Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microenvironmental regulation of solid tumour resistance to CAR T cell therapy

Abstract

Chimeric antigen receptor (CAR) T cell therapy holds significant promise for the treatment of cancer; however, its efficacy in solid tumours is substantially hindered by the immunosuppressive tumour microenvironment (TME). Solid tumours can resist immunotherapy by impairing T cell trafficking, function and persistence. One of the initial obstacles that CAR T cells encounter is the abnormal tumour vasculature, which restricts efficient T cell infiltration, further compounded by a dense extracellular matrix. CAR T cells that do infiltrate the tumours are outnumbered by immunosuppressive cells such as regulatory T cells, myeloid-derived suppressor cells and tumour-associated macrophages. Additionally, tumour cells can contribute to CAR T cell resistance by upregulating immune checkpoint molecules, such as PDL1 and CTLA4, and engage in metabolic competition. In this Review, we discuss how cellular and non-cellular components of the TME impair CAR T cell therapy and consider potential strategies to improve CAR T cell therapies for solid tumours, either by reprogramming the TME or by engineering CAR T cells to resist the immunosuppressive effects of the TME.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular and non-cellular components of the TME induce tumour resistance to CAR T cell therapy.
Fig. 2: The tumour vasculature inhibits CAR T cell activity.
Fig. 3: Therapeutic strategies targeted at the ECM.
Fig. 4: Hijacking TME cues to enhance CAR T cell efficacy and safety.
Fig. 5: The therapeutic index of CAR T cell therapy.

Similar content being viewed by others

References

  1. Roerden, M. & Spranger, S. Cancer immune evasion, immunoediting and intratumour heterogeneity. Nat. Rev. Immunol. 25, 353–369 (2025).

    Article  PubMed  CAS  Google Scholar 

  2. Mao, X. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer 20, 131 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cheng, K. et al. Tumor-associated macrophages in liver cancer: from mechanisms to therapy. Cancer Commun. 42, 1112–1140 (2022).

    Article  Google Scholar 

  4. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article  PubMed  CAS  Google Scholar 

  5. Ozga, A. J., Chow, M. T. & Luster, A. D. Chemokines and the immune response to cancer. Immunity 54, 859–874 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Fan, Y. Vascular detransformation for cancer therapy. Trends Cancer 5, 460–463 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents—overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).

    Article  PubMed  Google Scholar 

  9. Ma, W. et al. Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat. Cancer 2, 83–97 (2021).

    Article  PubMed  CAS  Google Scholar 

  10. Huang, M. et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J. Clin. Invest. 126, 1801–1814 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu, T. et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat. Commun. 9, 3439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huijbers, E. J. M., Khan, K. A., Kerbel, R. S. & Griffioen, A. W. Tumors resurrect an embryonic vascular program to escape immunity. Sci. Immunol. 7, eabm6388 (2022).

    Article  PubMed  CAS  Google Scholar 

  13. Wang, Q. et al. Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. Nat. Commun. 9, 559 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mulligan, J. K. & Young, M. R. Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol. Immunother. 59, 267–277 (2010).

    Article  PubMed  CAS  Google Scholar 

  15. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug. Discov. 6, 273–286 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dong, X. et al. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer 11, e005583 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chae, S. S. et al. Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin. Cancer Res. 16, 3618–3627 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Park, J. S. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30, 953–967 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Kim, J. et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J. Clin. Invest. 127, 3441–3461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Datta, M. et al. Losartan controls immune checkpoint blocker-induced edema and improves survival in glioblastoma mouse models. Proc. Natl Acad. Sci. USA 120, e2219199120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Maes, H. et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26, 190–206 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Lu, Z. et al. Modified C-type natriuretic peptide normalizes tumor vasculature, reinvigorates antitumor immunity, and improves solid tumor therapies. Sci. Transl. Med. 16, eadn0904 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cleveland, A. H. & Fan, Y. Reprogramming endothelial cells to empower cancer immunotherapy. Trends Mol. Med. 30, 126–135 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

    Article  PubMed  Google Scholar 

  27. Cantelmo, A. R. et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968–985 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shan, Y. et al. Targeting tumor endothelial hyperglycolysis enhances immunotherapy through remodeling tumor microenvironment. Acta Pharm. Sin. B 12, 1825–1839 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang, D. et al. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab. 35, 517–534.e8 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Milutinovic, S., Abe, J., Godkin, A., Stein, J. V. & Gallimore, A. The dual role of high endothelial venules in cancer progression versus immunity. Trends Cancer 7, 214–225 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop. Cancer Cell 40, 1600–1618.e10 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fang, W. et al. Ivonescimab plus chemotherapy in non-small cell lung cancer with EGFR variant: a randomized clinical trial. JAMA 332, 561–570 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021).

    Article  PubMed  CAS  Google Scholar 

  36. Cho, Y. & Doh, J. The extracellular matrix in solid tumor immunotherapy. Trends Immunol. 45, 705–714 (2024).

    Article  PubMed  CAS  Google Scholar 

  37. Lämmermann, T. & Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).

    Article  PubMed  Google Scholar 

  38. Wolf, K., Müller, R., Borgmann, S., Bröcker, E. B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. Peng, D. H. et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nat. Commun. 11, 4520 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Johnston, R. J. et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574, 565–570 (2019).

    Article  PubMed  CAS  Google Scholar 

  41. Luo, X. et al. Lymphocytes perform reverse adhesive haptotaxis mediated by LFA-1 integrins. J. Cell. Sci. 16, jcs242883 (2020).

    Article  Google Scholar 

  42. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. He, H., Zhang, S., Tighe, S., Son, J. & Tseng, S. C. G. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype. J. Biol. Chem. 288, 25792–25803 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Larsen, A. M. H. et al. Collagen density modulates the immunosuppressive functions of macrophages. J. Immunol. 205, 1461–1472 (2020).

    Article  PubMed  CAS  Google Scholar 

  45. Hongu, T. et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. Nat. Cancer 3, 486–504 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C. & Buckels, J. A. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J. Clin. Oncol. 19, 3447–3455 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. Bramhall, S. R. et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br. J. Cancer 87, 161–167 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Goffin, J. R. et al. Phase I trial of the matrix metalloproteinase inhibitor marimastat combined with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 11, 3417–3424 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. Moore, M. J. et al. Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 21, 3296–3302 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Hingorani, S. R. et al. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 36, 359–366 (2018).

    Article  PubMed  CAS  Google Scholar 

  51. McKee, T. D. et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 66, 2509–2513 (2006).

    Article  PubMed  CAS  Google Scholar 

  52. Miller, B. W. et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med. 7, 1063–1076 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Liu, J. et al. A highly selective humanized DDR1 mAb reverses immune exclusion by disrupting collagen fiber alignment in breast cancer. J. Immunother. Cancer 11, e006720 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zheng, R. et al. Specific ECM degradation potentiates the antitumor activity of CAR-T cells in solid tumors. Cell Mol. Immunol. 21, 1491–1504 (2024).

    Article  PubMed  CAS  Google Scholar 

  57. Allen, G. M. & Lim, W. A. Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nat. Rev. Cancer 22, 693–702 (2022).

    Article  PubMed  CAS  Google Scholar 

  58. Hamieh, M., Mansilla-Soto, J., Rivière, I. & Sadelain, M. Programming CAR T cell tumor recognition: tuned antigen sensing and logic gating. Cancer Discov. 13, 829–843 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pines, M., Knopov, V., Genina, O., Lavelin, I. & Nagler, A. Halofuginone, a specific inhibitor of collagen type I synthesis, prevents dimethylnitrosamine-induced liver cirrhosis. J. Hepatol. 27, 391–398 (1997).

    Article  PubMed  CAS  Google Scholar 

  60. Zion, O. et al. Inhibition of transforming growth factor β signaling by halofuginone as a modality for pancreas fibrosis prevention. Pancreas 38, 427–435 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Premkumar, K. & Shankar, B. S. TGF-βR inhibitor SB431542 restores immune suppression induced by regulatory B–T cell axis and decreases tumour burden in murine fibrosarcoma. Cancer Immunol. Immunother. 70, 153–168 (2021).

    Article  PubMed  CAS  Google Scholar 

  62. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-β (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One 9, e90353 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Takai, K., Le, A., Weaver, V. M. & Werb, Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7, 82889–82901 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Kozono, S. et al. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 73, 2345–2356 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Froeling, F. E. et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology 141, 1486–1497.e1–e14 (2011).

    Article  PubMed  CAS  Google Scholar 

  67. McAndrews, K. M. et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 12, 1580–1597 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Wang, L. C. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Liu, G., Rui, W., Zhao, X. & Lin, X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol. Immunol. 18, 1085–1095 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).

    Article  PubMed  CAS  Google Scholar 

  72. Haas, A. R. et al. Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells. Mol. Ther. 31, 2309–2325 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Togashi, Y., Shitara, K. & Nishikawa, H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356–371 (2019).

    Article  PubMed  CAS  Google Scholar 

  74. Lasser, S. A., Ozbay Kurt, F. G., Arkhypov, I., Utikal, J. & Umansky, V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat. Rev. Clin. Oncol. 21, 147–164 (2024).

    Article  PubMed  CAS  Google Scholar 

  75. Blériot, C., Dunsmore, G., Alonso-Curbelo, D. & Ginhoux, F. A temporal perspective for tumor-associated macrophage identities and functions. Cancer Cell 42, 747–758 (2024).

    Article  PubMed  Google Scholar 

  76. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug. Discov. 17, 887–904 (2018).

    Article  PubMed  CAS  Google Scholar 

  78. Cinier, J. et al. Recruitment and expansion of Tregs cells in the tumor environment — how to target them? Cancers (Basel) 13, 1850 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Li, C., Jiang, P., Wei, S., Xu, X. & Wang, J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 19, 116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    Article  PubMed  CAS  Google Scholar 

  85. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tanaka, A. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 27, 109–118 (2017).

    Article  PubMed  CAS  Google Scholar 

  88. Gambichler, T. et al. Decline of programmed death-1-positive circulating T regulatory cells predicts more favourable clinical outcome of patients with melanoma under immune checkpoint blockade. Br. J. Dermatol. 182, 1214–1220 (2020).

    Article  PubMed  CAS  Google Scholar 

  89. Duell, J. et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 31, 2181–2190 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Casey, M. et al. Regulatory T cells hamper the efficacy of T-cell-engaging bispecific antibody therapy. Haematologica 109, 787–798 (2024).

    Article  PubMed  CAS  Google Scholar 

  91. Scholler, N. et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 28, 1872–1882 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Good, Z. et al. Post-infusion CAR Treg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28, 1860–1871 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Marshall, L. A. et al. Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4. J. Immunother. Cancer 8, e000764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jackson, J. J. et al. Discovery of a potent and selective CCR4 antagonist that inhibits Treg trafficking into the tumor microenvironment. J. Med. Chem. 62, 6190–6213 (2019).

    Article  PubMed  CAS  Google Scholar 

  96. Kim, T. M. et al. Phase 2 safety and efficacy of oral CCR4 antagonist FLX475 (tivumecirnon) plus pembrolizumab in subjects with non-small cell lung cancer not previously treated with checkpoint inhibitor. J. Immunother. Cancer 11 (Suppl. 2), Abstract 629-C (2023).

  97. Muzaffar, J. et al. Abstract CT226: phase 2 study of oral CCR4 antagonist FLX475 (tivumecirnon) plus pembrolizumab in subjects with head and neck squamous cell carcinoma (HNSCC) previously treated with checkpoint inhibitor. Cancer Res. 84, CT226 (2024).

    Article  Google Scholar 

  98. Hoelzinger, D. B. et al. Blockade of CCL1 inhibits T regulatory cell suppressive function enhancing tumor immunity without affecting T effector responses. J. Immunol. 184, 6833–6842 (2010).

    Article  PubMed  CAS  Google Scholar 

  99. Villarreal, D. O. et al. Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res. 78, 5340–5348 (2018).

    Article  PubMed  CAS  Google Scholar 

  100. Kim, N. et al. CCR8 as a therapeutic novel target: omics-integrated comprehensive analysis for systematically prioritizing indications. Biomedicines 11, 2910 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Roider, H. G. et al. Selective depletion of tumor-infiltrating regulatory T cells with BAY 3375968, a novel Fc-optimized anti-CCR8 antibody. Clin. Exp. Med. 24, 122 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tan, S. N. et al. Regulatory T cells converted from TH1 cells in tumors suppress cancer immunity via CD39. J. Exp. Med. 222, e20240445(2025).

    Article  PubMed  CAS  Google Scholar 

  103. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    Article  PubMed  CAS  Google Scholar 

  104. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    PubMed  CAS  Google Scholar 

  105. Zammarchi, F. et al. CD25-targeted antibody–drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J. Immunother. Cancer 8, e000860 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Powell, D. J. Jr. et al. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J. Immunol. 179, 4919–4928 (2007).

    Article  PubMed  CAS  Google Scholar 

  107. Onda, M., Kobayashi, K. & Pastan, I. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. Proc. Natl Acad. Sci. USA 116, 4575–4582 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. Tanaka, A. & Sakaguchi, S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol. 49, 1140–1146 (2019).

    Article  PubMed  CAS  Google Scholar 

  110. Ha, D. et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc. Natl Acad. Sci. USA 116, 609–618 (2019).

    Article  PubMed  CAS  Google Scholar 

  111. Arce Vargas, F. et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577–586 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Solomon, I. et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 1, 1153–1166 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Long, X. et al. Targeting JMJD1C to selectively disrupt tumor Treg cell fitness enhances antitumor immunity. Nat. Immunol. 25, 525–536 (2024).

    Article  PubMed  CAS  Google Scholar 

  114. Tanaka, A. et al. Tyrosine kinase inhibitor imatinib augments tumor immunity by depleting effector regulatory T cells. J. Exp. Med. 217, e20191009 (2020).

    Article  PubMed  Google Scholar 

  115. Sun, Y. et al. Depletion of Tregs from CD4+ CAR-T cells enhances the tumoricidal effect of CD8+ CAR-T cells in anti-CD19 CAR-T therapy. FEBS J. 292, 1904–1919 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wellhausen, N. et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci. Transl. Med. 15, eadi1145 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wellhausen, N., Baek, J., Gill, S. I. & June, C. H. Enhancing cellular immunotherapies in cancer by engineering selective therapeutic resistance. Nat. Rev. Can. 24, 614–628 (2024).

    Article  CAS  Google Scholar 

  118. Pan, J. et al. Allogeneic CD5-specific CAR-T therapy for relapsed/refractory T-ALL: a phase 1 trial. Nat. Med. 31, 126–136 (2025).

    Article  PubMed  CAS  Google Scholar 

  119. Oh, B. L. Z. et al. Fratricide-resistant CD7-CAR T cells in T-ALL. Nat. Med. 30, 3687–3696 (2024).

    Article  PubMed  CAS  Google Scholar 

  120. Lozano, T. et al. Searching for peptide inhibitors of T regulatory cell activity by targeting specific domains of FOXP3 transcription factor. Biomedicines 9, 197 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Manrique-Rincón, A. J. et al. Aptamer-mediated transcriptional gene silencing of Fox p 3 inhibits regulatory T cells and potentiates antitumor response. Mol. Ther. Nucleic Acids 25, 143–151 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kofler, D. M. et al. CD28 costimulation impairs the efficacy of a redirected T-cell antitumor attack in the presence of regulatory T cells which can be overcome by preventing Lck activation. Mol. Ther. 19, 760–767 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Suryadevara, C. M. et al. Preventing Lck activation in CAR T cells confers Treg resistance but requires 4-1BB signaling for them to persist and treat solid tumors in nonlymphodepleted hosts. Clin. Cancer Res. 25, 358–368 (2019).

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, Q. et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci. Transl. Med. 13, eabg6986 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Golumba-Nagy, V., Kuehle, J., Hombach, A. A. & Abken, H. CD28-ζ CAR T cells resist TGF-β repression through IL-2 signaling, which can be mimicked by an engineered IL-7 autocrine loop. Mol. Ther. 26, 2218–2230 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kalbasi, A. et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 607, 360–365 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Pezzella, M. et al. Tumor-derived G-CSF induces an immunosuppressive microenvironment in an osteosarcoma model, reducing response to CAR.GD2 T-cells. J. Hematol. Oncol. 17, 127 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Zhu, J. et al. Elevated CD10– G-MDSC-like neutrophils correlate with non-response and poor prognosis of CD19 CAR T-cell therapy for B-cell acute lymphoblastic leukemia. Blood 144, 7163 (2024).

    Article  Google Scholar 

  129. Galli, E. et al. High levels of circulating granulocytic myeloid-derived suppressor cells (G-MDSCs) predict failure of CD19-targeting CAR-T cell therapy. Blood 142, 1015 (2023).

    Article  Google Scholar 

  130. Bullock, K. & Richmond, A. Suppressing MDSC recruitment to the tumor microenvironment by antagonizing CXCR2 to enhance the efficacy of immunotherapy. Cancers (Basel) 13, 6293 (2021).

    Article  PubMed  CAS  Google Scholar 

  131. Dang, Y. et al. GOLM1 drives colorectal cancer metastasis by regulating myeloid-derived suppressor cells. J. Cancer 12, 7158–7166 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Flores-Toro, J. A. et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc. Natl Acad. Sci. USA 117, 1129–1138 (2020).

    Article  PubMed  CAS  Google Scholar 

  133. Yang, L. et al. Blockade of CCR5-mediated myeloid derived suppressor cell accumulation enhances anti-PD1 efficacy in gastric cancer. Immunopharmacol. Immunotoxicol. 40, 91–97 (2018).

    Article  PubMed  CAS  Google Scholar 

  134. Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 579, 284–290 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Zhang, B. et al. Optimized CAR-T therapy based on spatiotemporal changes and chemotactic mechanisms of MDSCs induced by hypofractionated radiotherapy. Mol. Ther. 31, 2105–2119 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Sun, R. et al. Olaparib suppresses MDSC recruitment via SDF1α/CXCR4 axis to improve the anti-tumor efficacy of CAR-T cells on breast cancer in mice. Mol. Ther. 29, 60–74 (2021).

    Article  PubMed  CAS  Google Scholar 

  137. Xiao, Z. et al. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat. Commun. 14, 5110 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  PubMed  CAS  Google Scholar 

  139. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    Article  PubMed  CAS  Google Scholar 

  140. Huang, X., Cui, S. & Shu, Y. Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model. Immunol. Res. 64, 160–170 (2016).

    Article  PubMed  CAS  Google Scholar 

  141. Zheng, Y. et al. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol. Immunol. 54, 74–83 (2013).

    Article  PubMed  CAS  Google Scholar 

  142. Vila-Leahey, A. et al. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncoimmunology 5, e1151591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Fultang, L. et al. MDSC targeting with gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine 47, 235–246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dominguez, G. A. et al. Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin. Cancer Res. 23, 2942–2950 (2017).

    Article  PubMed  CAS  Google Scholar 

  145. Nalawade, S. A. et al. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. J. Immunother. Cancer 9, e003237 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Parihar, R. et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol. Res. 7, 363–375 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Li, H. et al. CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J. Immunother. 43, 16–28 (2020).

    Article  PubMed  CAS  Google Scholar 

  148. Lu, M. et al. Lenvatinib enhances T cell immunity and the efficacy of adoptive chimeric antigen receptor-modified T cells by decreasing myeloid-derived suppressor cells in cancer. Pharmacol. Res. 174, 105829 (2021).

    Article  PubMed  CAS  Google Scholar 

  149. Serafini, P. et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Nagaraj, S. et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin. Cancer Res. 16, 1812–1823 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Hossain, F. et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol. Res. 3, 1236–1247 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Nefedova, Y. et al. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67, 11021–11028 (2007).

    Article  PubMed  CAS  Google Scholar 

  154. Mirza, N. et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Tobin, R. P. et al. Targeting MDSC differentiation using ATRA: a phase I/II clinical trial combining pembrolizumab and all-trans retinoic acid for metastatic melanoma. Clin. Cancer Res. 29, 1209–1219 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Long, A. H. et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 4, 869–880 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Frost, B. F. et al. BTK inhibition prevents the induction of myeloid-derived suppressor cells in malignancy and improves CART function. Blood 144, 909 (2024).

    Article  Google Scholar 

  158. Xu, M., Wang, Y., Xia, R., Wei, Y. & Wei, X. Role of the CCL2–CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif. 54, e13115 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kloosterman, D. J. & Akkari, L. Macrophages at the interface of the co-evolving cancer ecosystem. Cell 186, 1627–1651 (2023).

    Article  PubMed  CAS  Google Scholar 

  160. Takenaka, M. C. et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat. Neurosci. 22, 729–740 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Li, X. et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66, 157–167 (2017).

    Article  PubMed  CAS  Google Scholar 

  162. Wang, Y. et al. mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv. Mater. 33, e2007603 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    Article  PubMed  Google Scholar 

  165. Manji, G. A. et al. A phase I study of the combination of pexidartinib and sirolimus to target tumor-associated macrophages in unresectable sarcoma and malignant peripheral nerve sheath tumors. Clin. Cancer Res. 27, 5519–5527 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Rao, R. et al. Glioblastoma genetic drivers dictate the function of tumor-associated macrophages/microglia and responses to CSF1R inhibition. Neuro Oncol. 24, 584–597 (2022).

    Article  PubMed  CAS  Google Scholar 

  167. Rodriguez-Garcia, A. et al. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat. Commun. 12, 877 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Sánchez-Paulete, A. R. et al. Targeting macrophages with CAR T cells delays solid tumor progression and enhances antitumor immunity. Cancer Immunol. Res. 10, 1354–1369 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Scott, E. M. et al. Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J. Immunother. Cancer 7, 320 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Stromnes, I. M. et al. Differential effects of depleting versus programming tumor-associated macrophages on engineered T cells in pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 7, 977–989 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Winograd, R. et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3, 399–411 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Zeng, Q. & Jewell, C. M. Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy. Curr. Opin. Biotechnol. 60, 138–145 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Poh, A. R. et al. Therapeutic inhibition of the SRC-kinase HCK facilitates T cell tumor infiltration and improves response to immunotherapy. Sci. Adv. 8, eabl7882 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Yang, F. et al. Small-molecule toosendanin reverses macrophage-mediated immunosuppression to overcome glioblastoma resistance to immunotherapy. Sci. Transl. Med. 15, eabq3558 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Yamada-Hunter, S. A. et al. Engineered CD47 protects T cells for enhanced antitumour immunity. Nature 630, 457–465 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Dacek, M. M. et al. Potentiating antibody-dependent killing of cancers with CAR T cells secreting CD47-SIRPα checkpoint blocker. Blood 141, 2003–2015 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Kagoya, Y. Cytokine signaling in chimeric antigen receptor T-cell therapy. Int. Immunol. 36, 49–56 (2024).

    Article  PubMed  CAS  Google Scholar 

  181. Bell, M. & Gottschalk, S. Engineered cytokine signaling to improve CAR T cell effector function. Front. Immunol. 12, 684642 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Svoboda, J. et al. Enhanced CAR T-cell therapy for lymphoma after previous failure. N. Engl. J. Med. 392, 1824–1835 (2025).

    Article  PubMed  CAS  Google Scholar 

  183. Cadilha, B. L. et al. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Sci. Adv. 7, eabi5781 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Noh, K. E. et al. TGF-β/IL-7 chimeric switch receptor-expressing CAR-T cells inhibit recurrence of CD19-positive B cell lymphoma. Int. J. Mol. Sci. 22, 8706 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e21 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Mohammed, S. et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol. Ther. 25, 249–258 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Wilkie, S. et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J. Biol. Chem. 285, 25538–25544 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Tang, N. et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5, e133977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Travis, M. A. & Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    Article  PubMed  CAS  Google Scholar 

  192. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  PubMed  Google Scholar 

  193. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chong, E. A. et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129, 1039–1041 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–856 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Li, S. et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin. Cancer Res. 23, 6982–6992 (2017).

    Article  PubMed  CAS  Google Scholar 

  198. Prosser, M. E., Brown, C. E., Shami, A. F., Forman, S. J. & Jensen, M. C. Tumor PD-L1 co-stimulates primary human CD8+ cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol. Immunol. 51, 263–272 (2012).

    Article  PubMed  CAS  Google Scholar 

  199. Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. James, S. E. et al. Leucine zipper-based immunomagnetic purification of CAR T cells displaying multiple receptors. Nat. Biomed. Eng. 8, 1592–1614 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Qin, L. et al. Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70–CD27 axis. Nat. Commun. 13, 6051 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Lee, Y. H. et al. PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR T cells. Mol. Ther. 30, 579–592 (2022).

    Article  PubMed  CAS  Google Scholar 

  204. Choi, B. D. et al. CRISPR–Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer 7, 304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Agarwal, S. et al. Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells. Immunity 56, 2388–2407.e9 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Rial Saborido, J., Völkl, S., Aigner, M., Mackensen, A. & Mougiakakos, D. Role of CAR T cell metabolism for therapeutic efficacy. Cancers (Basel) 14, 5442 (2022).

    Article  PubMed  CAS  Google Scholar 

  209. Foeng, J., Comerford, I. & McColl, S. R. Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep. Med. 3, 100543 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Whilding, L. M. et al. CAR T-cells targeting the integrin αvβ6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers (Basel) 11, 674 (2019).

    Article  PubMed  CAS  Google Scholar 

  211. Liu, G. et al. CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma. Eur. J. Immunol. 50, 712–724 (2020).

    Article  PubMed  CAS  Google Scholar 

  212. Dai, Z. et al. Ectopic CXCR2 expression cells improve the anti-tumor efficiency of CAR-T cells and remodel the immune microenvironment of pancreatic ductal adenocarcinoma. Cancer Immunol. Immunother. 73, 61 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Johnston, A. C. et al. Engineering self-propelled tumor-infiltrating CAR T cells using synthetic velocity receptors. Preprint at bioRxiv https://doi.org/10.1101/2023.12.13.571595 (2024).

  214. Flugel, C. L. et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat. Rev. Clin. Oncol. 20, 49–62 (2023).

    Article  PubMed  CAS  Google Scholar 

  215. Juillerat, A. et al. An oxygen sensitive self-decision making engineered CAR T-cell. Sci. Rep. 7, 39833 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Vogt, K. C. et al. Microenvironment actuated CAR T cells improve solid tumor efficacy without toxicity. Sci. Adv. 11, eads3403 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Simic, M. S. et al. Programming tissue-sensing T cells that deliver therapies to the brain. Science 386, eadl4237 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Tieu, V. et al. A versatile CRISPR–Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 187, 1278–1295.e20 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Diorio, C. et al. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood 140, 619–629 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Herrera, F. G., Bourhis, J. & Coukos, G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J. Clin. 67, 65–85 (2017).

    PubMed  Google Scholar 

  221. Hauth, F., Ho, A. Y., Ferrone, S. & Duda, D. G. Radiotherapy to enhance chimeric antigen receptor T-cell therapeutic efficacy in solid tumors: a narrative review. JAMA Oncol. 7, 1051–1059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Rodríguez-Ruiz, M. E., Vanpouille-Box, C., Melero, I., Formenti, S. C. & Demaria, S. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. 39, 644–655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Herrera, F. G. et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12, 108–133 (2022).

    Article  PubMed  CAS  Google Scholar 

  224. Ni, H. et al. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. Nat. Cancer 6, 460–473 (2025).

    Article  PubMed  CAS  Google Scholar 

  225. Mai, D. et al. Combined disruption of T cell inflammatory regulators regnase-1 and roquin-1 enhances antitumor activity of engineered human T cells. Proc. Natl Acad. Sci. USA 120, e2218632120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Uslu, U. et al. Chimeric antigen receptor T cells as adjuvant therapy for unresectable adenocarcinoma. Sci. Adv. 9, eade2526 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Lin, H. et al. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J. Hematol. Oncol. 17, 31 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Zhou, Z. et al. Deciphering the tumor immune microenvironment from a multidimensional omics perspective: insight into next-generation CAR-T cell immunotherapy and beyond. Mol. Cancer 23, 131 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Patnaik, A. et al. Preliminary results of a phase 1, first-in-human, dose escalation study of the anti-CCR8 cytolytic antibody, CHS-114 (formerly SRF114) in patients with advanced solid tumors. J. Clin. Oncol. 42, 2664–2664 (2024).

    Article  Google Scholar 

  231. Wei, X. et al. A CD25 × TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. Mol. Ther. 32, 4075–4094 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Yoshida, T. et al. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma. J. Immunother. Cancer 8, e000234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Geyer, M. B. et al. CD371-targeted CAR T-cells secreting interleukin-18 exhibit robust expansion and disease clearance in patients with refractory acute myeloid leukemia. Blood 144, 2070 (2024).

    Article  Google Scholar 

  234. Zhao, Y. et al. IL-10-expressing CAR T cells resist dysfunction and mediate durable clearance of solid tumors and metastases. Nat. Biotechnol. 42, 1693–1704 (2024).

    Article  PubMed  CAS  Google Scholar 

  235. Guo, Y. et al. IL-10 expressing CD19 CAR-T cells induce complete remission and improve long-term protection in relapsed or refractory B-cell hematological malignancies. Blood 144, 92 (2024).

    Article  Google Scholar 

  236. Carlini, V. et al. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 14, 1161067 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Lei, W. et al. Safety and feasibility of anti-CD19 CAR T cells expressing inducible IL-7 and CCL19 in patients with relapsed or refractory large B-cell lymphoma. Cell Discov. 10, 5 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Jain, M. D. et al. Five-year follow-up of standard-of-care axicabtagene ciloleucel for large B-cell lymphoma: results from the US lymphoma CAR T consortium. J. Clin. Oncol. 42, 3581–3592 (2024).

    Article  PubMed  CAS  Google Scholar 

  239. Sesques, P. et al. Novel prognostic scoring systems for severe CRS and ICANS after anti-CD19 CAR T cells in large B-cell lymphoma. J. Hematol. Oncol. 17, 61 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Steffin, D. et al. Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers. Nature 637, 940–946 (2025).

    Article  PubMed  CAS  Google Scholar 

  241. O’Cearbhaill, R. E. et al. A phase I clinical trial of autologous chimeric antigen receptor (CAR) T cells genetically engineered to secrete IL-12 and to target the MUC16ecto antigen in patients (pts) with MUC16ecto+ recurrent high-grade serous ovarian cancer (HGSOC). Gynecol. Oncol. 159, 42 (2020).

    Article  Google Scholar 

  242. Chmielewski, M., Hombach, A. A. & Abken, H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol. Rev. 257, 83–90 (2014).

    Article  PubMed  CAS  Google Scholar 

  243. Chmielewski, M., Kopecky, C., Hombach, A. A. & Abken, H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 71, 5697–5706 (2011).

    Article  PubMed  CAS  Google Scholar 

  244. Agliardi, G. et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat. Commun. 12, 444 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther.-Methods Clin. Dev. 4, 92–101 (2017).

    Article  PubMed  CAS  Google Scholar 

  246. Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118–128 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Dickinson, M. J. et al. A novel autologous CAR-T therapy, YTB323, with preserved T-cell stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development. Cancer Discov. 13, 1982–1997 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Shen, L. et al. Metabolic reprogramming by ex vivo glutamine inhibition endows CAR-T cells with less-differentiated phenotype and persistent antitumor activity. Cancer Lett. 538, 215710 (2022).

    Article  PubMed  CAS  Google Scholar 

  249. Cappabianca, D. et al. Metabolic priming of GD2 TRAC-CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. Mol. Ther. Methods Clin. Dev. 32, 101249 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Klein Geltink, R. I. et al. Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nat. Metab. 2, 703–716 (2020).

    Article  PubMed  CAS  Google Scholar 

  251. Frisch, A. T. et al. Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy. Cell Metab. 37, 870–885 (2025).

    Article  PubMed  CAS  Google Scholar 

  252. Nava Lauson, C. B. et al. Linoleic acid potentiates CD8+ T cell metabolic fitness and antitumor immunity. Cell Metab. 35, 633–650.e9 (2023).

    Article  PubMed  CAS  Google Scholar 

  253. Luu, M. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 12, 4077 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  PubMed  CAS  Google Scholar 

  255. Lakhani, A. et al. Extracellular domains of CARs reprogramme T cell metabolism without antigen stimulation. Nat. Metab. 6, 1143–1160 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Ajina, A. & Maher, J. Strategies to address chimeric antigen receptor tonic signaling. Mol. Cancer Ther. 17, 1795–1815 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  PubMed  CAS  Google Scholar 

  259. Razavi, A. S., Loskog, A., Razi, S. & Rezaei, N. The signaling and the metabolic differences of various CAR T cell designs. Int. Immunopharmacol. 114, 109593 (2023).

    Article  PubMed  CAS  Google Scholar 

  260. Guerrero, J. A. et al. GLUT1 overexpression in CAR-T cells induces metabolic reprogramming and enhances potency. Nat. Commun. 15, 8658 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Shi, Y. et al. GLUT1 overexpression enhances CAR T cell metabolic fitness and anti-tumor efficacy. Mol. Ther. 32, 2393–2405 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Valentić, B. et al. The glucose transporter 5 enhances CAR-T cell metabolic function and anti-tumour durability. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-4342820/v1 (2024).

  263. Panetti, S. et al. Engineering amino acid uptake or catabolism promotes CAR T-cell adaption to the tumor environment. Blood Adv. 7, 1754–1761 (2023).

    Article  PubMed  CAS  Google Scholar 

  264. Hwang, S. M. et al. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature 635, 1010–1018 (2024).

    Article  PubMed  Google Scholar 

  265. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577.e7 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Peralta, R. M. et al. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism. Nat. Immunol. 25, 2297–2307 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Quinn, W. J. et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Notarangelo, G. et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function. Science 377, 1519–1529 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Cheng, J. et al. Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8+ T cells in the tumor microenvironment. Cell Metab. 35, 961–978.e10 (2023).

    Article  PubMed  CAS  Google Scholar 

  270. Ligtenberg, M. A. et al. Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J. Immunol. 196, 759–766 (2016).

    Article  PubMed  CAS  Google Scholar 

  271. Pilipow, K. et al. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 3, e122299 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Varanasi, S. K. et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science 387, 192–201 (2025).

    Article  PubMed  CAS  Google Scholar 

  273. Fultang, L. et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood 136, 1155–1160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Steggerda, S. M. et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer 5, 101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Martí i Líndez, A. A. et al. Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight 4, e132975 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Ninomiya, S. et al. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 125, 3905–3916 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Li, P. et al. IDO inhibition facilitates antitumor immunity of Vγ9Vδ2 T cells in triple-negative breast cancer. Front. Oncol. 11, 679517 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Huang, Q. et al. miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. J. Hematol. Oncol. 11, 58 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Shao, J. et al. Indoleamine 2,3-dioxygenase 1 inhibitor-loaded nanosheets enhance CAR-T cell function in esophageal squamous cell carcinoma. Front. Immunol. 12, 661357 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Ye, L. et al. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metab. 34, 595–614.e14 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Minogue, E. et al. Glutarate regulates T cell metabolism and anti-tumour immunity. Nat. Metab. 5, 1747–1764 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Chan, J. D. et al. FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. Nature 629, 201–210 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Lontos, K. et al. Metabolic reprogramming via an engineered PGC-1α improves human chimeric antigen receptor T-cell therapy against solid tumors. J. Immunother. Cancer 11, e006522 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Doan, A. E. et al. FOXO1 is a master regulator of memory programming in CAR T cells. Nature 629, 211–218 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Hatae, R. et al. Enhancing CAR-T cell metabolism to overcome hypoxic conditions in the brain tumor microenvironment. JCI Insight 9, e177141 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by National Institutes of Health (NIH) grants R01NS094533 (to Y.F.), R01NS106108 (to Y.F.), R01CA241501 (to Y.F.) and R01HL155198 (to Y.F.), and American Cancer Society Yosemite Award 24-1331395 (to Y.F.).

Author information

Authors and Affiliations

Authors

Contributions

Z.L.L. and N.W. contributed equally to all aspects of the Review; generated all figures, boxes and table; and wrote the original version of the Review. C.H.J. and Y.F. edited the Review and provided supervision.

Corresponding authors

Correspondence to Carl H. June or Yi Fan.

Ethics declarations

Competing interests

C.H.J. is an inventor of patents and/or patent applications licensed to Novartis Institutes of Biomedical Research and receives licence revenue from such licences; is an inventor on patents and/or patent applications licensed to Kite Pharma, Capstan Therapeutics, Dispatch Therapeutics and BlueWhale Bio; and is a member of the scientific advisory boards of AC Immune, BluesphereBio, BlueWhale Bio, Cabaletta, Carisma, Cartography, Cellares, Celldex, Decheng, Replay Bio, Verismo and WIRB-Copernicus. Y.F. is a co-founder of Radix Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Marcela Maus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamplugh, Z.L., Wellhausen, N., June, C.H. et al. Microenvironmental regulation of solid tumour resistance to CAR T cell therapy. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01229-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01229-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer