Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibroblasts as regulators of lung immunity, repair and fibrosis

Abstract

Fibrosis is a complex disorder characterized by the excessive deposition of extracellular matrix, which disrupts normal tissue architecture and compromises organ function. Fibrosis can affect any organ, with pulmonary fibrosis being one of the most common and life-threatening forms. Despite marked research efforts, effective antifibrotic therapies remain limited, largely due to an incomplete understanding of the underlying disease mechanisms. At the centre of fibrotic processes are fibroblasts, which are tissue-resident mesenchymal cells responsible for extracellular matrix production, tissue remodelling, wound healing and fibrosis. For decades, the biology of fibroblasts remained poorly understood, but advances in single-cell sequencing have recently provided deeper insights into their heterogeneity, plasticity and functional diversity. These insights have prompted renewed efforts to identify the core regulatory programmes that govern fibroblast states in health and disease. In this Review, we examine how immunological, mechanical and metabolic regulators influence fibroblast function in fibrosing interstitial lung diseases. We show how loss of stromal regulation through chronic inflammation, immune dysfunction, altered tissue biomechanics and metabolic stress can tip the balance from successful tissue repair to progressive fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Barriers to elucidating early pathogenic mechanisms in human pulmonary fibrosis.
Fig. 2: Alveolar fibroblasts orchestrate lung immunity and repair.
Fig. 3: Stromal–immune regulatory networks in lung repair and fibrosis.

Similar content being viewed by others

References

  1. Wijsenbeek, M. & Cottin, V. Spectrum of fibrotic lung diseases. N. Engl. J. Med. 383, 958–968 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Plikus, M. V. et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell 184, 3852–3872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. George, P. M. et al. Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir. Med. 8, 925–934 (2020).

    Article  PubMed  Google Scholar 

  5. Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Wells, A. U., Brown, K. K., Flaherty, K. R., Kolb, M. & Thannickal Victor, J. What’s in a name? That which we call IPF, by any other name would act the same. Eur. Respir. J. 51, 1800692 (2018).

    Article  PubMed  Google Scholar 

  7. Raghu, G. & Fleming, T. R. Moving forward in IPF: lessons learned from clinical trials. Lancet Respir. Med. 12, 583–585 (2024).

    Article  PubMed  Google Scholar 

  8. Noble, P. W. et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377, 1760–1769 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014).

    Article  PubMed  Google Scholar 

  10. King, T. E. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014).

    Article  PubMed  Google Scholar 

  11. Richeldi, L. et al. Nerandomilast in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 392, 2193–2202 (2025).

    Article  CAS  PubMed  Google Scholar 

  12. Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Maher, T. M. et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 8, 147–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Flaherty, K. R. et al. Nintedanib in progressive fibrosing interstitial lung diseases. N. Engl. J. Med. 381, 1718–1727 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Behr, J. et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 9, 476–486 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Maher, T. M. et al. Nerandomilast in patients with progressive pulmonary fibrosis. N. Engl. J. Med. 392, 2203–2214 (2025).

    Article  CAS  PubMed  Google Scholar 

  17. Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Franzén, L. et al. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat. Genet. 56, 1725–1736 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mayr, C. H. et al. Spatial transcriptomic characterization of pathologic niches in IPF. Sci. Adv. 10, eadl5473 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsukui, T., Wolters, P. J. & Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 631, 627–634 (2024). This paper shows that injury-induced pathogenic fibroblasts arise from alveolar fibroblasts after lung injury. A highly orchestrated sequence of fibroblast state transitions, driven by inflammatory and profibrotic cues, is required for effective regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valenzi, E. et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 1379–1387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vannan, A. et al. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat. Genet. 57, 647–658 (2025). This study provides a spatially resolved, single-cell map of the human fibrotic lung, revealing niche-specific dysregulation in advanced pulmonary fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Schupp, J. C. et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144, 286–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, J. H. et al. Mortality and risk factors for surgical lung biopsy in patients with idiopathic interstitial pneumonia. Eur. J. Cardio-Thorac. Surg. 31, 1115–1119 (2007).

    Article  Google Scholar 

  30. Martin, P., Pardo-Pastor, C., Jenkins, R. G. & Rosenblatt, J. Imperfect wound healing sets the stage for chronic diseases. Science 386, eadp2974 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020). In this seminal review, the authors describe that myofibroblasts are primed for apoptosis but evade programmed cell death through upregulation of pro-survival pathways.

    Article  CAS  PubMed  Google Scholar 

  34. Jun, J.-I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hecker, L., Jagirdar, R., Jin, T. & Thannickal, V. J. Reversible differentiation of myofibroblasts by MyoD. Exp. Cell Res. 317, 1914–1921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Konkimalla, A. et al. Transitional cell states sculpt tissue topology during lung regeneration. Cell Stem Cell 30, 1486–1502.e9 (2023). This study reveals Runx1 as a driver of profibrotic fibroblast states. Runx1 deletion in PDGFRα+ fibroblasts improves fibrosis but disrupts ECM organization and lung architecture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, D. L. et al. An injury-induced mesenchymal–epithelial cell niche coordinates regenerative responses in the lung. Science 386, eado5561 (2024). This study uncovers how alveolar fibroblast plasticity regulates lung repair by modulating stem cell competition between airway-derived and alveolar-derived epithelial progenitors.

    Article  CAS  PubMed  Google Scholar 

  40. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Merkt, W., Zhou, Y., Han, H. & Lagares, D. Myofibroblast fate plasticity in tissue repair and fibrosis: deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen. 29, 678–691 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Desmoulière, A., Redard, M., Darby, I. & Gabbiani, G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146, 56–66 (1995).

    PubMed  PubMed Central  Google Scholar 

  43. Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Zepp, J. A. & Morrisey, E. E. Cellular crosstalk in the development and regeneration of the respiratory system. Nat. Rev. Mol. Cell Biol. 20, 551–566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nowarski, R., Jackson, R. & Flavell, R. A. The stromal intervention: regulation of immunity and inflammation at the epithelial–mesenchymal barrier. Cell 168, 362–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Basil, M. C. et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Greicius, G. et al. PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl Acad. Sci. USA 115, E3173–e3181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shoshkes-Carmel, M. et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zacharias, W. J. et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251–255 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359, 1118–1123 (2018). In this paper, the authors show that fibroblast-derived WNT signals support AT2 stem cell self-renewal, whereas injury-induced autocrine WNT signals expand the progenitor pool.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernanda de Mello Costa, M., Weiner, A. I. & Vaughan, A. E. Basal-like progenitor cells: a review of dysplastic alveolar regeneration and remodeling in lung repair. Stem Cell Rep. 15, 1015–1025 (2020).

    Article  CAS  Google Scholar 

  53. Zuo, W. et al. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature 517, 616–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Choi, J. et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27, 366–382.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Narasimhan, H. et al. An aberrant immune–epithelial progenitor niche drives viral lung sequelae. Nature 634, 961–969 (2024). In this study, the authors demonstrate that IFNγ and TNF derived from CD8+ T cells stimulate macrophages to continuously release IL-1β. This drives maintenance of dysplastic epithelial cell progenitors and lung fibrosis after COVID-19 infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vaughan, A. E. et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621–625 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Weiner, A. I. et al. Np63 drives dysplastic alveolar remodeling and restricts epithelial plasticity upon severe lung injury. Cell Rep. 41, 111805 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Taylor, M. S. et al. A conserved distal lung regenerative pathway in acute lung injury. Am. J. Pathol. 188, 1149–1160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Heinzelmann, K. et al. Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in distal honeycomb cysts in idiopathic pulmonary fibrosis. Eur. Respir. J. 59, 2102373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Alexandre, Y. O. & Mueller, S. N. Splenic stromal niches in homeostasis and immunity. Nat. Rev. Immunol. 23, 705–719 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Fletcher, A. L., Malhotra, D. & Turley, S. J. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 32, 12–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Astarita, J. L. et al. The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 16, 75–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Assen, F. P. et al. Multitier mechanics control stromal adaptations in the swelling lymph node. Nat. Immunol. 23, 1246–1255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fletcher, A. L., Acton, S. E. & Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat. Rev. Immunol. 15, 350–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue–inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Onder, L. et al. IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120, 4675–4683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Foster, D. S. et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 40, 1392–1406.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pentimalli, T. M. et al. Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment. Cell Syst. 16, 101261 (2025).

    Article  CAS  PubMed  Google Scholar 

  74. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  77. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boyd, D. F. et al. Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature 587, 466–471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ma, F. et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat. Commun. 14, 3455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wohlfahrt, T. et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature 566, 344–349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fang, Y. et al. RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition. Nature 640, 221–230 (2025). This study shows that the transcription factor Runx2 mediates the conversion of alveolar fibroblasts into profibrotic CTHRC1+POSTN+ myofibroblasts. Conditional genetic deletion of Runx2 in alveolar fibroblasts mitigates pulmonary fibrosis.

    Article  CAS  PubMed  Google Scholar 

  89. Lingampally, A. et al. Evidence for a lipofibroblast-to-Cthrc1+ myofibroblast reversible switch during the development and resolution of lung fibrosis in young mice. Eur. Respir. J. 65, 2300482 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mayr, C. H. et al. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur. Respir. J. 63, 2301326 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang, Z. et al. Distinct mural cells and fibroblasts promote pathogenic plasma cell accumulation in idiopathic pulmonary fibrosis. Eur. Respir. J. 65, 2401114 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ewing-Crystal, N. A. et al. Dynamic fibroblast–immune interactions shape recovery after brain injury. Nature 646, 934–944 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Amuso, V. M. et al. Fibroblast-mediated macrophage recruitment supports acute wound healing. J. Invest. Dermatol. 145, 1781–1797.e8 (2025).

    Article  CAS  PubMed  Google Scholar 

  94. Guo, J. L. et al. Histological signatures map anti-fibrotic factors in mouse and human lungs. Nature 641, 993–1004 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Behmoaras, J., Mulder, K., Ginhoux, F. & Petretto, E. The spatial and temporal activation of macrophages during fibrosis. Nat. Rev. Immunol. 25, 816–830 (2025).

    Article  CAS  PubMed  Google Scholar 

  100. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Amrute, J. M. et al. Targeting immune–fibroblast cell communication in heart failure. Nature 635, 423–433 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Adler, M. et al. Principles of cell circuits for tissue repair and fibrosis. iScience 23, 100841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, J. et al. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L487–L497 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Chrysanthopoulou, A. et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 233, 294–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Gregory, A. D. et al. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J. Leukoc. Biol. 98, 143–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wilson, M. S. et al. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 207, 535–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mi, S. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and -independent mechanisms. J. Immunol. 187, 3003–3014 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Carter, H. et al. CD103+ dendritic cell-fibroblast crosstalk via TLR9, TDO2, and AHR signaling drives lung fibrogenesis. JCI Insight 10, e177072 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lu, Y. Z. et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 628, 604–611 (2024). This study shows that ablation of sensory nociceptors impairs skin wound repair and muscle regeneration after acute tissue injury. It demonstrates that the nociceptor-derived neuropeptide calcitonin gene-related peptide inhibits recruitment and accelerates removal of pro-inflammatory myeloid cells, promoting tissue repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Almanzar, N. et al. Vagal TRPV1+ sensory neurons protect against influenza virus infection by regulating lung myeloid cell dynamics. Sci. Immunol. 10, eads6243 (2025).

    Article  CAS  PubMed  Google Scholar 

  114. Hiroki, C. H. et al. Nociceptor neurons suppress alveolar macrophage-induced Siglec-F+ neutrophil-mediated inflammation to protect against pulmonary fibrosis. Immunity 58, 2054–2068.e6 (2025). This study shows that vagal TRPV1+ nociceptors protect against experimental pulmonary fibrosis by restraining alveolar macrophage-derived VIP. Loss of TRPV1+ nociceptors results in increased macrophage-derived VIP and downstream induction of TGFβ1-mediated recruitment of pro-inflammatory neutrophils and neutrophil extracellular trap formation.

    Article  CAS  PubMed  Google Scholar 

  115. Li, W. et al. A brain-to-lung signal from GABAergic neurons to ADRB2+ interstitial macrophages promotes pulmonary inflammatory responses. Immunity 58, 2069–2085.e9 (2025).

    Article  CAS  PubMed  Google Scholar 

  116. Gieseck, R. L., Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, J. et al. Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nat. Immunol. 23, 237–250 (2022).

    Article  PubMed  Google Scholar 

  118. Otaki, N. et al. Activation of ILC2s through constitutive IFNγ signaling reduction leads to spontaneous pulmonary fibrosis. Nat. Commun. 14, 8120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cui, G. et al. CD45 alleviates airway inflammation and lung fibrosis by limiting expansion and activation of ILC2s. Proc. Natl Acad. Sci. USA 120, e2215941120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nakatsuka, Y. et al. Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. Eur. Respir. J. 57, 2000018 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Dahlgren, M. W. et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50, 707–722.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cautivo, K. M. et al. Interferon gamma constrains type 2 lymphocyte niche boundaries during mixed inflammation. Immunity 55, 254–271.e7 (2022). This study shows that, in type 2 immune responses, ILC2s migrate to de novo parenchymal sites near alveoli via IL-33-induced upregulation of trafficking-associated S1P receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. He, Y. et al. Mechanics-activated fibroblasts promote pulmonary group 2 innate lymphoid cell plasticity propelling silicosis progression. Nat. Commun. 15, 9770 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jowett, G. M. et al. ILC1 drive intestinal epithelial and matrix remodelling. Nat. Mater. 20, 250–259 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Geng, Y. et al. PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight 4, e125326 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. Cui, L. et al. Activation of JUN in fibroblasts promotes pro-fibrotic programme and modulates protective immunity. Nat. Commun. 11, 2795 (2020). This work demonstrates an exhausted-like phenotype in CD8+ T cells in explanted lung tissue from patients with IPF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wernig, G. et al. Unifying mechanism for different fibrotic diseases. Proc. Natl Acad. Sci. USA 114, 4757–4762 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Celada, L. J. et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci. Transl. Med. 10, eaar8356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yadav, S. et al. Reactivation of CTLA4-expressing T cells accelerates resolution of lung fibrosis in a humanized mouse model. J. Clin. Investig. 135, e181775 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Martin, O. P. et al. Single-cell atlas of human liver and blood immune cells across fatty liver disease stages reveals distinct signatures linked to liver dysfunction and fibrogenesis. Nat. Immunol. 26, 1596–1611 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sato, Y. et al. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight 1, e87680 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nayar, S. et al. Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proc. Natl Acad. Sci. USA 116, 13490–13497 (2019). This work demonstrates that perivascular fibroblasts acquire features of FRCs, including expression of the homeostatic cytokines CCL21, CCL19 and CXCL13, and depend on lymphotoxin-β signalling between stromal and immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Denton, A. E. et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J. Exp. Med. 216, 621–637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jacquelot, N., Tellier, J., Nutt, S. l. & Belz, G. T. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology 10, 1900508 (2021).

    Article  Google Scholar 

  139. Farr, A. G. et al. Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J. Exp. Med. 176, 1477–1482 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kamiya, M. et al. Immune mechanisms in fibrotic interstitial lung disease. Cell 187, 3506–3530 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Taillé, C. et al. Identification of periplakin as a new target for autoreactivity in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 183, 759–766 (2011).

    Article  PubMed  Google Scholar 

  143. Koether, K. et al. Autoantibodies are associated with disease progression in idiopathic pulmonary fibrosis. Eur. Respir. J. 61, 2102381 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Ganeshan, K. & Chawla, A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 32, 609–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Selvarajah, B., Azuelos, I., Anastasiou, D. & Chambers, R. C. Fibrometabolism — an emerging therapeutic frontier in pulmonary fibrosis. Sci. Signal. 14, eaay1027 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Noom, A., Sawitzki, B., Knaus, P. & Duda, G. N. A two-way street — cellular metabolism and myofibroblast contraction. npj Regen. Med. 9, 15 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Selvarajah, B. et al. mTORC1 amplifies the ATF4-dependent de novo serine–glycine pathway to supply glycine during TGF-β(1)-induced collagen biosynthesis. Sci. Signal. 12, eaav3048 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Andrianifahanana, M. et al. Profibrotic up-regulation of glucose transporter 1 by TGF-β involves activation of MEK and mammalian target of rapamycin complex 2 pathways. FASEB J. 30, 3733–3744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nigdelioglu, R. et al. Transforming growth factor (TGF)-β promotes de novo serine synthesis for collagen production. J. Biol. Chem. 291, 27239–27251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ge, J. et al. Glutaminolysis promotes collagen translation and stability via α-ketoglutarate-mediated mTOR activation and proline hydroxylation. Am. J. Respir. Cell Mol. Biol. 58, 378–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bai, L. et al. Glutaminolysis epigenetically regulates antiapoptotic gene expression in idiopathic pulmonary fibrosis fibroblasts. Am. J. Respir. Cell Mol. Biol. 60, 49–57 (2019). This paper shows that glutamine metabolism promotes resistance to apoptosis in IPF fibroblasts via epigenetic reprogramming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mamazhakypov, A., Schermuly, R. T., Schaefer, L. & Wygrecka, M. Lipids — two sides of the same coin in lung fibrosis. Cell Signal. 60, 65–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Sosulski, M. L. et al. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1. Aging Cell 14, 774–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Robinson, C. M., Neary, R., Levendale, A., Watson, C. J. & Baugh, J. A. Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype. Respir. Res. 13, 74 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Senavirathna, L. K. et al. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling. Sci. Rep. 8, 2709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Taylor, C. T., Doherty, G., Fallon, P. G. & Cummins, E. P. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J. Clin. Invest. 126, 3716–3724 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mirchandani, A. S., Sanchez-Garcia, M. A. & Walmsley, S. R. How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat. Rev. Immunol. 25, 161–177 (2025).

    Article  CAS  PubMed  Google Scholar 

  160. Mirchandani, A. S. et al. Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nat. Immunol. 23, 927–939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

    Article  PubMed  Google Scholar 

  162. Parker, M. W. et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124, 1622–1635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Investig. 128, 45–53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Walker, C. J. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat. Biomed. Eng. 5, 1485–1499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Novak, C. M., Wheat, J. S., Ghadiali, S. N. & Ballinger, M. N. Mechanomemory of pulmonary fibroblasts demonstrates reversibility of transcriptomics and contraction phenotypes. Biomaterials 314, 122830 (2025).

    Article  CAS  PubMed  Google Scholar 

  167. Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

    Article  CAS  Google Scholar 

  168. Wong, V. W. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2012). Data from this study suggest that physical force modulates wound healing and fibrosis via paracrine fibroblast–macrophage crosstalk, implicating a direct link between mechanobiology and inflammation during wound healing.

    Article  CAS  Google Scholar 

  169. Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Atcha, H. et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 12, 3256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Meli, V. S. et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci. Adv. 6, eabb8471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep. 34, 108609 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019). This study shows that cyclical hydrostatic pressure initiates a pulmonary inflammatory response via the mechanically activated ion channel PIEZO1. These data illustrate how immune activation thresholds are modulated by the mechanical properties of the lungs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Meng, K. P., Majedi, F. S., Thauland, T. J. & Butte, M. J. Mechanosensing through YAP controls T cell activation and metabolism. J. Exp. Med. 217, e20200053 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Shaheen, S. et al. Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase. eLife 6, e23060 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sutherland, T. E., Dyer, D. P. & Allen, J. E. The extracellular matrix and the immune system: a mutually dependent relationship. Science 379, eabp8964 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Penkala, I. J. et al. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration. Cell Stem Cell 28, 1775–1789.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shiraishi, K. et al. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 186, 1478–1492.e15 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wu, H. et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180, 107–121.e17 (2020). In this study, the authors describe a direct mechanistic link among impaired AT2 cell regeneration, increased mechanical tension and a subpleural-to-central pattern of progressive pulmonary fibrosis.

    Article  CAS  PubMed  Google Scholar 

  182. Liu, Z. et al. MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep. 16, 1810–1819 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Kobayashi, Y. et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Enomoto, Y. et al. Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nat. Commun. 14, 4956 (2023). This paper shows that bleomycin induces AT2 cells to enter an intermediate transition state enriched for SASP-related factors including TGFβ. This establishes TGFβ-mediated autocrine feedback loops and drives myofibroblast activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hoffman, E. T. et al. Aberrant intermediate alveolar epithelial cells promote pathogenic activation of lung fibroblasts in preclinical fibrosis models. Nat. Commun. 16, 8710 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 3, 17074 (2017).

    Article  PubMed  Google Scholar 

  187. Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Farhat, A. et al. An aging bone marrow exacerbates lung fibrosis by fueling profibrotic macrophage persistence. Sci. Immunol. 10, eadk5041 (2025). Bone marrow transplantation from aged donors reveals a role for the aged haematopoietic compartment in promoting persistent profibrotic macrophage populations and exacerbating fibrosis.

    Article  CAS  PubMed  Google Scholar 

  189. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mann, M. et al. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep. 25, 2992–3005.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Niec, R. E., Rudensky, A. Y. & Fuchs, E. Inflammatory adaptation in barrier tissues. Cell 184, 3361–3375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Netea, M. G., Quintin, J. & van der Meer, J. W. M. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017). This study expands the concept of trained immunity to epithelial stem cells, demonstrating that prior inflammation enhances epithelial responsivity after wounding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Frišcic, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021). This study shows that synovial fibroblasts display elements of inflammatory ‘memory-like’ responses in vivo using adoptive transfer models.

    Article  PubMed  Google Scholar 

  197. Bian, X. et al. Epigenetic memory of radiotherapy in dermal fibroblasts impairs wound repair capacity in cancer survivors. Nat. Commun. 15, 9286 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Falvo, D. J. et al. A reversible epigenetic memory of inflammatory injury controls lineage plasticity and tumor initiation in the mouse pancreas. Dev. Cell 58, 2959–2973.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Levra Levron, C. et al. Tissue memory relies on stem cell priming in distal undamaged areas. Nat. Cell Biol. 25, 740–753 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Crowley, T., Buckley, C. D. & Clark, A. R. Stroma: the forgotten cells of innate immune memory. Clin. Exp. Immunol. 193, 24–36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sohn, C. et al. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol. 67, 86–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Klein, K. et al. The epigenetic architecture at gene promoters determines cell type-specific LPS tolerance. J. Autoimmun. 83, 122–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Kamada, R. et al. Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc. Natl Acad. Sci. USA 115, E9162–E9171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Álvarez, D. et al. IPF lung fibroblasts have a senescent phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1164–l1173 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Schuliga, M. et al. Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J. Cell. Mol. Med. 22, 5847–5861 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhou, Y. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Investig. 123, 1096–1108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lagares, D. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 9, eaal3765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Cooley, J. C. et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 8, e163762 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Bühling, F. et al. Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis. Respir. Res. 6, 37 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Im, J., Kim, K., Hergert, P. & Nho, R. S. Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas ligand-dependent apoptosis via the alteration of decoy receptor 3. J. Pathol. 240, 25–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, T.-W. et al. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022). This study demonstrates that CD8+ T cells are involved in cytotoxicity against senescent fibroblasts and that PDL1 expression in senescent cells results in escape from T cell immunity.

    Article  CAS  PubMed  Google Scholar 

  215. Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Reyes, N. S. et al. Sentinel p16(INK4a+) cells in the basement membrane form a reparative niche in the lung. Science 378, 192–201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sobecki, M. et al. Vaccination-based immunotherapy to target profibrotic cells in liver and lung. Cell Stem Cell 29, 1459–1474.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Nabhan, A. N. et al. Targeted alveolar regeneration with frizzled-specific agonists. Cell 186, 2995–3012.e15 (2023).

    Article  PubMed  Google Scholar 

  223. Liakouli, V., Ciancio, A., Del Galdo, F., Giacomelli, R. & Ciccia, F. Systemic sclerosis interstitial lung disease: unmet needs and potential solutions. Nat. Rev. Rheumatol. 20, 21–32 (2024).

    Article  PubMed  Google Scholar 

  224. Shaw, M., Collins, B. F., Ho, L. A. & Raghu, G. Rheumatoid arthritis-associated lung disease. Eur. Respir. Rev. 24, 1–16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Grunewald, J. et al. Sarcoidosis. Nat. Rev. Dis. Primers 5, 45 (2019).

    Article  PubMed  Google Scholar 

  226. Barnes, H. et al. Diagnosis and management of hypersensitivity pneumonitis in adults: a position statement from the Thoracic Society of Australia and New Zealand. Respirology 29, 1023–1046 (2024).

    Article  PubMed  Google Scholar 

  227. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Tsukui, T. & Sheppard, D. Stromal heterogeneity in the adult lung delineated by single-cell genomics. Am. J. Physiol. Cell Physiol. 328, C1964–C1972 (2025).

    Article  CAS  PubMed  Google Scholar 

  233. Madissoon, E. et al. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat. Genet. 55, 66–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Basil, M. C. & Morrisey, E. E. Lung regeneration: a tale of mice and men. Semin. Cell Dev. Biol. 100, 88–100 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Jenkins, R. G. et al. An official American Thoracic Society Workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 56, 667–679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Naikawadi, R. P. et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1, e86704 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Povedano, J. M., Martinez, P., Flores, J. M., Mulero, F. & Blasco, M. A. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Yao, C. et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 203, 707–717 (2020).

    Article  Google Scholar 

  240. Redente, E. F. et al. Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight 6, e141618 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261.e27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge J. Hudson, M. Z. Chaudhry and C. Armitage for insightful discussions and valuable contributions to the conceptual development of this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Peter T. Bell or Gabrielle T. Belz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Shruti Naik, Tatsuya Tsukui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Airway basal epithelial cell

A multipotent progenitor cell found in the basal layer of the airway epithelium that serves as a source of regeneration after lung injury.

Alveolar differentiation intermediate cells

(ADI). After mouse lung injury, type 2 alveolar epithelial (AT2) cells adopt a Krt8+ intermediate transitional state, which has been variably termed damage-associated transient progenitors, pre-alveolar type 1 transient state or ADI cells. This state emerges in response to damage signals and is characterized by loss of AT2 cell marker identity, upregulation of p53 signalling, cell cycle arrest and a shift towards squamous morphology.

Dysplastic repair

After severe lung injury, airway basal epithelial cells expressing keratin 5 (Krt5) migrate to alveoli, where they form abnormal cystic structures that cannot participate in gas exchange.

Euplastic regeneration

In response to mild-to-moderate lung injury, AT2 cells re-enter the cell cycle and differentiate into AT1 cells, repopulating the alveolus and restoring normal barrier morphology, integrity and function.

Fibroblastic foci

Discrete aggregates of proliferating fibroblasts and myofibroblasts located beneath the alveolar epithelium, representing sites of active extracellular matrix deposition at the leading edge of active fibrosis.

Fibroblast-to-myofibroblast transition

The process by which fibroblasts acquire specialized repair states characterized by upregulation of contractile features, enhanced extracellular matrix production and increased migratory properties.

Group 2 innate lymphoid cells

(ILC2s). A class of tissue-resident sentinel cell at barrier sites such as the lungs, gut and skin. ILC2s bridge innate and adaptive type 2 immunity by orchestrating allergic inflammation, protective antiparasitic responses and tissue repair. They are major sources of type 2 cytokines such as IL-5, IL-13 and amphiregulin, which they secrete in response to the alarmins IL-33, IL-25 and thymic stromal lymphopoietin.

Interstitial lung disease

(ILD). An umbrella term for a heterogeneous group of disorders resulting in inflammation and/or fibrosis of the alveolar interstitium. ILDs have a broad spectrum of outcomes, from fully reversible inflammation to severe and irreversible scarring.

Progressive fibrosing phenotype

A phenotype of ILD that displays progressive clinical behaviour defined by irreversible and progressive scarring, despite treatment of known or identifiable triggers.

Senescence-associated secretory phenotype

(SASP). A secretory programme comprising the release of cytokines, growth factors and proteases by senescent cells. The SASP secretome has diverse effects on neighbouring cells and tissue microenvironments, including inflammation, fibrosis and tumour promotion or suppression.

Tertiary lymphoid structures

(TLSs). Organized aggregates of immune cells that form in non-lymphoid tissues in pathological conditions such as chronic inflammation, infection or cancer. Mature TLSs drive antigen-specific adaptive immune responses and modulate local immunity. They differ from secondary lymphoid organs in that they are inducible, ectopic and non-encapsulated immune follicles lack an external capsule enabling direct sampling of antigens and danger signals.

Trained immunity

A form of immune memory in which innate immune cells develop enhanced responses to later infections or stimuli after an initial exposure. This memory is encoded through epigenetic changes, such as histone modifications and DNA methylation, that alter chromatin accessibility and transcription factor binding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, P.T., Belz, G.T. Fibroblasts as regulators of lung immunity, repair and fibrosis. Nat Rev Immunol (2026). https://doi.org/10.1038/s41577-026-01268-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41577-026-01268-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing