Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic control of innate-like T cells

Abstract

Immunometabolism, the intersection of cellular metabolism and immune function, has revolutionized our understanding of T cell biology. Changes in cellular metabolism help guide the development of thymocytes and the transition of T cells from naive to effector, memory and tissue-resident states. Innate-like T cells are a unique group of T cells with special characteristics. They respond rapidly, reside mainly in tissues and express T cell receptors with limited diversity that recognize non-peptide antigens. This group includes invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells and some populations of γδ T cells. Different subsets of innate-like T cells rely on specific metabolic pathways that influence their differentiation and function and distinguish them from conventional CD4+ and CD8+ T cells. Although there are differences between innate-like T cell types, they share metabolic and functional features. In this Review, we highlight recent research in this emerging field. Understanding how metabolic programmes differ between innate-like T cells and other T cells may open opportunities for tailoring innate-like T cell responses and adoptive T cell therapies for use in cancer, metabolic and autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties of innate-like T cells.
Fig. 2: Metabolic pathways in mouse iNKT cells.
Fig. 3: Metabolic pathways in human MAIT cells.
Fig. 4: Metabolic programmes of mouse γδ T cells and MAIT cells.

Similar content being viewed by others

References

  1. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. LeBlanc, G., Kreissl, F. K., Melamed, J., Sobel, A. L. & Constantinides, M. G. The role of unconventional T cells in maintaining tissue homeostasis. Semin. Immunol. 61–64, 101656 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hayday, A. C. & Vantourout, P. The innate biologies of adaptive antigen receptors. Annu. Rev. Immunol. 38, 487–510 (2020).

    Article  PubMed  CAS  Google Scholar 

  4. Gutierrez-Arcelus, M. et al. Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat. Commun. 10, 687 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Crosby, C. M. & Kronenberg, M. Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol. 18, 559–574 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hayday, A. C. γδ T cell update: adaptate orchestrators of immune surveillance. J. Immunol. 203, 311–320 (2019).

    Article  PubMed  CAS  Google Scholar 

  7. Amini, A., Pang, D., Hackstein, C. P. & Klenerman, P. MAIT cells in barrier tissues: lessons from immediate neighbors. Front. Immunol. 11, 584521 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nagarajan, N. A. & Kronenberg, M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J. Immunol. 178, 2706–2713 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Godfrey, D. I., Koay, H. F., McCluskey, J. & Gherardin, N. A. The biology and functional importance of MAIT cells. Nat. Immunol. 20, 1110–1128 (2019).

    Article  PubMed  CAS  Google Scholar 

  10. Loh, L. et al. Unraveling the phenotypic states of human innate-like T cells: comparative insights with conventional T cells and mouse models. Cell Rep. 43, 114705 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee, M. et al. Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat. Commun. 11, 4367 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chandra, S. et al. Transcriptomes and metabolism define mouse and human MAIT cell populations. Sci. Immunol. 8, eabn8531 (2023). This work shows that at steady state, mouse MAIT1 and MAIT17 cells have distinct metabolic states, with MAIT17 cells having highly active mitochondria. Human MAIT cells are distinguished by lipid uptake and storage, but their metabolism is distinct to both mouse MAIT1 and MAIT17 cell subsets.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Garner, L. C. et al. Single-cell analysis of human MAIT cell transcriptional, functional and clonal diversity. Nat. Immunol. 24, 1565–1578 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jayasinghe, R. G. et al. Single-cell transcriptomic profiling reveals diversity in human iNKT cells across hematologic tissues. Cell Rep. 44, 115587 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kammann, T. et al. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci. Immunol. 9, eadn2362 (2024).

    Article  PubMed  CAS  Google Scholar 

  16. Gray, J. I. et al. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci. Immunol. 9, eadn3954 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gras, S. et al. T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nat. Commun. 7, 13257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lopez, K. et al. CD1b tetramers broadly detect T cells that correlate with mycobacterial exposure but not tuberculosis disease state. Front. Immunol. 11, 199 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Van Rhijn, I. et al. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat. Immunol. 14, 706–713 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ascui, G. et al. Innateness transcriptome gradients characterize mouse T lymphocyte populations. J. Immunol. 214, 223–237 (2025).

    Article  PubMed  CAS  Google Scholar 

  23. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Bugaut, H. et al. A conserved transcriptional program for MAIT cells across mammalian evolution. J. Exp. Med. 221, e20231487 (2024).

    Article  PubMed  CAS  Google Scholar 

  25. LaMarche, N. M. et al. Distinct iNKT cell populations use IFNγ or ER stress-induced IL-10 to control adipose tissue homeostasis. Cell Metab. 32, 243–258.e246 (2020). This paper demonstrates that intracellular lipid accumulation in a subset of mouse iNKT cells in adipose tissue induces a stress response that drives IL-10, which is important for adipose tissue homeostasis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sag, D., Krause, P., Hedrick, C. C., Kronenberg, M. & Wingender, G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J. Clin. Invest. 124, 3725–3740 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lynch, L. et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37, 574–587 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lynch, L. et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat. Immunol. 16, 85–95 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. Murray, M. P. et al. Transcriptome and chromatin landscape of iNKT cells are shaped by subset differentiation and antigen exposure. Nat. Commun. 12, 1446 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chang, P. P. et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol. 13, 35–43 (2011).

    Article  PubMed  Google Scholar 

  31. Rahimpour, A. et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095–1108 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Carolan, E. et al. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J. Immunol. 194, 5775–5780 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. Boulouis, C. et al. Human MAIT cell response profiles biased toward IL-17 or IL-10 are distinct effector states directed by the cytokine milieu. Proc. Natl Acad. Sci. USA 122, e2414230122 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rhodes, K. A., Andrew, E. M., Newton, D. J., Tramonti, D. & Carding, S. R. A subset of IL-10-producing γδ T cells protect the liver from Listeria-elicited, CD8+ T cell-mediated injury. Eur. J. Immunol. 38, 2274–2283 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ferhat, M. H. et al. The impact of invariant NKT cells in sterile inflammation: the possible contribution of the alarmin/cytokine IL-33. Front. Immunol. 9, 2308 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Engel, I. et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat. Immunol. 17, 728–739 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gapin, L. Development of invariant natural killer T cells. Curr. Opin. Immunol. 39, 68–74 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ngai, H. et al. LEF1 drives a central memory program and supports antitumor activity of natural killer T cells. Cancer Immunol. Res. 11, 171–183 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tian, G. et al. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J. Clin. Invest. 126, 2341–2355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Gold, M. C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    Article  PubMed  Google Scholar 

  47. Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Ito, E. et al. Sulfated bile acid is a host-derived ligand for MAIT cells. Sci. Immunol. 9, eade6924 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cui, Y. et al. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Invest. 125, 4171–4185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Loh, L. et al. MAIT cells exacerbate chronic inflammation in a genetically diverse murine model of spontaneous colitis. Mucosal Immunol. 18, 958–972 (2025).

    Article  PubMed  CAS  Google Scholar 

  52. Provine, N. M. & Klenerman, P. MAIT cells in health and disease. Annu. Rev. Immunol. 38, 203–228 (2020).

    Article  PubMed  CAS  Google Scholar 

  53. Leng, T. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep. 28, 3077–3091.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lamichhane, R. et al. TCR- or cytokine-activated CD8+ mucosal-associated invariant T cells are rapid polyfunctional effectors that can coordinate immune responses. Cell Rep. 28, 3061–3076.e5 (2019).

    Article  PubMed  CAS  Google Scholar 

  55. Hinks, T. S. C. et al. Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans reveals tissue repair functionality. Cell Rep. 28, 3249–3262.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Lu, B. et al. IL-17 production by tissue-resident MAIT cells is locally induced in children with pneumonia. Mucosal Immunol. 13, 824–835 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yamana, S. et al. Mucosal-associated invariant T cells have therapeutic potential against ocular autoimmunity. Mucosal Immunol. 15, 351–361 (2022).

    Article  PubMed  CAS  Google Scholar 

  59. Gibbs, A. et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 10, 35–45 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Kelly, J. et al. Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers. Immunol. Cell Biol. 97, 689–699 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chien, Y. H., Meyer, C. & Bonneville, M. γδ T cells: first line of defense and beyond. Annu. Rev. Immunol. 32, 121–155 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Hu, Y. et al. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal. Transduct. Target. Ther. 8, 434 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Qu, G. et al. Comparing mouse and human tissue-resident γδ T cells. Front. Immunol. 13, 891687 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Prinz, I., Silva-Santos, B. & Pennington, D. J. Functional development of γδ T cells. Eur. J. Immunol. 43, 1988–1994 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Davey, M. S., Willcox, C. R., Baker, A. T., Hunter, S. & Willcox, B. E. Recasting human Vδ1 lymphocytes in an adaptive role. Trends Immunol. 39, 446–459 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Puan, K. J. et al. Preferential recognition of a microbial metabolite by human Vγ2Vδ2 T cells. Int. Immunol. 19, 657–673 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218.e17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vantourout, P. et al. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology. Proc. Natl Acad. Sci. USA 115, 1039–1044 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Rigau, M., Uldrich, A. P. & Behren, A. Targeting butyrophilins for cancer immunotherapy. Trends Immunol. 42, 670–680 (2021).

    Article  PubMed  CAS  Google Scholar 

  71. Yuan, L. et al. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 621, 840–848 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Karunakaran, M. M. et al. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat. Commun. 14, 7617 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Makowski, L., Chaib, M. & Rathmell, J. C. Immunometabolism: from basic mechanisms to translation. Immunol. Rev. 295, 5–14 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. O’Sullivan, D. The metabolic spectrum of memory T cells. Immunol. Cell Biol. 97, 636–646 (2019).

    Article  PubMed  Google Scholar 

  75. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jameson, S. C., Hogquist, K. A. & Bevan, M. J. Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126 (1995).

    Article  PubMed  CAS  Google Scholar 

  77. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).

    Article  Google Scholar 

  78. Zhang, M. et al. Metabolic regulation of T cell development. Front. Immunol. 13, 946119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wilfahrt, D. & Delgoffe, G. M. Metabolic waypoints during T cell differentiation. Nat. Immunol. 25, 206–217 (2024).

    Article  PubMed  CAS  Google Scholar 

  80. Clarke, A. J. & Simon, A. K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 19, 170–183 (2019).

    Article  PubMed  CAS  Google Scholar 

  81. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Riffelmacher, T. & Simon, A. K. Mechanistic roles of autophagy in hematopoietic differentiation. FEBS J. 284, 1008–1020 (2017).

    Article  PubMed  CAS  Google Scholar 

  83. Riffelmacher, T., Richter, F. C. & Simon, A. K. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy 14, 199–206 (2018).

    Article  PubMed  CAS  Google Scholar 

  84. Wei, D. G. et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202, 239–248 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Seach, N. et al. Double-positive thymocytes select mucosal-associated invariant T cells. J. Immunol. 191, 6002–6009 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Oh-Hora, M. et al. Agonist-selected T cell development requires strong T cell receptor signaling and store-operated calcium entry. Immunity 38, 881–895 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Legoux, F. et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366, 494–499 (2019).

    Article  PubMed  CAS  Google Scholar 

  89. Veillette, A., Dong, Z. & Latour, S. Consequence of the SLAM–SAP signaling pathway in innate-like and conventional lymphocytes. Immunity 27, 698–710 (2007).

    Article  PubMed  CAS  Google Scholar 

  90. Nunez-Cruz, S. et al. Differential requirement for the SAP–Fyn interaction during NK T cell development and function. J. Immunol. 181, 2311–2320 (2008).

    Article  PubMed  CAS  Google Scholar 

  91. Koay, H. F. et al. A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Sci. Immunol. 4, eaay6039 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nichols, K. E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11, 340–345 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Salou, M., Legoux, F. & Lantz, O. MAIT cell development in mice and humans. Mol. Immunol. 130, 31–36 (2021).

    Article  PubMed  CAS  Google Scholar 

  95. Constantinides, M. G. & Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25, 161–167 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Engel, I. & Kronenberg, M. Transcriptional control of the development and function of Vα14i NKT cells. Curr. Top. Microbiol. Immunol. 381, 51–81 (2014).

    PubMed  Google Scholar 

  97. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zhang, L. et al. Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. J. Immunol. 193, 1759–1765 (2014). This analysis of RAPTOR-deficient mice shows that mTORC1 is required for the differentiation of mouse iNKT cells but not of CD4+ and CD8+ thymocytes, which illustrates the unique metabolic requirements of iNKT cell differentiation.

    Article  PubMed  CAS  Google Scholar 

  99. Prevot, N. et al. Mammalian target of rapamycin complex 2 regulates invariant NKT cell development and function independent of promyelocytic leukemia zinc-finger. J. Immunol. 194, 223–230 (2015).

    Article  PubMed  CAS  Google Scholar 

  100. Wei, J., Yang, K. & Chi, H. Cutting edge: discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. J. Immunol. 193, 4297–4301 (2014). This analysis of RICTOR-deficient mice shows the role of mTORC2 in iNKT cell differentiation, with a selective depletion of iNKT17 cells, which depend on PTEN regulation of mTORC2.

    Article  PubMed  CAS  Google Scholar 

  101. Park, H., Tsang, M., Iritani, B. M. & Bevan, M. J. Metabolic regulator Fnip1 is crucial for iNKT lymphocyte development. Proc. Natl Acad. Sci. USA 111, 7066–7071 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Salio, M. et al. Essential role for autophagy during invariant NKT cell development. Proc. Natl Acad. Sci. USA 111, E5678–E5687 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Pei, B. et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J. Immunol. 194, 5872–5884 (2015).

    Article  PubMed  CAS  Google Scholar 

  104. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, e03706 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Raynor, J. L. et al. Hippo/Mst signaling coordinates cellular quiescence with terminal maturation in iNKT cell development and fate decisions. J. Exp. Med. 217, e20191157 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Weng, X. et al. Mitochondrial metabolism is essential for invariant natural killer T cell development and function. Proc. Natl Acad. Sci. USA 118, e2021385118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kanno, T. et al. ACC1-mediated fatty acid biosynthesis intrinsically controls thymic iNKT cell development. Int. Immunol. 36, 129–139 (2024).

    Article  PubMed  CAS  Google Scholar 

  109. Koh, J. et al. De novo fatty-acid synthesis protects invariant NKT cells from cell death, thereby promoting their homeostasis and pathogenic roles in airway hyperresponsiveness. eLife 12, RP87536 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhao, M. et al. Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO J. 40, e107901 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Pyaram, K. et al. Keap1–Nrf2 system plays an important role in invariant natural killer T cell development and homeostasis. Cell Rep. 27, 699–707 e694 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sok, S. P. M. et al. Gpx4 regulates invariant NKT cell homeostasis and function by preventing lipid peroxidation and ferroptosis. J. Immunol. 213, 941–951 (2024).

    Article  PubMed  CAS  Google Scholar 

  113. Koay, H. F., Godfrey, D. I. & Pellicci, D. G. Development of mucosal-associated invariant T cells. Immunol. Cell Biol. 96, 598–606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tao, H. et al. Differential controls of MAIT cell effector polarization by mTORC1/mTORC2 via integrating cytokine and costimulatory signals. Nat. Commun. 12, 2029 (2021). This study shows that, similar to other mouse innate-like T cells, differentiation of mouse MAIT1 and MAIT17 cell subsets differentially depends on mTORCs, with MAIT17 cells more dependent on mTORC2, integrating signals from cytokines such as IL-1β and IL-23 to drive mTORC2 activation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Salou, M. et al. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med. 216, 133–151 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Harsha Krovi, S. et al. Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nat. Commun. 11, 6238 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Lee, Y. J. et al. Lineage-specific effector signatures of invariant NKT cells are shared amongst γδ T, innate lymphoid, and TH cells. J. Immunol. 197, 1460–1470 (2016).

    Article  PubMed  CAS  Google Scholar 

  118. Lopes, N. et al. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat. Immunol. 22, 179–192 (2021). Mouse γδ T cell subsets have different metabolic features that develop in the thymus; γδT1 cells depend on glycolysis and stronger TCR signals, whereas γδT17 cells have increased mitochondrial mass and activity. γδT17 cell numbers are increased in obese mice and promote tumour growth.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Munoz-Ruiz, M. et al. TCR signal strength controls thymic differentiation of discrete proinflammatory gammadelta T cell subsets. Nat. Immunol. 17, 721–727 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Yang, Q. et al. Roles of mTORC1 and mTORC2 in controlling gammadelta T1 and gammadelta T17 differentiation and function. Cell Death Differ. 27, 2248–2262 (2020). This research shows that both mouse γδT1 and γδT17 cells require mTORC1 for differentiation, but analysis of RICTOR-deficient mice indicates that mTORC2 deficiency selectively inhibits the generation of γδT17 cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Xiao, Z. et al. Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis. Cell Mol. Immunol. 21, 546–560 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Yang, K. et al. Metabolic signaling directs the reciprocal lineage decisions of αβ and γδ T cells. Sci. Immunol. 3, eaas9818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Blanco, D. B. et al. PTEN directs developmental and metabolic signaling for innate-like T cell fate and tissue homeostasis. Nat. Cell Biol. 24, 1642–1654 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Siska, P. J. & Rathmell, J. C. Metabolic signaling drives IFN-γ. Cell Metab. 24, 651–652 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Frizzell, H. et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, eaay9283 (2020).

    Article  PubMed  CAS  Google Scholar 

  130. Reina-Campos, M. et al. Metabolic programs of T cell tissue residency empower tumour immunity. Nature 621, 179–187 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Salerno, F. et al. Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nat. Immunol. 19, 828–837 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Meermeier, E. W. et al. Human lung-resident mucosal-associated invariant T cells are abundant, express antimicrobial proteins, and are cytokine responsive. Commun. Biol. 5, 942 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Riffelmacher, T. & Kronenberg, M. Metabolic triggers of invariant natural killer T-cell activation during sterile autoinflammatory disease. Crit. Rev. Immunol. 40, 367–378 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kumar, A. et al. Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function. Proc. Natl Acad. Sci. USA 116, 7439–7448 (2019). This work shows that mouse splenic iNKT cells have a unique mode of glucose metabolism following antigen activation. Rather than generating lactic acid, they preferentially use the anabolic pentose phosphate pathway for their survival and cytokine production.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Khurana, P. et al. Distinct bioenergetic features of human invariant natural killer T cells enable retained functions in nutrient-deprived states. Front. Immunol. 12, 700374 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Fu, S. et al. Immunometabolism regulates TCR recycling and iNKT cell functions. Sci. Signal. 12, eaau1788 (2019).

    Article  PubMed  CAS  Google Scholar 

  137. Xie, D., Zhu, S. & Bai, L. Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci. China Life Sci. 59, 1290–1296 (2016).

    Article  PubMed  CAS  Google Scholar 

  138. Fu, S. et al. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nat. Commun. 11, 438 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Riffelmacher, T. et al. Divergent metabolic programmes control two populations of MAIT cells that protect the lung. Nat. Cell Biol. 25, 877–891 (2023). This work shows that antigen-adapted or memory-like mouse MAIT17 cells have increased mitochondrial activity. Metabolism influences the number and function of MAIT1 and MAIT17 cell subsets, with MAIT1 cells more dependent on glycolysis and MAIT17 cells more dependent on OXPHOS.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Konjar, S. et al. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci. Immunol. 3, eaan2543 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lamichhane, R. et al. Human liver-derived MAIT cells differ from blood MAIT cells in their metabolism and response to TCR-independent activation. Eur. J. Immunol. 51, 879–892 (2021).

    Article  PubMed  CAS  Google Scholar 

  142. Deschler, S. et al. Polyunsaturated fatty acid-induced metabolic exhaustion and ferroptosis impair the anti-tumour function of MAIT cells in MASLD. J. Hepatol. https://doi.org/10.1016/j.jhep.2025.06.006 (2025). This work shows that MAIT cells lose their antitumour function in metabolic dysfunction-associated steatotic liver disease owing to PUFA-driven lipid peroxide accumulation, which induces metabolic exhaustion and ferroptosis. This reveals a new immunometabolic axis that impairs MAIT cell-mediated cancer surveillance and offers a therapeutic target to enhance liver cancer immunotherapy.

  143. Ryan, E. K. et al. Iron is critical for mucosal-associated invariant T cell metabolism and effector functions. J. Immunol. 212, 1706–1713 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. O’Brien, A. et al. Obesity reduces mTORC1 activity in mucosal-associated invariant T cells, driving defective metabolic and functional responses. J. Immunol. 202, 3404–3411 (2019). This report shows that the activation of peripheral blood human MAIT cells depends on amino acid uptake via the transporter SLC7A5, leading to mTORC1 activation, enhanced glucose uptake and glycolysis. All of these responses are decreased in MAIT cells from individuals with obesity.

    Article  PubMed  Google Scholar 

  145. Zhou, C. Y. et al. Peripheral blood MR1 tetramer-positive mucosal-associated invariant T-cell function is modulated by mammalian target of rapamycin complex 1 in patients with active tuberculosis. Immunology 173, 497–510 (2024).

    Article  PubMed  CAS  Google Scholar 

  146. Zinser, M. E. et al. Human MAIT cells show metabolic quiescence with rapid glucose-dependent upregulation of granzyme B upon stimulation. Immunol. Cell Biol. 96, 666–674 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Cassidy, F. C. et al. Glycogen-fuelled metabolism supports rapid mucosal-associated invariant T cell responses. Proc. Natl Acad. Sci. USA 120, e2300566120 (2023). The very early cytokine responses and cytotoxic activity of peripheral blood human MAIT cells depend on their ability to synthesize and store glycogen, and to rapidly break it down after TCR stimulation, a feature they share with memory T cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Kedia-Mehta, N. et al. The proliferation of human mucosal-associated invariant T cells requires a MYC–SLC7A5–glycolysis metabolic axis. Sci. Signal. 16, eabo2709 (2023). This work shows that MAIT cell proliferation and function depend on MYC-regulated amino acid transport and glycolysis, which is relevant to maintain MAIT cell function in obesity.

    Article  PubMed  CAS  Google Scholar 

  149. Howson, L. J. et al. Mucosal-associated invariant T cell effector function is an intrinsic cell property that can be augmented by the metabolic cofactor α-ketoglutarate. J. Immunol. 206, 1425–1435 (2021).

    Article  PubMed  CAS  Google Scholar 

  150. Brien, A. O. et al. Targeting mitochondrial dysfunction in MAIT cells limits IL-17 production in obesity. Cell Mol. Immunol. 17, 1193–1195 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Douguet, L. et al. Nitric oxide synthase 2 improves proliferation and glycolysis of peripheral γδ T cells. PLoS One 11, e0165639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Laird, R. M., Wolf, B. J., Princiotta, M. F. & Hayes, S. M. γδ T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a Listeria model of infection independently of CD28 costimulation. PLoS One 8, e63178 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Kao, Y. S. et al. Metabolic reprogramming of interleukin-17-producing γδ T cells promotes ACC1-mediated de novo lipogenesis under psoriatic conditions. Nat. Metab. 7, 966–984 (2025). Psoriatic inflammation drives γδT17 cells to adopt aerobic glycolysis and fatty acid synthesis via ACC1, which mediates IL-17A production and inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ibusuki, A., Kawai, K., Nitahara-Takeuchi, A., Arguello, R. J. & Kanekura, T. TCR signaling and cellular metabolism regulate the capacity of murine epidermal γδ T cells to rapidly produce IL-13 but not IFN-γ. Front. Immunol. 15, 1361139 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Aehnlich, P. et al. Glycolysis inhibition affects proliferation and cytotoxicity of Vγ9Vδ2 T cells expanded for adoptive cell therapy. Cytotherapy 26, 1033–1045 (2024).

    Article  PubMed  CAS  Google Scholar 

  156. Mu, X. et al. Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol. Immunol. 19, 944–956 (2022). In Vγ9Vδ2 human γδ T cells, cytolytic capacity is inhibited by glycolysis generating excess lactate which inhibits AMPK. Excess lactic acid also inhibits mouse iNKT cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Ikejiri, A. et al. Dynamic regulation of TH17 differentiation by oxygen concentrations. Int. Immunol. 24, 137–146 (2012).

    Article  PubMed  CAS  Google Scholar 

  159. Chou, T. F. et al. Tumour suppressor death-associated protein kinase targets cytoplasmic HIF-1α for TH17 suppression. Nat. Commun. 7, 11904 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Xu, K. et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 54, 976–987.e7 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Xu, C. et al. Expansion of MAIT cells in the combined absence of NKT and γδ-T cells. Mucosal Immunol. 16, 446–461 (2023).

    Article  PubMed  Google Scholar 

  162. Lee, Y. J. et al. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43, 566–578 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Clancy-Thompson, E. et al. Transnuclear mice reveal Peyer’s patch iNKT cells that regulate B-cell class switching to IgG1. EMBO J. 38, e101260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lebrusant-Fernandez, M. et al. IFN-γ-dependent regulation of intestinal epithelial homeostasis by NKT cells. Cell Rep. 43, 114948 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Nielsen, M. M., Witherden, D. A. & Havran, W. L. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733–745 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Gao, M. & Zhao, X. Insights into the tissue repair features of MAIT cells. Front. Immunol. 15, 1432651 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Aguiar, C. F. et al. Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury. Cell Rep. 42, 112035 (2023). This work shows that adipose tissue iNKT cells have distinct metabolism compared with those in the spleen and liver. Adipose tissue iNKT cells depend on AMPK for IL-10 production, which is important for adipose tissue homeostasis.

    Article  PubMed  CAS  Google Scholar 

  168. Ko, J. S. et al. Palmitate inhibits arthritis by inducing t-bet and gata-3 mRNA degradation in iNKT cells via IRE1α-dependent decay. Sci. Rep. 7, 14940 (2017). This work shows that increased palmitate induces an endoplasmic reticulum stress response in iNKT cells that leads to the degradation of transcription factors that drive IFNγ and IL-4 synthesis, which ameliorates arthritis in a serum transfer mouse model.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Newton, R., Priyadharshini, B. & Turka, L. A. Immunometabolism of regulatory T cells. Nat. Immunol. 17, 618–625 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Cheng, X. et al. Long-chain acylcarnitines induce senescence of invariant natural killer T cells in hepatocellular carcinoma. Cancer Res. 83, 582–594 (2023).

    Article  PubMed  CAS  Google Scholar 

  171. Bruno, M. E. C. et al. Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. Geroscience 44, 1761–1778 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Khairallah, C. et al. A blend of broadly-reactive and pathogen-selected Vγ4 Vδ1 T cell receptors confer broad bacterial reactivity of resident memory γδ T cells. Mucosal Immunol. 15, 176–187 (2022).

    Article  PubMed  CAS  Google Scholar 

  173. Comeau, K., Paradis, P. & Schiffrin, E. L. Human and murine memory γδ T cells: evidence for acquired immune memory in bacterial and viral infections and autoimmunity. Cell Immunol. 357, 104217 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Chen, Z. et al. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol. 10, 58–68 (2017).

    Article  PubMed  CAS  Google Scholar 

  175. King, I. L. et al. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat. Immunol. 13, 44–50 (2011).

    Article  PubMed  Google Scholar 

  176. Shimizu, K. et al. KLRG+ invariant natural killer T cells are long-lived effectors. Proc. Natl Acad. Sci. USA 111, 12474–12479 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Parekh, V. V. et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 115, 2572–2583 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Zhang, H. et al. Antigen priming induces functional reprogramming in iNKT cells via metabolic and epigenetic regulation: an insight into iNKT cell-based antitumor immunotherapy. Cancer Immunol. Res. 11, 1598–1610 (2023).

    Article  PubMed  Google Scholar 

  179. Kamii, Y. et al. IL-27 regulates the differentiation of follicular helper NKT cells via metabolic adaptation of mitochondria. Proc. Natl Acad. Sci. USA 121, e2313964121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Zeng, H. & Chi, H. mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr. Opin. Immunol. 46, 103–111 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Lukasik, Z., Elewaut, D. & Venken, K. MAIT cells come to the rescue in cancer immunotherapy? Cancers 12, 413 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ruf, B., Greten, T. F. & Korangy, F. Innate lymphoid cells and innate-like T cells in cancer—at the crossroads of innate and adaptive immunity. Nat. Rev. Cancer 23, 351–371 (2023).

    Article  PubMed  CAS  Google Scholar 

  184. Courtney, A. N., Tian, G. & Metelitsa, L. S. Natural killer T cells and other innate-like T lymphocytes as emerging platforms for allogeneic cancer cell therapy. Blood 141, 869–876 (2023).

    Article  PubMed  CAS  Google Scholar 

  185. Harmon, C. et al. γδ T cell dichotomy with opposing cytotoxic and wound healing functions in human solid tumors. Nat. Cancer 4, 1122–1137 (2023).

    Article  PubMed  CAS  Google Scholar 

  186. Corkish, C., Aguiar, C. F. & Finlay, D. K. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat. Commun. 15, 10424 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007).

    Article  PubMed  CAS  Google Scholar 

  188. Davey, M. S. et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9 subsets. Nat. Commun. 9, 1760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Marga and Walter Boll foundation and the Virnich foundation for supporting their research, and acknowledge grants from the US National Institutes of Health (P30 DK120515, R01 AI172112) and a grant from Kyowa Kirin, Inc. (KKNA-Kyowa Kirin North America).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching information for the article, writing and editing.

Corresponding authors

Correspondence to Thomas Riffelmacher or Mitchell Kronenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Lucy Garner, Andrew Hogan, Paul Klenerman, Hui-Fern Koay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dendritic epidermal T cells

A population of unique, dendritic-shaped γδ T cells expressing an invariant Vγ5Vδ1 T cell receptor (TCR). They are selected in the thymus during fetal development in a SKINT1-dependent manner and migrate to the skin epidermis, where they become long-lived, self-renewing immune sentinels that respond to stressed or damaged keratinocytes.

Fatty acid oxidation

(FAO; also known as β-oxidation). The catabolic process by which fatty acid molecules are broken down inside mitochondria to generate acetyl-coenzyme A (acetyl-CoA). Acetyl-CoA enters the tricarboxylic acid cycle (TCA cycle), generating NADH and FADH2, which are electron carriers used in the electron transport chain.

Glycolysis

A set of metabolic reactions that occur in the cytoplasm and convert glucose to pyruvate or lactate.

Innate-like T cells

(Also known as unconventional T cells). A special group of T cells that acquire effector functions in the thymus, provide rapid immune responses and are predominantly resident in tissues. They have invariant or semi-invariant T cell receptors (TCRs), and they recognize types of antigens that are different from the peptides presented by polymorphic MHC class I and class II proteins to conventional T cells.

Invariant natural killer T cells

(iNKT cells). An innate-like T cell subset that is a specialized lineage of T cells with invariant T cell receptor (TCR) α-chains. They recognize lipid antigens presented by CD1d molecules and rapidly produce cytokines. They play crucial roles in immune responses against infections and other contexts.

Mitochondrial membrane potential

An electric potential difference across the inner mitochondrial membrane that is crucial for ATP production. The potential drives protons back across the membrane through ATP synthase, enabling the phosphorylation of ADP to ATP. Changes in mitochondrial membrane potential are often indicators of mitochondrial activity, health and function, and can be used as a proxy for the mitochondrial energy status. A loss of mitochondrial membrane potential can indicate mitochondrial silencing, removal or dysfunction.

mTOR

The catalytic subunit of two structurally distinct complexes: mTORC1 and mTORC2. mTORC1 includes mTOR, RAPTOR, mLST8, PRAS40 and DEPTOR; it regulates cell growth and metabolism; and is inhibited by rapamycin. mTORC2 is composed of mTOR, RICTOR, mLST8, mSIN1, PROTOR1, PROTOR2 and DEPTOR; it controls cell survival and cytoskeletal organization; and is unaffected by rapamycin.

Mucosal-associated invariant T cells

(MAIT cells). An innate-like T cell subset characterized by their invariant T cell receptor (TCR) α-chain. They recognize vitamin B metabolites presented by MR1 protein. They may also recognize other antigens, such as sulfated cholesterol derivatives. They provide rapid responses that effect other cell types and are particularly frequent among human intrahepatic lymphocytes.

Oxidative phosphorylation

(OXPHOS). The mitochondrial pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy to produce ATP. It depends on the reducing agents NADH and FADH2 that are generated during the tricarboxylic acid cycle (TCA cycle) to build a proton gradient across the inner mitochondrial membrane. This mitochondrial membrane potential fuels the electron transfer chain that is coupled to the synthesis of ATP through this electrochemical transmembrane gradient.

Tricarboxylic acid cycle

(TCA cycle). A group of chemical reactions within mitochondria that help generate chemical energy in the form of ATP, which is provided by oxidizing the acetyl group of acetyl-coenzyme A (acetyl-CoA). The TCA cycle is involved in the metabolism of proteins, fats and carbohydrates.

γδ T cells

A population of T cells characterized by expression of T cell receptors (TCRs) encoded by gene families with a limited repertoire of V genes. Not all γδ T cells are innate-like T cells; for example, human Vδ1+ γδ T cells or Vγ9Vδ2+ γδ T cells display unexpected parallels with conventional αβ T cells, whereas, Vγ9+Vδ2+ γδ T cells are more innate-like. γδ T cells are found in tissues and the blood, and the prevalence of different Vγ and Vδ genes varies according to the cellular location. They recognize a broad range of antigens, but responses to processed peptides presented by polymorphic MHC molecules are not typical. Butyrophilins play a role in the activation of several γδ T cell subsets.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riffelmacher, T., Kronenberg, M. Metabolic control of innate-like T cells. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01219-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01219-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research