005–7019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pantua, H. et al. Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies. J. Mol. Biol. 425, 1899–1914 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Alhammad, Y. et al. Monoclonal antibodies directed toward the hepatitis C virus glycoprotein E2 detect antigenic differences modulated by the N-terminal hypervariable region 1 (HVR1), HVR2, and intergenotypic variable region. J. Virol. 89, 12245–12261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tzarum, N. et al. Genetic and structural insights into broad neutralization of hepatitis C virus by human VH1-69 antibodies. Sci. Adv. 5, eaav1882 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Keck, Z. Y. et al. Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity. J. Virol. 83, 6149–6160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meola, A. et al. Structural flexibility of a conserved antigenic region in hepatitis C virus glycoprotein E2 recognized by broadly neutralizing antibodies. J. Virol. 89, 2170–2181 (2015).

    Article  PubMed  Google Scholar 

  50. Duan, H. et al. Amino acid residue-specific neutralization and nonneutralization of hepatitis C virus by monoclonal antibodies to the E2 protein. J. Virol. 86, 12686–12694 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Keck, Z. Y. et al. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog. 8, e1002653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Law, M. et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med. 14, 25–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Gopal, R. et al. Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis. PLoS Pathog. 13, e1006735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Johansson, D. X. et al. Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus. Proc. Natl Acad. Sci. USA 104, 16269–16274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giang, E. et al. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc. Natl Acad. Sci. USA 109, 6205–6210 (2012). This paper shows that broadly neutralizing antibodies targeting conserved epitopes of the E1E2 glycoprotein complex of HCV provide critical insights for effective vaccine design.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Colbert, M. D. et al. Broadly neutralizing antibodies targeting new sites of vulnerability in hepatitis C virus E1E2. J. Virol. 93, e02070-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Meunier, J. C. et al. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the E1 glycoprotein of hepatitis C virus. J. Virol. 82, 966–973 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Augestad, E. H. et al. Global and local envelope protein dynamics of hepatitis C virus determine broad antibody sensitivity. Sci. Adv. 6, eabb5938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Keck, Z. Y. et al. Human monoclonal antibody to hepatitis C virus E1 glycoprotein that blocks virus attachment and viral infectivity. J. Virol. 78, 7257–7263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meertens, L. et al. The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J. Virol. 82, 3555–3560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hopcraft, S. E. & Evans, M. J. Selection of a hepatitis C virus with altered entry factor requirements reveals a genetic interaction between the E1 glycoprotein and claudins. Hepatology 62, 1059–1069 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Cheng, J. J. et al. CD36 is a co-receptor for hepatitis C virus E1 protein attachment. Sci. Rep. 6, 21808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bailey, J. R. et al. Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance. J. Clin. Invest. 125, 437–447 (2015).

    Article  PubMed  Google Scholar 

  64. Holz, L. & Rehermann, B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antivir. Res. 114, 96–105 (2015). This paper shows that cell responses are pivotal in determining HCV infection outcomes, providing crucial insights for vaccine development and immune-based therapies.

    Article  CAS  PubMed  Google Scholar 

  65. Kasprowicz, V. et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J. Virol. 82, 3154–3160 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, D. Y. et al. Hepatitis C virus-specific CD4+ T cell phenotype and function in different infection outcomes. J. Clin. Invest. 130, 768–773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kurktschiev, P. D. et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J. Exp. Med. 211, 2047–2059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luxenburger, H. et al. HCV-specific T cell responses during and after chronic HCV infection. Viruses 10, 645 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schulze Zur Wiesch, J. et al. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J. Exp. Med. 209, 61–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grakoui, A. et al. HCV persistence and immune evasion in the absence of memory T cell help. Science 302, 659–662 (2003). This research shows that the absence of T helper cell response results in HCV chronicity, demonstrating the critical importance of T cell responses in controlling HCV infection.

    Article  CAS  PubMed  Google Scholar 

  72. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Cox, A. L. et al. Comprehensive analyses of CD8+ T cell responses during longitudinal study of acute human hepatitis C. Hepatology 42, 104–112 (2005).

    Article  PubMed  Google Scholar 

  76. Dazert, E. et al. Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J. Clin. Invest. 119, 376–386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Raziorrouh, B. et al. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology 141, 1422–1431 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Lindenbach, B. D. & Rice, C. M. Unravelling hepatitis C virus replication from genome to function. Nature 436, 933–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Filskov, J. et al. HCV p7 as a novel vaccine-target inducing multifunctional CD4+ and CD8+ T-cells targeting liver cells expressing the viral antigen. Sci. Rep. 9, 14085 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Youn, J. W. et al. Evidence for protection against chronic hepatitis C virus infection in chimpanzees by immunization with replicating recombinant vaccinia virus. J. Virol. 82, 10896–10905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wada, T., Kohara, M. & Yasutomi, Y. DNA vaccine expressing the non-structural proteins of hepatitis C virus diminishes the expression of HCV proteins in a mouse model. Vaccine 31, 5968–5974 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Wertheimer, A. M. et al. Novel CD4+ and CD8+ T-cell determinants within the NS3 protein in subjects with spontaneously resolved HCV infection. Hepatology 37, 577–589 (2003). This work shows that persistent multi-specific CD4+ and CD8+ T cell responses targeting the NS3 protein of HCV in individuals with resolved infection underscore its potential as a key vaccine candidate.

    Article  CAS  PubMed  Google Scholar 

  83. Zeng, R. et al. A novel combined vaccine candidate containing epitopes of HCV NS3, core and E1 proteins induces multi-specific immune responses in BALB/c mice. Antivir. Res. 84, 23–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Lang Kuhs, K. A. et al. Hepatitis C virus NS3/NS4A DNA vaccine induces multiepitope T cell responses in rhesus macaques mimicking human immune responses [corrected]. Mol. Ther. 20, 669–678 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Tan, W. G. et al. Qualitative differences in cellular immunogenicity elicited by hepatitis C virus T-cell vaccines employing prime-boost regimens. PLoS ONE 12, e0181578 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dawood, R. M. et al. A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infect. Dis. 19, 932 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Han, J. W. et al. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. J. Hepatol. 73, 72–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Holmstrom, F. et al. A synthetic codon-optimized hepatitis C virus nonstructural 5A DNA vaccine primes polyfunctional CD8+ T cell responses in wild-type and NS5A-transgenic mice. J. Immunol. 190, 1113–1124 (2013).

    Article  PubMed  Google Scholar 

  89. Polyak, S. J. et al. Induction of intrahepatic HCV NS4B, NS5A and NS5B-specific cellular immune responses following peripheral immunization. PLoS ONE 7, e52165 (2012).

    Article  Google Scholar 

  90. Mekonnen, Z. A. et al. Single-dose vaccination with a hepatotropic adeno-associated virus efficiently localizes T cell immunity in the liver with the potential to confer rapid protection against hepatitis C virus. J. Virol. 93, e00202-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Donnison, T. et al. A pan-genotype hepatitis C virus viral vector vaccine generates T cells and neutralizing antibodies in mice. Hepatology 76, 1190–1202 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Burke, K. P. et al. Immunogenicity and cross-reactivity of a representative ancestral sequence in hepatitis C virus infection. J. Immunol. 188, 5177–5188 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Meissner, E. G. et al. IFNL4-ΔG genotype is associated with slower viral clearance in hepatitis C, genotype-1 patients treated with sofosbuvir and ribavirin. J. Infect. Dis. 209, 1700–1704 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. O’Brien, T. R. et al. Comparison of functional variants in IFNL4 and IFNL3 for association with HCV clearance. J. Hepatol. 63, 1103–1110 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Terczynska-Dyla, E. et al. Reduced IFNλ4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. Nat. Commun. 5, 5699 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Hamming, O. J. et al. Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses. EMBO J. 32, 3055–3065 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hong, M. et al. Interferon lambda 4 expression is suppressed by the host during viral infection. J. Exp. Med. 213, 2539–2552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grubbe, W. S. et al. Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering. Nat. Commun. 16, 818 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sung, P. S. et al. IFN-λ4 potently blocks IFN-α signalling by ISG15 and USP18 in hepatitis C virus infection. Sci. Rep. 7, 3821 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chen, Q. et al. Interferon lambda 4 impairs hepatitis C viral antigen presentation and attenuates T cell responses. Nat. Commun. 12, 4882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McFarland, A. P. et al. The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus-induced microRNAs. Nat. Immunol. 15, 72–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Neumann-Haefelin, C. et al. Protective effect of human leukocyte antigen B27 in hepatitis C virus infection requires the presence of a genotype-specific immunodominant CD8+ T-cell epitope. Hepatology 51, 54–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Neumann-Haefelin, C. et al. Human leukocyte antigen B27 selects for rare escape mutations that significantly impair hepatitis C virus replication and require compensatory mutations. Hepatology 54, 1157–1166 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Kim, A. Y. et al. Spontaneous control of HCV is associated with expression of HLA-B*57 and preservation of targeted epitopes. Gastroenterology 140, 686–696.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Merani, S. et al. Effect of immune pressure on hepatitis C virus evolution: insights from a single-source outbreak. Hepatology 53, 396–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Kuniholm, M. H. et al. Specific human leukocyte antigen class I and II alleles associated with hepatitis C virus viremia. Hepatology 51, 1514–1522 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Valencia, A. et al. Trans-ancestral fine-mapping of MHC reveals key amino acids associated with spontaneous clearance of hepatitis C in HLA-DQβ1. Am. J. Hum. Genet. 109, 299–310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liang, T. J. Current progress in development of hepatitis C virus vaccines. Nat. Med. 19, 869–878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pihl, A. F. et al. Inactivated whole hepatitis C virus vaccine employing a licensed adjuvant elicits cross-genotype neutralizing antibodies in mice. J. Hepatol. 76, 1051–1061 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Alzua, G. P. et al. Inactivated genotype 1a, 2a and 3a HCV vaccine candidates induced broadly neutralising antibodies in mice. Gut 72, 560–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Akazawa, D. et al. Neutralizing antibodies induced by cell culture-derived hepatitis C virus protect against infection in mice. Gastroenterology 145, 447–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Yokokawa, H. et al. Induction of humoural and cellular immunity by immunisation with HCV particle vaccine in a non-human primate model. Gut 67, 372–379 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Bankwitz, D. et al. Maturation of secreted HCV particles by incorporation of secreted ApoE protects from antibodies by enhancing infectivity. J. Hepatol. 67, 480–489 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Sepulveda-Crespo, D., Resino, S. & Martinez, I. Hepatitis C virus vaccine design: focus on the humoral immune response. J. Biomed. Sci. 27, 78 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mosa, A. I. et al. Polyvalent immunization elicits a synergistic broadly neutralizing immune response to hypervariable region 1 variants of hepatitis C virus. Proc. Natl Acad. Sci. USA 120, e2220294120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Johnson, J. et al. A recombinant hepatitis C virus genotype 1a E1/E2 envelope glycoprotein vaccine elicits antibodies that differentially neutralize closely related 2a strains through interactions of the N-terminal hypervariable region 1 of E2 with scavenger receptor B1. J. Virol. 93, e00810–e00819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Khan, A. G. et al. Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 509, 381–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nagarathinam, K. et al. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. Sci. Adv. 10, eado2600 (2024). This work shows that epitope-focused immunogens targeting HCV glycoproteins elicit broadly neutralizing antibodies, representing a promising strategy for effective vaccine design.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vietheer, P. T. et al. The core domain of hepatitis C virus glycoprotein E2 generates potent cross‐neutralizing antibodies in guinea pigs. Hepatology 65, 1117–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Center, R. J. et al. Enhancing the antigenicity and immunogenicity of monomeric forms of hepatitis C virus E2 for use as a preventive vaccine. J. Biol. Chem. 295, 7179–7192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, D. et al. Altered glycosylation patterns increase immunogenicity of a subunit hepatitis C virus vaccine, inducing neutralizing antibodies which confer protection in mice. J. Virol. 90, 10486–10498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, D. et al. Immunization with a subunit hepatitis C virus vaccine elicits pan-genotypic neutralizing antibodies and intrahepatic T-cell responses in nonhuman primates. J. Infect. Dis. 215, 1824–1831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, X. et al. A trivalent HCV vaccine elicits broad and synergistic polyclonal antibody response in mice and rhesus monkey. Gut 68, 140–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Tarr, A. W. et al. Immunization with a synthetic consensus hepatitis C virus E2 glycoprotein ectodomain elicits virus-neutralizing antibodies. Antivir. Res. 160, 25–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Meunier, J. C. et al. Vaccine-induced cross-genotype reactive neutralizing antibodies against hepatitis C virus. J. Infect. Dis. 204, 1186–1190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, R. et al. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc. Natl Acad. Sci. USA 119, e2112008119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kundu, J. et al. Recombinant H77C gpE1/gpE2 heterodimer elicits superior HCV cross-neutralisation than H77C gpE2 alone. J. Hepatol. 81, 941–948 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Frey, S. E. et al. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine 28, 6367–6373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Krapchev, V. B. et al. Recombinant Flag-tagged E1E2 glycoproteins from three hepatitis C virus genotypes are biologically functional and elicit cross-reactive neutralizing antibodies in mice. Virology 519, 33–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Lin, T. et al. Recombinant full-length hepatitis C virus E1E2 dimer elicits pangenotypic neutralizing antibodies. Front. Immunol. 13, 831285 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barnes, E. et al. Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci. Transl. Med. 4, 115ra1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Swadling, L. et al. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci. Transl. Med. 6, 261ra153 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kelly, C. et al. Chronic hepatitis C viral infection subverts vaccine-induced T-cell immunity in humans. Hepatology 63, 1455–1470 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. von Delft, A. et al. The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine 36, 313–321 (2018).

    Article  Google Scholar 

  135. Page, K. et al. Randomized trial of a vaccine regimen to prevent chronic HCV infection. N. Engl. J. Med. 384, 541–549 (2021). This paper provides that heterologous prime-boost HCV vaccine regimen showed immunogenicity but failed to prevent chronic infection, underscoring challenges in vaccine efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reyes-del Valle, J. et al. Broadly neutralizing immune responses against hepatitis C virus induced by vectored measles viruses and a recombinant envelope protein booster. J. Virol. 86, 11558–11566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baumert, T. F. et al. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J. Virol. 72, 3827–3836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lechmann, M. et al. Hepatitis C virus-like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology 34, 417–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Jeong, S. H. et al. Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J. Virol. 78, 6995–7003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Elmowalid, G. A. et al. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc. Natl Acad. Sci. USA 104, 8427–8432 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Earnest-Silveira, L. et al. Characterization of a hepatitis C virus-like particle vaccine produced in a human hepatocyte-derived cell line. J. Gen. Virol. 97, 1865–1876 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Christiansen, D. et al. Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci. Rep. 9, 9251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hourioux, C. et al. Core protein domains involved in hepatitis C virus-like particle assembly and budding at the endoplasmic reticulum membrane. Cell Microbiol. 9, 1014–1027 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Beaumont, E. et al. Chimeric hepatitis B virus/hepatitis C virus envelope proteins elicit broadly neutralizing antibodies and constitute a potential bivalent prophylactic vaccine. Hepatology 57, 1303–1313 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Beaumont, E. et al. Mixing particles from various HCV genotypes increases the HBV-HCV vaccine ability to elicit broadly cross-neutralizing antibodies. Liver Int. 40, 1865–1871 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Gomez-Escobar, E. et al. Incorporation of apolipoprotein E into HBV-HCV subviral envelope particles to improve the hepatitis vaccine strategy. Sci. Rep. 11, 21856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Czarnota, A. et al. Specific antibodies induced by immunization with hepatitis B virus-like particles carrying hepatitis C virus envelope glycoprotein 2 epitopes show differential neutralization efficiency. Vaccines 8, 294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Garrone, P. et al. A prime-boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. Sci. Transl. Med. 3, 94ra71 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Sliepen, K. et al. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat. Commun. 13, 7271 (2022). This work shows that permuted HCV E1E2 glycoprotein nanoparticles elicit broadly neutralizing antibodies, presenting a promising approach for effective cross-genotype HCV vaccine development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. He, L. et al. Proof of concept for rational design of hepatitis C virus E2 core nanoparticle vaccines. Sci. Adv. 6, eaaz6225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Forns, X. et al. Vaccination of chimpanzees with plasmid DNA encoding the hepatitis C virus (HCV) envelope E2 protein modified the infection after challenge with homologous monoclonal HCV. Hepatology 32, 618–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Weiland, O. et al. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol. Ther. 21, 1796–1805 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vargas, J. E. et al. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J. Transl. Med. 14, 288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Haga, Y. et al. Hepatitis C virus modified sE2(F442NYT) as an antigen in candidate vaccine facilitates human immune cell activation. J. Virol. 98, e0180923 (2024).

    Article  PubMed  Google Scholar 

  155. Swetha, K. et al. Recent advances in the lipid nanoparticle-mediated delivery of mRNA vaccines. Vaccines 11, 658 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Freyn, A. W. et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol. Ther. 28, 1569–1584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hasso-Agopsowicz, M. et al. Identifying WHO global priority endemic pathogens for vaccine research and development (R&D) using multi-criteria decision analysis (MCDA): an objective of the Immunization Agenda 2030. EBioMedicine 110, 105424 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kong, L. et al. Structure of hepatitis C virus envelope glycoprotein E1 antigenic site 314-324 in complex with antibody IGH526. J. Mol. Biol. 427, 2617–2628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Torrents de la Peña, A. et al. Structure of the hepatitis C virus E1E2 glycoprotein complex. Science 378, 263–269 (2022).

    Article  PubMed  Google Scholar 

  160. Kong, L. et al. Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proc. Natl Acad. Sci. USA 109, 9499–9504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kong, L. et al. Structure of hepatitis C virus envelope glycoprotein E2 antigenic site 412 to 423 in complex with antibody AP33. J. Virol. 86, 13085–13088 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Potter, J. A. et al. Toward a hepatitis C virus vaccine: the structural basis of hepatitis C virus neutralization by AP33, a broadly neutralizing antibody. J. Virol. 86, 12923–12932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, Y. et al. Structural basis for penetration of the glycan shield of hepatitis C virus E2 glycoprotein by a broadly neutralizing human antibody. J. Biol. Chem. 290, 10117–10125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Keck, Z. Y. et al. Antibody response to hypervariable region 1 interferes with broadly neutralizing antibodies to hepatitis C virus. J. Virol. 90, 3112–3122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gu, J. et al. Escape of hepatitis C virus from epitope I neutralization increases sensitivity of other neutralization epitopes. J. Virol. 92, e02066-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Krey, T. et al. Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape. PLoS Pathog. 9, e1003364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Keck, Z. Y. et al. Affinity maturation of a broadly neutralizing human monoclonal antibody that prevents acute hepatitis C virus infection in mice. Hepatology 64, 1922–1933 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Deng, L. et al. Structural evidence for a bifurcated mode of action in the antibody-mediated neutralization of hepatitis C virus. Proc. Natl Acad. Sci. USA 110, 7418–7422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Deng, L. et al. Discrete conformations of epitope II on the hepatitis C virus E2 protein for antibody-mediated neutralization and nonneutralization. Proc. Natl Acad. Sci. USA 111, 10690–10695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Vasiliauskaite, I. et al. Conformational flexibility in the immunoglobulin-like domain of the hepatitis C virus glycoprotein E2. mBio 8, e00382–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sandomenico, A. et al. Generation and characterization of monoclonal antibodies against a cyclic variant of hepatitis C virus E2 epitope 412-422. J. Virol. 90, 3745–3759 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pierce, B. G. et al. Structure-based design of hepatitis C virus vaccines that elicit neutralizing antibody responses to a conserved epitope. J. Virol. 91, e01032-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Leroux-Roels, G. et al. Immunogenicity and tolerability of intradermal administration of an HCV E1-based vaccine candidate in healthy volunteers and patients with resolved or ongoing chronic HCV infection. Hum. Vaccin. 1, 61–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Luo, S. et al. Adenoviruses vectored hepatitis C virus vaccine cocktails induce broadly specific immune responses against multi-genotypic HCV in mice. Biomed. Pharmacother. 170, 115901 (2024).

    Article  CAS  PubMed  Google Scholar 

  175. Kord, E. et al. BacMam virus-based surface display for HCV E2 glycoprotein induces strong cross-neutralizing antibodies and cellular immune responses in vaccinated mice. Infect. Agents Cancer 16, 69 (2021).

    Article  CAS  Google Scholar 

  176. Ahlen, G. et al. In vivo clearance of hepatitis C virus nonstructural 3/4A-expressing hepatocytes by DNA vaccine-primed cytotoxic T lymphocytes. J. Infect. Dis. 192, 2112–2116 (2005).

    Article  PubMed  Google Scholar 

  177. Ahlen, G. et al. Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination. Gene Ther. 21, 739–750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ratnoglik, S. L. et al. Induction of cell-mediated immune responses in mice by DNA vaccines that express hepatitis C virus NS3 mutants lacking serine protease and NTPase/RNA helicase activities. PLoS ONE 9, e98877 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Beaumont, E. et al. Hepatitis C virus E1 and E2 proteins used as separate immunogens induce neutralizing antibodies with additive properties. PLoS ONE 11, e0151626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Czarnota, A. et al. Immunogenicity of Leishmania-derived hepatitis B small surface antigen particles exposing highly conserved E2 epitope of hepatitis C virus. Microb. Cell Fact. 15, 62 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Christiansen, D. et al. Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci. Rep. 8, 6483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vijayamahantesh, V. et al. Modified E2 glycoprotein of hepatitis C virus enhances proinflammatory cytokines and protective immune response. J. Virol. 96, e0052322 (2022).

    Article  PubMed  Google Scholar 

  183. Patra, T. et al. Hepatitis C virus E1 and modified E2 delivered from an mRNA vaccine induces protective immunity. npj Vaccines 8, 42 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Koziel, M. J. Cellular immune responses against hepatitis C virus. Clin. Infect. Dis. 41, S25–S31 (2005).

    Article  PubMed  Google Scholar 

  185. Bankwitz, D. et al. Hepatitis C reference viruses highlight potent antibody responses and diverse viral functional interactions with neutralising antibodies. Gut 70, 1734–1745 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Salas, J. H. et al. An antigenically diverse, representative panel of envelope glycoproteins for hepatitis C virus vaccine development. Gastroenterology 162, 562–574 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Hamming, R. W. Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950).

    Article  Google Scholar 

  188. Christie, J. M. et al. Immune selection and genetic sequence variation in core and envelope regions of hepatitis C virus. Hepatology 30, 1037–1044 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Lamonaca, V. et al. Conserved hepatitis C virus sequences are highly immunogenic for CD4+ T cells: implications for vaccine development. Hepatology 30, 1088–1098 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Gerlach, J. T. et al. Minimal T-cell-stimulatory sequences and spectrum of HLA restriction of immunodominant CD4+ T-cell epitopes within hepatitis C virus NS3 and NS4 proteins. J. Virol. 79, 12425–12433 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Klade, C. S. et al. Hepatitis C virus-specific T cell responses against conserved regions in recovered patients. Vaccine 27, 3099–3108 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Seigel, B. et al. Factors that determine the antiviral efficacy of HCV-specific CD8+ T cells ex vivo. Gastroenterology 144, 426–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Shoukry, N. H. et al. Conserved hierarchy of helper T cell responses in a chimpanzee during primary and secondary hepatitis C virus infections. J. Immunol. 172, 483–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Molero-Abraham, M. et al. Selection of conserved epitopes from hepatitis C virus for pan-populational stimulation of T-cell responses. Clin. Dev. Immunol. 2013, 601943 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Fitzmaurice, K. et al. Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection. Gut 60, 1563–1571 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Shoukry, N. H., Cox, A. L. & Walker, C. M. Immunological monitoring in hepatitis C virus controlled human infection model. Clin. Infect. Dis. 77, S270–S275 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Castro, K. M. et al. Computational design of vaccine immunogens. Curr. Opin. Biotechnol. 78, 102821 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Rappuoli, R. et al. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J. Exp. Med. 213, 469–481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Byrne, P. O. & McLellan, J. S. Principles and practical applications of structure-based vaccine design. Curr. Opin. Immunol. 77, 102209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gaiha, G. D. et al. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Science 364, 480–484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ramirez, S. & Bukh, J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: essential tools in testing of antivirals and emerging vaccine strategies. Antivir. Res. 158, 264–287 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Burm, R. et al. Animal models to study hepatitis C virus infection. Front. Immunol. 9, 1032 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Mercer, D. F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Ploss, A. & Kapoor, A. Animal models of hepatitis C virus infection. Cold Spring Harb. Perspect. Med. 10, a036970 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Liang, T. J. et al. Controlled human infection model — fast track to HCV vaccine? N. Engl. J. Med. 385, 1235–1240 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Mouzannar and R. Umarova for the graphical assistance and S. K. Hwang and B. Rehermann for reviewing the manuscript. This publication was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) within the National Institutes of Health (NIH). The contributions of the NIH author(s) were made as part of their official duties as NIH federal employees, are in compliance with agency policy requirements, and are considered Works of the United States Government. However, the findings and conclusions presented in this paper are those of the author(s) and do not necessarily reflect the views of the NIH or the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

S.B.P. and P.Z.-H. prepared the draft of the manuscript. S.B.P., P.Z.-H. and T.J.L. discussed, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to T. Jake Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Eui-Cheol Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.B., Zimmer-Harwood, P. & Liang, T.J. Targets of protective immunity and opportunities in hepatitis C virus vaccine development. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01215-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01215-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology