Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing mucosal immunity for protective vaccines

Abstract

Mucosal surfaces are primary entry sites for many infectious pathogens, yet parenteral vaccination alone often fails to elicit effective mucosal immunity. Mucosally delivered vaccines offer a promising strategy for reinforcing frontline defences and inducing localized, pathogen-specific immune responses. Recent studies indicate that mucosal vaccines elicit tissue-resident memory T and B cells, along with robust local antibody secretion, to prevent infection and transmission. However, achieving sterilizing immunity at mucosal sites proves challenging owing to the complex immune environments consisting of epithelial barriers, varying mucus composition, pH differences and hormonal influences. In this Review, we outline how specialized immune-inductive and effector mechanisms across distinct mucosal compartments contribute to protective immunity and discuss emerging strategies to harness multilayered mucosal immunity to develop safe, effective vaccines that elicit durable protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mucosal immunity cycle.
Fig. 2: Stepwise immune circuits linking systemic priming and mucosal boosting for recall responses in the lungs.
Fig. 3: Shared mucosal immunity.

Similar content being viewed by others

References

  1. Thompson, M. G. et al. Effectiveness of Covid-19 vaccines in ambulatory and inpatient care settings. N. Engl. J. Med. 385, 1355–1371 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mohammed, I. et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum. Vaccines Immunother. 18, 2027160 (2022).

    Article  Google Scholar 

  3. Bergwerk, M. et al. Covid-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med. 385, 1474–1484 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Singanayagam, A. et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. Lancet Infect. Dis. 22, 183–195 (2022).

    Article  PubMed  CAS  Google Scholar 

  5. Ökten, A. B., Craft, J. E. & Wilen, C. B. Mechanisms of norovirus immunity: implications for vaccine design. Annu. Rev. Pathol. Mech. Dis. 21, 295–315 (2025).

    Article  Google Scholar 

  6. Belshe, R. B. et al. Efficacy results of a trial of a herpes simplex vaccine. N. Engl. J. Med. 366, 34–43 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  9. Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article  PubMed  CAS  Google Scholar 

  10. Chen, K., Magri, G., Grasset, E. K. & Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20, 427–441 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Holt, P. G., Strickland, D. H., Wikstrom, M. E. & Jahnsen, F. L. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol. 8, 142–152 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Mettelman, R. C., Allen, E. K. & Thomas, P. G. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 55, 749–780 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nakahashi-Ouchida, R., Fujihashi, K., Kurashima, Y., Yuki, Y. & Kiyono, H. Nasal vaccines: solutions for respiratory infectious diseases. Trends Mol. Med. 29, 124–140 (2023).

    Article  PubMed  Google Scholar 

  14. Ramirez, S. I. et al. Immunological memory diversity in the human upper airway. Nature 632, 630–636 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu, J. et al. Turbinate-homing IgA-secreting cells originate in the nasal lymphoid tissues. Nature 632, 637–646 (2024).

    Article  PubMed  Google Scholar 

  16. Mora, J. R. & Andrian, U. H. von. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. Wellford, S. A. et al. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 55, 2118–2134.e6 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kazer, S. W. et al. Primary nasal influenza infection rewires tissue-scale memory response dynamics. Immunity 57, 1955–1974.e8 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Miyamoto, S. et al. Infectious virus shedding duration reflects secretory IgA antibody response latency after SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 120, e2314808120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Marcotte, H. et al. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc. Natl Acad. Sci. USA 121, e2315354120 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Havervall, S. et al. Anti-spike mucosal IgA protection against SARS-CoV-2 Omicron infection. N. Engl. J. Med. 387, 1333–1336 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gagne, M. et al. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat. Immunol. 25, 1913–1927 (2024). The study highlights the importance of mucosal boosting for inducing strong IgA responses in the upper respiratory tract, which are crucial for durable protection against SARS-CoV-2 infection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kawai, A. et al. Intranasal immunization with an RBD-hemagglutinin fusion protein harnesses preexisting immunity to enhance antigen-specific responses. J. Clin. Invest. 133, e166827 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stacey, H. D. et al. Local B-cell immunity and durable memory following live-attenuated influenza intranasal vaccination of humans. Preprint in bioRxiv https://doi.org/10.1101/2025.07.14.664794 (2025).

  25. Lasrado, N. et al. SARS-CoV-2 XBB.1.5 mRNA booster vaccination elicits limited mucosal immunity. Sci. Transl. Med. 16, eadp8920 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Declercq, J. et al. Repeated COVID-19 mRNA-based vaccination contributes to SARS-CoV-2 neutralizing antibody responses in the mucosa. Sci. Transl. Med. 16, eadn2364 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. Pizzolla, A. et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2, eaam6970 (2017).

    Article  PubMed  Google Scholar 

  28. Roukens, A. H. E. et al. Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nat. Immunol. 23, 23–32 (2022).

    Article  PubMed  CAS  Google Scholar 

  29. Ssemaganda, A. et al. Expansion of cytotoxic tissue-resident CD8+ T cells and CCR6+CD161+ CD4+ T cells in the nasal mucosa following mRNA COVID-19 vaccination. Nat. Commun. 13, 3357 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Whitsett, J. A. & Alenghat, T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 16, 27–35 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Iwasaki, A., Foxman, E. F. & Molony, R. D. Early local immune defences in the respiratory tract. Nat. Rev. Immunol. 17, 7–20 (2017).

    Article  PubMed  CAS  Google Scholar 

  33. Braciale, T. J., Sun, J. & Kim, T. S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 12, 295–305 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Israelow, B. et al. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Sci. Immunol. 6, eabl4509 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).

    Article  PubMed  CAS  Google Scholar 

  36. Fumagalli, V. et al. Antibody-independent protection against heterologous SARS-CoV-2 challenge conferred by prior infection or vaccination. Nat. Immunol. 25, 633–643 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wagstaffe, H. R. et al. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci. Immunol. 9, eadj9285 (2024).

    Article  PubMed  CAS  Google Scholar 

  38. Zhu, A. et al. Robust mucosal SARS-CoV-2-specific T cells effectively combat COVID-19 and establish polyfunctional resident memory in patient lungs. Nat. Immunol. 26, 459–472 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2019).

    Article  PubMed  CAS  Google Scholar 

  40. MacLean, A. J. et al. Regulation of pulmonary plasma cell responses during secondary infection with influenza virus. J. Exp. Med. 221, e20232014 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. MacLean, A. J. et al. Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites. Immunity 55, 718–733.e8 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Son, Y. M. et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses. Sci. Immunol. 6, eabb6852 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Arroyo-Díaz, N. M. et al. Interferon-γ production by Tfh cells is required for CXCR3+ pre-memory B cell differentiation and subsequent lung-resident memory B cell responses. Immunity 56, 2358–2372.e5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang, X., Yin, Y., Saha, G., Francis, I. & Saha, S. C. A comprehensive numerical study on the transport and deposition of nasal sprayed pharmaceutical aerosols in a nasal-to-lung respiratory tract model. Part. Part. Syst. Charact. 42, 2400004 (2025).

    Article  Google Scholar 

  45. Chavda, V. P., Vora, L. K. & Apostolopoulos, V. Inhalable vaccines: can they help control pandemics? Vaccines 10, 1309 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Agace, W. W. & McCoy, K. D. Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity 46, 532–548 (2017).

    Article  PubMed  CAS  Google Scholar 

  47. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014). This review provides a comprehensive analysis of the anatomical, functional and immunological features along the length of the gastrointestinal tract.

    Article  PubMed  CAS  Google Scholar 

  48. Fukata, M. & Arditi, M. The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol. 6, 451–463 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Spencer, J. & Bemark, M. Human intestinal B cells in inflammatory diseases. Nat. Rev. Gastroenterol. Hepatol. 20, 254–265 (2023).

    Article  PubMed  CAS  Google Scholar 

  50. Kulkarni, D. H. & Newberry, R. D. Antigen uptake in the gut: an underappreciated piece to the puzzle? Annu. Rev. Immunol. 43, 571–588 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Esterházy, D. et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569, 126–130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lane, J. I. et al. Intestinal lymphatic vasculature is functionally adapted to different drainage regions and is altered by helminth infection. J. Exp. Med. 222, e20241181 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Canesso, M. C. C. et al. Identification of antigen-presenting cell–T cell interactions driving immune responses to food. Science 387, eado5088 (2024).

    Article  Google Scholar 

  54. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003). This work shows that DCs from gut-associated inductive sites, but not the spleen or non-draining lymph nodes, induce expression of the gut-homing marker α4β7 integrin on naive T cells.

    Article  PubMed  CAS  Google Scholar 

  55. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. Eksteen, B. et al. Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology 137, 320–329 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004). Building on Mora et al. (2003), this work identifies that retinoic acid metabolism by dendritic cells from gut-associated inductive sites is responsible for the imprinting of gut-homing properties on naive T cells.

    Article  PubMed  CAS  Google Scholar 

  58. Iwata, M. & Yokota, A. Retinoic acid production by intestinal dendritic cells. Vitam. Horm. 86, 127–152 (2011).

    Article  PubMed  CAS  Google Scholar 

  59. Müller, S., Bühler-Jungo, M. & Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J. Immunol. 164, 1986–1994 (2000).

    Article  PubMed  Google Scholar 

  60. Parsa, R. et al. Newly recruited intraepithelial Ly6A+ CCR9+ CD4+ T cells protect against enteric viral infection. Immunity 55, 1234–1249.e6 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Acker, A. V. et al. A murine intestinal intraepithelial NKp46-negative innate lymphoid cell population characterized by group 1 properties. Cell Rep. 19, 1431–1443 (2017).

    Article  PubMed  Google Scholar 

  63. FitzPatrick, M. E. B. et al. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. Cell Rep. 34, 108661 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lyu, Y., Zhou, Y. & Shen, J. An overview of tissue-resident memory T cells in the intestine: from physiological functions to pathological mechanisms. Front. Immunol. 13, 912393 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fung, H. Y., Teryek, M., Lemenze, A. D. & Bergsbaken, T. CD103 fate mapping reveals that intestinal CD103 tissue-resident memory T cells are the primary responders to secondary infection. Sci. Immunol. 7, eabl9925 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hoesslin, M. V. et al. Secondary infections rejuvenate the intestinal CD103 tissue-resident memory T cell pool. Sci. Immunol. 7, eabp9553 (2022).

    Article  Google Scholar 

  67. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40, 747–757 (2014). This work demonstrates the requirement of local (that is, oral) infection to drive the development of durable resident memory populations in the gut, as distal (that is, nasal) infection fails to generate comparable local responses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Obers, A. et al. Retinoic acid and TGF-β orchestrate organ-specific programs of tissue residency. Immunity 57, 2615–2633.e10 (2024).

    Article  PubMed  CAS  Google Scholar 

  71. Qiu, Z. et al. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. J. Exp. Med. 220, e20210923 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bergsbaken, T., Bevan, M. J. & Fink, P. J. Local inflammatory cues regulate differentiation and persistence of CD8+ tissue-resident memory T cells. Cell Rep. 19, 114–124 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Reina-Campos, M. et al. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 639, 483–492 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mantis, N. J., Rol, N. & Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603–611 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  PubMed  CAS  Google Scholar 

  78. Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Nakajima, A. et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215, 2019–2034 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cazac, B. B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000).

    Article  PubMed  CAS  Google Scholar 

  81. Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Siniscalco, E. R., Williams, A. & Eisenbarth, S. C. All roads lead to IgA: mapping the many pathways of IgA induction in the gut. Immunol. Rev. 326, 66–82 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Haniuda, K. et al. Mucosal viral infection elicits long-lived IgA responses via type 1 follicular helper T cells. Cell 24, 6774–6790.e21 (2025).

    Article  Google Scholar 

  84. Lisicka, W. et al. Immunoglobulin A controls intestinal virus colonization to preserve immune homeostasis. Cell Host Microbe 33, 498–511.e10 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zhang, B. et al. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci. Immunol. 5, eaay2754 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    Article  PubMed  CAS  Google Scholar 

  87. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  PubMed  CAS  Google Scholar 

  88. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Siniscalco, E. R. et al. Sequential class switching generates antigen-specific gut IgA from IgG1 B cells. Immunity 58, 1–19 (2025).

    Article  Google Scholar 

  91. Zheng, W. et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Shenoy, M. K. et al. Breast milk IgG engages the mouse neonatal immune system to instruct responses to gut antigens. Science 389, eado5294 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Dean, J. W. et al. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8+ T cell differentiation and function. Cell Rep. 42, 111963 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wu, W. et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10, 946–956 (2017).

    Article  PubMed  CAS  Google Scholar 

  95. Kim, M., Qie, Y., Park, J. & Kim, C. H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wira, C. R., Rodriguez-Garcia, M. & Patel, M. V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 15, 217–230 (2015). This review provides comprehensive details on how oestradiol and progesterone cyclically remodel epithelial barriers, PRR expression and cytokines across the FRT, underpinning timing, route and adjuvant choices for FRT-targeted vaccines.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Herfs, M. et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl. Acad. Sci. USA 109, 10516–10521 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Grande, G. et al. Proteomic characterization of the qualitative and quantitative differences in cervical mucus composition during the menstrual cycle. Mol. Biosyst. 11, 1717–1725 (2015).

    Article  PubMed  CAS  Google Scholar 

  99. Critchfield, A. S. et al. Cervical mucus properties stratify risk for preterm birth. PLoS ONE 8, e69528 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. O’Hanlon, D. E., Moench, T. R. & Cone, R. A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 8, e80074 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chee, W. J. Y., Chew, S. Y. & Than, L. T. L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Fact. 19, 203 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Glick, V. J. et al. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe 32, 1897–1909.e7 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Gosmann, C. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 46, 29–37 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Anahtar, M. N. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42, 965–976 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wira, C. R. et al. Sex hormone regulation of innate immunity in the female reproductive tract: the role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens. Am. J. Reprod. Immunol. 63, 544–565 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhou, J. Z., Way, S. S. & Chen, K. Immunology of the uterine and vaginal mucosae. Trends Immunol. 39, 302–314 (2018).

    Article  PubMed  CAS  Google Scholar 

  107. Pioli, P. A. et al. Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect. Immun. 72, 5799–5806 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Iwasaki, A. Antiviral immune responses in the genital tract: clues for vaccines. Nat. Rev. Immunol. 10, 699–711 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Schaefer, T. M., Wright, J. A., Pioli, P. A. & Wira, C. R. IL-1β-mediated proinflammatory responses are inhibited by estradiol via down-regulation of IL-1 receptor type I in uterine epithelial cells. J. Immunol. 175, 6509–6516 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. Hall, O. J. & Klein, S. L. Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunol. 10, 1097–1107 (2017).

    Article  PubMed  CAS  Google Scholar 

  111. Iijima, N., Thompson, J. M. & Iwasaki, A. Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol. 1, 451–459 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Evans, J. & Salamonsen, L. A. Inflammation, leukocytes and menstruation. Rev. Endocr. Metab. Disord. 13, 277–288 (2012).

    Article  PubMed  CAS  Google Scholar 

  113. Iijima, N. & Iwasaki, A. Tissue instruction for migration and retention of TRM cells. Trends Immunol. 36, 556–564 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Roychoudhury, P. et al. Tissue-resident T cell derived cytokines eliminate herpes simplex virus-2 infected cells. J. Clin. Investig. 130, 2903–2919 (2020). This work shows that tissue-resident T cell-derived cytokines rapidly clear HSV-2-infected cells in human genital lesions, providing mechanistic evidence that durable protection in the FRT requires establishment of local TRM cells by vaccination.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Shacklett, B. L. Mucosal immunity in HIV/SIV infection: T cells, B cells and beyond. Curr. Immunol. Rev. 15, 63–75 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Koelle, D. M., Frank, J. M., Johnson, M. L. & Kwok, W. W. Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions. J. Virol. 72, 7476–7483 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Mestecky, J. & Fultz, P. N. Mucosal immune system of the human genital tract. J. Infect. Dis. 179, S470–S474 (1999).

    Article  PubMed  Google Scholar 

  119. Li, Z. et al. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc. Natl. Acad. Sci. USA 108, 4388–4393 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Richardson, J. M., Kaushic, C. & Wira, C. R. Polymeric immunoglobin (Ig) receptor production and IgA transcytosis in polarized primary cultures of mature rat uterine epithelial cells. Biol. Reprod. 53, 488–498 (1995).

    Article  PubMed  CAS  Google Scholar 

  121. Usala, S. J., Usala, F. O., Haciski, R., Holt, J. A. & Schumacher, G. F. IgG and IgA content of vaginal fluid during the menstrual cycle. J. Reprod. Med. 34, 292–294 (1989).

    PubMed  CAS  Google Scholar 

  122. Mestecky, J. & Russell, M. W. Induction of mucosal immune responses in the human genital tract. FEMS Immunol. Med. Microbiol. 27, 351–355 (2000).

    Article  PubMed  CAS  Google Scholar 

  123. Watkins, T. A., Brockhurst, J. K., Germain, G., Griffin, D. E. & Foxman, E. F. Detection of live attenuated measles virus in the respiratory tract following subcutaneous measles-mumps-rubella vaccination. J. Infect. Dis. 231, 1089–1093 (2024).

    Article  Google Scholar 

  124. Topol, E. J. & Iwasaki, A. Operation nasal vaccine — lightning speed to counter COVID-19. Sci. Immunol. 7, eadd9947 (2022).

    Article  PubMed  Google Scholar 

  125. Routhu, N. K. et al. A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity 54, 542–556.e9 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Americo, J. L., Cotter, C. A., Earl, P. L., Liu, R. & Moss, B. Intranasal inoculation of an MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 119, e2202069119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Nouen, C. L. et al. Intranasal pediatric parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in monkeys. Cell 185, 4811–4825.e17 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184.e13 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ku, M. W. et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe 29, 236–249.e6 (2021).

    Article  PubMed  CAS  Google Scholar 

  130. Doremalen, N. van et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ying, B. et al. Mucosal vaccine-induced cross-reactive CD8+ T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat. Immunol. 25, 537–551 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. McMahan, K. et al. Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature 626, 385–391 (2024).

    Article  PubMed  CAS  Google Scholar 

  133. Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. eBioMedicine 85, 104298 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Tscherne, A. & Krammer, F. A review of currently licensed mucosal COVID-19 vaccines. Vaccine 61, 127356 (2025).

    Article  PubMed  Google Scholar 

  135. Kiyono, H. & Ernst, P. B. Nasal vaccines for respiratory infections. Nature 641, 321–330 (2025). This review provides a comprehensive overview of recent advances and challenges in the development of nasal vaccines for respiratory infections.

    Article  PubMed  CAS  Google Scholar 

  136. Carter, N. J. & Curran, M. P. Live attenuated influenza vaccine (FluMist®; FluenzTM): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 71, 1591–1622 (2011).

    Article  PubMed  CAS  Google Scholar 

  137. Mutsch, M. et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med. 350, 896–903 (2004).

    Article  PubMed  CAS  Google Scholar 

  138. Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Kwon, D. I. et al. Mucosal unadjuvanted booster vaccines elicit local IgA responses by conversion of pre-existing immunity in mice. Nat. Immunol. 26, 908–919 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Moriyama, M. et al. Intranasal hemagglutinin protein boosters induce protective mucosal immunity against influenza A viruses in mice. Proc. Natl. Acad. Sci. USA 122, e2422171122 (2025). Together with Mao et al. (2022) and Kwon et al. (2025), this paper demonstrates how nasal protein boosters can harness pre-existing immunity to elicit robust mucosal recall responses, including local IgA responses, providing a safe and potent mucosal vaccine strategy to enhance mucosal protection against respiratory viruses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Talaat, K. R. et al. A live attenuated influenza A(H5N1) vaccine induces long-term immunity in the absence of a primary antibody response. J. Infect. Dis. 209, 1860–1869 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lin, Y. et al. Sequential intranasal booster triggers class switching from intramuscularly primed IgG to mucosal IgA against SARS-CoV-2. J. Clin. Invest. 135, e175233 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Jiang, W. et al. Ipsilateral immunization after a prior SARS-CoV-2 mRNA vaccination elicits superior B cell responses compared to contralateral immunization. Cell Rep. 43, 113665 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Dhenni, R. et al. Macrophages direct location-dependent recall of B cell memory to vaccination. Cell 188, 3477–3496.e22 (2025).

    Article  PubMed  CAS  Google Scholar 

  145. Lederer, K. et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity 53, 1281–1295.e5 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Cirelli, K. M. et al. Slow delivery immunization rnhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 177, 1153–1171 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Lee, J. H. et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609, 998–1004 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Bhagchandani, S. H. et al. Two-dose priming immunization amplifies humoral immunity by synchronizing vaccine delivery with the germinal center response. Sci. Immunol. 9, eadl3755 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Painter, M. M. et al. Prior vaccination promotes early activation of memory T cells and enhances immune responses during SARS-CoV-2 breakthrough infection. Nat. Immunol. 24, 1711–1724 (2023). This work shows that prior vaccination accelerates memory T cell activation upon SARS-CoV-2 breakthrough infection, thereby enhancing the quality and magnitude of recall immune responses.

    Article  PubMed  CAS  Google Scholar 

  151. Bates, T. A. et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci. Immunol. 7, eabn8014 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Hoffmann, M. et al. Effect of hybrid immunity and bivalent booster vaccination on omicron sublineage neutralisation. Lancet Infect. Dis. 23, 25–28 (2023).

    Article  PubMed  Google Scholar 

  153. Herremans, T. M. P. T., Reimerink, J. H. J., Buisman, A. M., Kimman, T. G. & Koopmans, M. P. G. Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus. J. Immunol. 162, 5011–5018 (1999).

    Article  PubMed  CAS  Google Scholar 

  154. McConnell, E. L., Basit, A. W. & Murdan, S. Colonic antigen administration induces significantly higher humoral levels of colonic and vaginal IgA, and serum IgG compared to oral administration. Vaccine 26, 639–646 (2008).

    Article  PubMed  CAS  Google Scholar 

  155. Romagnoli, P. A. et al. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Mucosal Immunol. 10, 520–530 (2017).

    Article  PubMed  CAS  Google Scholar 

  156. Cheng, L. & Becattini, S. Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine. Mucosal Immunol. 17, 810–824 (2024).

    Article  PubMed  CAS  Google Scholar 

  157. Lavelle, E. C. & Ward, R. W. Mucosal vaccines — fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

    Article  PubMed  CAS  Google Scholar 

  158. Booth, J. S. et al. Attenuated oral typhoid vaccine Ty21a elicits lamina propria and intra-epithelial lymphocyte tissue-resident effector memory CD8 T responses in the human terminal ileum. Front. Immunol. 10, 424 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Booth, J. S., Goldberg, E., Barnes, R. S., Greenwald, B. D. & Sztein, M. B. Oral typhoid vaccine Ty21a elicits antigen-specific resident memory CD4+ T cells in the human terminal ileum lamina propria and epithelial compartments. J. Transl. Med. 18, 102 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Franco, M. A., Angel, J. & Greenberg, H. B. Immunity and correlates of protection for rotavirus vaccines. Vaccine 24, 2718–2731 (2006).

    Article  PubMed  CAS  Google Scholar 

  161. Wright, P. F. et al. Vaccine-induced mucosal immunity to poliovirus: analysis of cohorts from an open-label, randomised controlled trial in Latin American infants. Lancet Infect. Dis. 16, 1377–1384 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Marine, W. M., Chin, T. D. Y. & Gravelle, C. R. Limitation of fecal and pharyngeal poliovirus excretion in Salk-vaccinated children. A family study during a type 1 poliomyelitis epidemic. Am. J. Epidemiol. 76, 173–195 (1962).

    Article  CAS  Google Scholar 

  163. Hird, T. R. & Grassly, N. C. Systematic review of mucosal immunity induced by oral and inactivated poliovirus vaccines against virus shedding following oral poliovirus challenge. PLoS Pathog. 8, e1002599 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Chan, H. et al. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol. J. 14, 2190–2200 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Shah, M. P. & Hall, A. J. Norovirus illnesses in children and adolescents. Infect. Dis. Clin. N. Am. 32, 103–118 (2018).

    Article  Google Scholar 

  166. Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).

    Article  PubMed  CAS  Google Scholar 

  167. Ramani, S. et al. Mucosal and cellular immune responses to Norwalk virus. J. Infect. Dis. 212, 397–405 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Stefan, K. L., Kim, M. V., Iwasaki, A. & Kasper, D. L. Commensal microbiota modulation of natural resistance to virus infection. Cell 183, 1312–1324.e10 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Ryan, F. J. et al. Bifidobacteria support optimal infant vaccine responses. Nature 641, 456–464 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Feng, Y. et al. Antibiotic-induced gut microbiome perturbation alters the immune responses to the rabies vaccine. Cell Host Microbe 33, 705–718.e5 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Saleem, A. F. et al. Immunogenicity of poliovirus vaccines in chronically malnourished infants: a randomized controlled trial in Pakistan. Vaccine 33, 2757–2763 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Neidich, S. D. et al. Increased risk of influenza among vaccinated adults who are obese. Int. J. Obes. 41, 1324–1330 (2017).

    Article  CAS  Google Scholar 

  174. Honce, R. et al. Diet switch pre-vaccination improves immune response and metabolic status in formerly obese mice. Nat. Microbiol. 9, 1593–1606 (2024).

    Article  PubMed  CAS  Google Scholar 

  175. Becattini, S. et al. Enhancing mucosal immunity by transient microbiota depletion. Nat. Commun. 11, 4475 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Luccia, B. D. et al. Combined prebiotic and microbial intervention improves oral cholera vaccination responses in a mouse model of childhood undernutrition. Cell Host Microbe 27, 899–908.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Naik, S. et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Gribonika, I. et al. Skin autonomous antibody production regulates host–microbiota interactions. Nature 638, 1043–1053 (2025).

    Article  PubMed  CAS  Google Scholar 

  180. Bousbaine, D. et al. Discovery and engineering of the antibody response to a prominent skin commensal. Nature 638, 1054–1064 (2025).

    Article  PubMed  CAS  Google Scholar 

  181. Cao, E. Y. et al. The protozoan commensal Tritrichomonas musculis is a natural adjuvant for mucosal IgA. J. Exp. Med. 221, e20221727 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–1184 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019). This work describes the potential of immunogenic commensals to modulate both local and systemic immunity, as transfer of an immunogenic consortia into germ-free mice elicited increased frequencies of intestinal IELs and circulating CD8+ T cells.

    Article  PubMed  CAS  Google Scholar 

  184. Rupp, R. E., Stanberry, L. R. & Rosenthal, S. L. Vaccines for sexually transmitted infections. Pediatr. Ann. 34, 818–824 (2005).

    Article  PubMed  Google Scholar 

  185. Roden, R. B. S. & Stern, P. L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer 18, 240–254 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Schiller, J. T. & Lowy, D. R. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 10, 681–692 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012). This work introduces the prime and pull vaccine strategy, recruiting parenterally vaccine-primed T cells to the genital mucosa via locally administered chemokines to establish protective TRM cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Bernstein, D. I. et al. Successful application of prime and pull strategy for a therapeutic HSV vaccine. NPJ Vaccines 4, 33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bhagchandani, S. H. et al. Bioactive enhanced adjuvant chemokine oligonucleotide nanoparticles (BEACONs) for mucosal vaccination against genital herpes. Preprint in bioRxiv https://doi.org/10.1101/2025.07.31.667899 (2025).

  190. VanBenschoten, H. M. & Woodrow, K. A. Vaginal delivery of vaccines. Adv. Drug Deliv. Rev. 178, 113956 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. McKay, P. F. et al. Intravaginal immunisation using a novel antigen-releasing ring device elicits robust vaccine antigen-specific systemic and mucosal humoral immune responses. J. Control. Release 249, 74–83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Cranage, M. P. et al. Antibody responses after intravaginal immunisation with trimeric HIV-1CN54 clade C gp140 in Carbopol gel are augmented by systemic priming or boosting with an adjuvanted formulation. Vaccine 29, 1421–1430 (2011).

    Article  PubMed  CAS  Google Scholar 

  193. Wyatt, T. L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Antigen-releasing polymer rings and microspheres stimulate mucosal immunity in the vagina. J. Control. Release 50, 93–102 (1998).

    Article  PubMed  CAS  Google Scholar 

  194. Logerot, S. et al. IL-7-adjuvanted vaginal vaccine elicits strong mucosal immune responses in non-human primates. Front. Immunol. 12, 614115 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Zalenskaya, I. A. et al. Use of contraceptive depot medroxyprogesterone acetate is associated with impaired cervicovaginal mucosal integrity. J. Clin. Investig. 128, 4622–4638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Medaglini, D., Rush, C. M., Sestini, P. & Pozzi, G. Commensal bacteria as vectors for mucosal vaccines against sexually transmitted diseases: vaginal colonization with recombinant streptococci induces local and systemic antibodies in mice. Vaccine 15, 1330–1337 (1997).

    Article  PubMed  CAS  Google Scholar 

  197. Bermúdez-Humarán, L. G., Kharrat, P., Chatel, J.-M. & Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 10, S4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Lagenaur, L. A. et al. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol. 4, 648–657 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Medaglini, D., Oggioni, M. R. & Pozzi, G. Vaginal immunization with recombinant Gram-positive bacteria. Am. J. Reprod. Immunol. 39, 199–208 (1998).

    Article  PubMed  CAS  Google Scholar 

  200. Chang, C.-H., Simpson, D. A., Li-Yun Chang, T., Xu, Q. & Lewicki, J. A. Lactobacilli expressing biologically active polypeptides and uses thereof. US patent US7833791B2 (2003).

  201. Mestecky, J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J. Clin. Immunol. 7, 265–276 (1987).

    Article  PubMed  CAS  Google Scholar 

  202. Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    Article  PubMed  CAS  Google Scholar 

  203. Eshaghi, B. et al. The role of engineered materials in mucosal vaccination strategies. Nat. Rev. Mater. 9, 29–45 (2024).

    Article  CAS  Google Scholar 

  204. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Ramirez, J. E. V., Sharpe, L. A. & Peppas, N. A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 114, 116–131 (2017).

    Article  Google Scholar 

  206. Hartwell, B. L. et al. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14, eabn1413 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Bai, Z. et al. Nanoplatform based intranasal vaccines: current progress and clinical challenges. ACS Nano 18, 24650–24681 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Pollard, A. J. & Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83–100 (2021).

    Article  PubMed  CAS  Google Scholar 

  209. Liu, S. et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat. Commun. 15, 9471 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Li, J. et al. Advances and prospects of respiratory mucosal vaccines: mechanisms, technologies, and clinical applications. NPJ Vaccines 10, 230 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Gong, X., Gao, Y., Shu, J., Zhang, C. & Zhao, K. Chitosan-based nanomaterial as immune adjuvant and delivery carrier for vaccines. Vaccines 10, 1906 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Suberi, A. et al. Inhalable polymer nanoparticles for versatile mRNA delivery and mucosal vaccination. Preprint in bioRxiv https://doi.org/10.1101/2022.03.22.485401 (2022).

  214. Ganesan, S. et al. Intranasal nanoemulsion adjuvanted S-2P vaccine demonstrates protection in hamsters and induces systemic, cell-mediated and mucosal immunity in mice. PLoS ONE 17, e0272594 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Wu, L., Xu, W., Jiang, H., Yang, M. & Cun, D. Respiratory delivered vaccines: current status and perspectives in rational formulation design. Acta Pharm. Sin. B 14, 5132–5160 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Crothers, J. W. & Norton, E. B. Recent advances in enterotoxin vaccine adjuvants. Curr. Opin. Immunol. 85, 102398 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Sundling, C. et al. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization. J. Gen. Virol. 89, 2954–2964 (2008).

    Article  PubMed  CAS  Google Scholar 

  218. Ensign, L. M. et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med. 4, 138ra79 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  219. O’Hagan, D. T., Rafferty, D., Wharton, S. & Illum, L. Intravaginal immunization in sheep using a bioadhesive microsphere antigen delivery system. Vaccine 11, 660–664 (1993).

    Article  PubMed  Google Scholar 

  220. Howe, S. E. & Konjufca, V. H. Protein-coated nanoparticles are internalized by the epithelial cells of the female reproductive tract and induce systemic and mucosal immune responses. PLoS ONE 9, e114601 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  221. McCright, J. C. & Maisel, K. Engineering drug delivery systems to overcome mucosal barriers for immunotherapy and vaccination. Tissue Barriers 8, 1695476 (2020).

    Article  PubMed  Google Scholar 

  222. Kim, L. et al. Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight 3, e121077 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Flitter, B. A. et al. An oral norovirus vaccine tablet was safe and elicited mucosal immunity in older adults in a phase 1b clinical trial. Sci. Transl. Med. 17, eads0556 (2025).

    Article  PubMed  CAS  Google Scholar 

  224. Flitter, B. A. et al. An oral norovirus vaccine generates mucosal immunity and reduces viral shedding in a phase 2 placebo-controlled challenge study. Sci. Transl. Med. 17, eadh9906 (2025).

    Article  PubMed  CAS  Google Scholar 

  225. Huang, X. et al. Oral delivery of liquid mRNA therapeutics by an engineered capsule for treatment of preclinical intestinal disease. Sci. Transl. Med. 17, eadu1493 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Holmgren, J. & Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 11, S45–S53 (2005).

    Article  PubMed  CAS  Google Scholar 

  227. Bergquist, C., Johansson, E. L., Lagergård, T., Holmgren, J. & Rudin, A. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect. Immun. 65, 2676–2684 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Rudin, A., Johansson, E.-L., Bergquist, C. & Holmgren, J. Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect. Immun. 66, 3390–3396 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Hoft, D. F. et al. PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4+ T cell transcriptomal molecular signatures. Mucosal Immunol. 11, 486–495 (2018).

    Article  PubMed  CAS  Google Scholar 

  230. Ramanan, D. et al. An immunologic mode of multigenerational transmission governs a gut Treg setpoint. Cell 181, 1276–1290.e13 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Jaquish, A. et al. Mammary intraepithelial lymphocytes and intestinal inputs shape T cell dynamics in lactogenesis. Nat. Immunol. 26, 1411–1422 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Plotkin, S. A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17, 1055–1065 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Ghosh, S. et al. Enteric viruses replicate in salivary glands and infect through saliva. Nature 607, 345–350 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021).

    Article  PubMed  CAS  Google Scholar 

  236. Moutsopoulos, N. M. & Konkel, J. E. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol. 39, 276–287 (2018).

    Article  PubMed  CAS  Google Scholar 

  237. Gaffen, S. L. & Moutsopoulos, N. M. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci. Immunol. 5, eaau4594 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Hickman, H. D. & Moutsopoulos, N. M. Viral infection and antiviral immunity in the oral cavity. Nat. Rev. Immunol. 25, 235–249 (2025).

    Article  PubMed  CAS  Google Scholar 

  239. Eriksson, K., Ahlfors, E., George-Chandy, A., Kaiserlian, D. & Czerkinsky, C. Antigen presentation in the murine oral epithelium. Immunology 88, 147–152 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Alburquerque, J. B. de et al. Microbial uptake in oral mucosa-draining lymph nodes leads to rapid release of cytotoxic CD8+ T cells lacking a gut-homing phenotype. Sci. Immunol. 7, eabf1861 (2022).

    Article  Google Scholar 

  241. Conti, H. R. et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211, 2075–2084 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013).

    Article  PubMed  CAS  Google Scholar 

  243. Kirchner, F. R. & LeibundGut-Landmann, S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 14, 455–467 (2021).

    Article  PubMed  CAS  Google Scholar 

  244. Conti, H. R. et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe 20, 606–617 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Stolley, J. M. et al. Depleting CD103+ resident memory T cells in vivo reveals immunostimulatory functions in oral mucosa. J. Exp. Med. 220, e20221853 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Ingrole, R. S. J. et al. Floss-based vaccination targets the gingival sulcus for mucosal and systemic immunization. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01451-3 (2025).

    Article  PubMed  Google Scholar 

  248. Kelly, S. H. et al. A sublingual nanofiber vaccine to prevent urinary tract infections. Sci. Adv. 8, eabq4120 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Wira, C. R. & Fahey, J. V. A new strategy to understand how HIV infects women: identification of a window of vulnerability during the menstrual cycle. AIDS 22, 1909–1917 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Brotman, R. M., Ravel, J., Bavoil, P. M., Gravitt, P. E. & Ghanem, K. G. Microbiome, sex hormones, and immune responses in the reproductive tract: challenges for vaccine development against sexually transmitted infections. Vaccine 32, 1543–1552 (2014).

    Article  PubMed  CAS  Google Scholar 

  251. Patton, D. L. et al. Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am. J. Obstet. Gynecol. 183, 967–973 (2000).

    Article  PubMed  CAS  Google Scholar 

  252. Doncel, G. F., Joseph, T. & Thurman, A. R. Role of semen in HIV-1 transmission: inhibitor or facilitator? Am. J. Reprod. Immunol. 65, 292–301 (2011).

    Article  PubMed  CAS  Google Scholar 

  253. Kersh, E. N. et al. SHIV susceptibility changes during the menstrual cycle of pigtail macaques. J. Med. Primatol. 43, 310–316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Swaims-Kohlmeier, A. et al. Progesterone levels associate with a novel population of CCR5+CD38+ CD4 T cells resident in the genital mucosa with lymphoid trafficking potential. J. Immunol. 197, 368–376 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Piccinni, M. P. et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J. Immunol. 155, 128–133 (1995).

    Article  PubMed  CAS  Google Scholar 

  256. Vishwanathan, S. A. et al. High susceptibility to repeated, low-dose, vaginal SHIV exposure late in the luteal phase of the menstrual cycle of pigtail macaques. J. Acquir. Immune Defic. Syndr. 57, 261–264 (2011).

    Article  PubMed  CAS  Google Scholar 

  257. Kozlowski, P. A. et al. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J. Immunol. 169, 566–574 (2002).

    Article  PubMed  CAS  Google Scholar 

  258. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  PubMed  CAS  Google Scholar 

  259. Davis, C. W. et al. Influenza vaccine-induced human bone marrow plasma cells decline within a year after vaccination. Science 370, 237–241 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Zhang, Z. et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434–2451.e17 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Srivastava, K. et al. SARS-CoV-2-infection- and vaccine-induced antibody responses are long lasting with an initial waning phase followed by a stabilization phase. Immunity 57, 587–599.e4 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Muecksch, F. et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature 607, 128–134 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Nguyen, D. C. et al. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat. Med. 31, 235–244 (2025).

    Article  PubMed  CAS  Google Scholar 

  264. Kim, W. et al. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 604, 141–145 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Cortese, M. et al. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nat. Immunol. 26, 116–130 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Robinson, M. J. et al. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 56, 1596–1612.e4 (2023).

    Article  PubMed  CAS  Google Scholar 

  267. Liu, X., Yao, J., Zhao, Y., Wang, J. & Qi, H. Heterogeneous plasma cells and long-lived subsets in response to immunization, autoantigen and microbiota. Nat. Immunol. 23, 1564–1576 (2022).

    Article  PubMed  CAS  Google Scholar 

  268. Tellier, J. et al. Unraveling the diversity and functions of tissue-resident plasma cells. Nat. Immunol. 25, 330–342 (2024).

    Article  PubMed  CAS  Google Scholar 

  269. Holgado, M. P. et al. Mucosal B cell memory selection integrates tissue-specific microbial cues via the IgA BCR. Preprint at bioRxiv https://doi.org/10.1101/2025.04.30.651421 (2025).

  270. Bhattacharya, D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 55, 945–964 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Kiyono, H. & Fukuyama, S. NALT- versus PEYER’S-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4, 699–710 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Nakahashi-Ouchida, R. et al. Cationic nanogel-based nasal therapeutic HPV vaccine prevents the development of cervical cancer. Sci. Transl. Med. 17, eado8840 (2025).

    Article  PubMed  CAS  Google Scholar 

  273. Bomsel, M. et al. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 34, 269–280 (2011).

    Article  PubMed  CAS  Google Scholar 

  274. Czerkinsky, C., Çuburu, N., Kweon, M.-N., Anjuere, F. & Holmgren, J. Sublingual vaccination. Hum. Vaccines 7, 110–114 (2011).

    Article  CAS  Google Scholar 

  275. Benito-Villalvilla, C. et al. MV140, a sublingual polyvalent bacterial preparation to treat recurrent urinary tract infections, licenses human dendritic cells for generating Th1, Th17, and IL-10 responses via Syk and MyD88. Mucosal Immunol. 10, 924–935 (2017).

    Article  PubMed  CAS  Google Scholar 

  276. Abraham, S. et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect. Dis. 19, 1091–1100 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Howard Hughes Medical Institute to A.I. D.K. was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2024-00406626). S.H.B. is supported by the National Cancer Institute (NCI) of the US National Institutes of Health (NIH) under award number K00CA264404. S.A.E. is supported by a training grant from the National Institute of Allergy and Infectious Disease of the NIH (T32-AI007019). The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the NIAMS or NIH. The authors thank A. Ökten and M. Dresler for their careful reading and review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Akiko Iwasaki.

Ethics declarations

Competing interests

A.I. co-founded RIGImmune, Xanadu Bio, Rho Bio and PanV and is a member of the board of directors of Roche Holding Ltd and Genentech. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Ed Lavelle, Oliver Pabst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Di., Bhagchandani, S.H., Ehrenzeller, S.A. et al. Harnessing mucosal immunity for protective vaccines. Nat Rev Immunol (2026). https://doi.org/10.1038/s41577-026-01273-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41577-026-01273-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology