Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Olfactory and other sensory impairments in Alzheimer disease

Abstract

The vast increase in Alzheimer disease (AD) worldwide has grave implications for individuals, family support systems and the health-care systems that will attempt to cope with the disease. Early markers of the disease are essential for efficient selection of clinical trial participants for drug development and for timely treatment once an intervention becomes available. There is avid interest in noninvasive, inexpensive markers that have the potential to identify prodromal AD. This Review considers sensory impairments that have the potential to serve as early indicators of AD, with a focus on olfaction, hearing and vision. Current evidence regarding the potential markers of AD in each modality is examined, with a particular emphasis on olfaction and current findings that olfactory function is associated with prodromal AD. Research suggests that olfactory impairment is associated with other markers that signal the emergence of prodromal AD. Auditory impairment is associated with dementia in epidemiological studies and visual system deficits have been reported in AD; however, the emergence of these deficits in prodromal AD is unclear. Further research is necessary to address the relative sensitivity and specificity of olfactory, auditory and visual measures for the detection of prodromal AD.

Key points

  • Brain areas involved in olfactory processing — such as the olfactory bulb and entorhinal cortex — show very early neuropathology in Alzheimer disease (AD), suggesting that olfactory function is a potential biomarker.

  • Odour memory and odour identification are profoundly affected in individuals with AD and in those at risk of AD, suggesting that several measures of olfactory function signal preclinical AD.

  • Olfaction currently shows the greatest promise of all sensory biomarkers of AD; odour identification impairment predicts conversion to mild cognitive impairment (MCI) in cognitively normal individuals and conversion to AD in patients with amnestic MCI, and shows substantial relationships with other biomarkers of AD.

  • Epidemiological research indicates that hearing loss at baseline is associated with cognitive impairment and incident dementia over a 10-year period.

  • Visual changes in prodromal and clinical AD include retinal thinning in AD, impaired contrast sensitivity in AD and mild MCI, and abnormal pupillary responses that reflect cognitive load in AD and amnestic MCI.

  • Numerous sensory measures in olfaction, hearing and vision are emerging as potential markers of AD; further research is necessary to determine their relationship to other biomarkers and to assess their sensitivity and specificity for early prediction of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regions crucial to olfactory processing.
Fig. 2: Olfactory processing areas affected in Alzheimer disease.
Fig. 3: Braak staging of neurofibrillary changes in prodromal and clinical Alzheimer disease.
Fig. 4: Effect of APOE status on brain activation during odour recognition.
Fig. 5: Potential mechanism of olfactory impairment in Alzheimer disease.
Fig. 6: Proposed emergence of olfactory functional impairment in Alzheimer disease pathological progression.

Similar content being viewed by others

References

  1. Alzheimer’s Disease International. Dementia Statistics. ADI https://www.alz.co.uk/research/statistics (2017).

  2. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 11, 332–384 (2015).

    Google Scholar 

  3. Galasko, D. R. & Shaw, L. M. CSF biomarkers for Alzheimer disease — approaching consensus. Nat. Rev. Neurol. 13, 131–132 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Weiner, M. W. et al. The Alzheimer’s Disease Neuroimaging Initiative 3: continued improvement for clinical trial improvement. Alzheimers Dement. 13, 561–571 (2017).

    PubMed  Google Scholar 

  5. Lafaille-Magnen, M.-E. et al. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology 89, 327–335 (2017).

    Google Scholar 

  6. Murphy, C., Jernigan, T. L. & Fennema-Notestine, C. Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. J. Int. Neuropsychol. Soc. 9, 459–471 (2003).

    PubMed  Google Scholar 

  7. Growdon, M. E. et al. Odor identification and Alzheimer disease biomarkers in clinically normal elderly. Neurology 84, 2153–2160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin, F. R. et al. Hearing loss and incident dementia. Arch. Neurol. 68, 214–220 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Davies, H. R., Cadar, D., Herbert, A., Orrell, M. & Steptoe, A. Hearing impairment and incident dementia: findings from the England Longitudinal Study of Ageing. J. Am. Geriatr. Soc. 65, 2074–2081 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Deal, J. A. et al. Hearing impairment and incident dementia and cognitive decline in older adults: the health ABC study. J. Gerontol. A Biol. Sci. Med. Sci. 72, 703–709 (2017).

    PubMed  Google Scholar 

  11. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  Google Scholar 

  12. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 270–279 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Jak, A. J. et al. Contributions of neuropsychology and neuroimaging to understanding clinical subtypes of mild cognitive impairment. Neurobiol. Dementia 84, 81–103 (2009).

    Google Scholar 

  14. Roberts, R. O. et al. Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol. 16, 1–9 (2015).

    Google Scholar 

  15. Hyman, B. T., Arriagada, P. V. & Hoesen, G. W. Pathologic changes in the olfactory system in aging and Alzheimer’s disease. Ann. NY Acad. Sci. 640, 14–19 (1991).

    CAS  Google Scholar 

  16. Braak, H. & Braak, E. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci. Res. 15, 6–31 (1992).

    CAS  PubMed  Google Scholar 

  17. Braak, H. & Braak, E. Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiol. Aging 15, 355–356 (1994).

    CAS  PubMed  Google Scholar 

  18. Braak, H. & Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 18, 351–357 (1997).

    CAS  PubMed  Google Scholar 

  19. Attems, J., Walker, L. & Jellinger, K. A. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 127, 459–475 (2014).

    CAS  PubMed  Google Scholar 

  20. Hyman, B. T. & Tanzi, R. N. Amyloid, dementia and Alzheimer’s disease. Curr. Opin. Neurol. Neurosurgery 5, 88–93 (1992).

    CAS  Google Scholar 

  21. Hyman, B. T. The neuropathological diagnosis of Alzheimer’s disease: clinical-pathological studies. Neurobiol. Aging 18, 27–32 (1997).

    Google Scholar 

  22. Ohm, T. G. & Braak, H. Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol. 73, 365–369 (1987).

    CAS  PubMed  Google Scholar 

  23. Struble, R. G. & Clark, H. B. Olfactory bulb lesions in Alzheimer’s disease. Neurobiol. Aging 13, 469–473 (1992).

    CAS  PubMed  Google Scholar 

  24. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 237–259 (1991).

    Google Scholar 

  25. Braak, H. & Braak, E. Staging of Alzheimer-related cortical destruction. Int. Psychogeriatr. 9, 269–272 (1997).

    Google Scholar 

  26. Braak, H. & Del Tredici, K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 121, 171–181 (2011).

    PubMed  Google Scholar 

  27. Price, J. L., Davis, P. B., Morris, J. C. & White, D. L. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol. Aging 12, 295–312 (1991).

    CAS  PubMed  Google Scholar 

  28. Waldton, S. Clinical observations of impaired cranial nerve function in senile dementia. Acta Psychiat. Scand. 50, 539–547 (1974).

    CAS  PubMed  Google Scholar 

  29. Serby, M. Olfaction and Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 579–586 (1986).

    CAS  PubMed  Google Scholar 

  30. Doty, R. L., Reyes, P. F. & Gregor, T. Presence of both odor identification and detection deficits in Alzheimer’s disease. Brain Res. Bull. 18, 597–600 (1987).

    CAS  PubMed  Google Scholar 

  31. Chan, A., Tam, J., Murphy, C., Chiu, H. & Lam, L. Utility of olfactory identification test for diagnosing Chinese patients with Alzheimer’s disease. J. Clin. Exp. Neuropsychol. 24, 251–259 (2002).

    PubMed  Google Scholar 

  32. Morgan, C. D., Nordin, S. & Murphy, C. Odor identification as an early marker for Alzheimer’s disease: impact of lexical functioning and detection sensitivity. J. Clin. Exp. Neuropsychol. 17, 793–803 (1995).

    CAS  PubMed  Google Scholar 

  33. Oleson, S. & Murphy, C. Olfactory dysfunction in ApoE ε4/4 homozygotes with Alzheimer’s disease. J. Alzheimers Dis. 46, 791–803 (2015).

    CAS  Google Scholar 

  34. Woodward, M. R. et al. Validation of olfactory deficit as a biomarker of Alzheimer disease. Neurol. Clin. Practice 7, 5–14 (2017).

    Google Scholar 

  35. Albers, M. W. et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement. 11, 70–98 (2015).

    PubMed  Google Scholar 

  36. Rahayel, S., Frasnelli, J. & Joubert, S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: a meta-analysis. Behav. Brain Res. 231, 60–74 (2012).

    PubMed  Google Scholar 

  37. Roalf, D. R. et al. A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry 88, 226–232 (2017).

    PubMed  Google Scholar 

  38. Murphy, C., Bacon, A. W., Bondi, M. W. & Salmon, D. P. Apolipoprotein E status is associated with odor identification deficits in nondemented older persons. Ann. NY Acad. Sci. 855, 744–750 (1998).

    CAS  PubMed  Google Scholar 

  39. Graves, A. B. et al. Impaired olfaction as a marker for cognitive decline: interaction with apolipoprotein epsilon4 status. Neurology 53, 1480–1487 (1999).

  40. Olofsson, J. K. et al. Odor identification impairment in carriers of ApoE-ε4 is independent of clinical dementia. Neurobiol. Aging 31, 567–577 (2010).

    CAS  PubMed  Google Scholar 

  41. Mattis, S. in Geriatric Psychiatry: A Handbook for Psychiatrists and Primary Care Physicians (eds Bellak, L., Karasu, T. B. & Birenbaum, C.) 77–121 (Grune & Stratton, NY, 1976).

  42. Calhoun-Haney, R. & Murphy, C. Apolipoprotein e4 is associated with more rapid decline in odor identification than in odor threshold or dementia rating scale scores. Brain Cogn. 58, 178–182 (2005).

    PubMed  Google Scholar 

  43. Josefsson, M., Larsson, M., Nordin, S., Adolfsson, R. & Olofsson, J. APOE-e4 effects on longitudinal decline in olfactory and non-olfactory cognitive abilities in middle-aged and old adults. Scientif. Rep. 7, 1286 (2017).

    Google Scholar 

  44. Devanand, D. P. et al. Olfactory identification deficits and MCI in a multi-ethnic elderly community sample. Neurobiol. Aging 31, 1593–1600 (2010).

    CAS  PubMed  Google Scholar 

  45. Djordjevic, J., Jones-Gotman, M., De Sousa, K. & Chertkow, H. Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 29, 693–706 (2008).

    PubMed  Google Scholar 

  46. Wilson, R. S. et al. Olfactory identification and incidence of mild cognitive impairment in older age. Arch. General Psychiatry 64, 802–808 (2007).

    Google Scholar 

  47. Tabert, M. H. et al. A 10-item smell identification scale related to risk for Alzheimer’s disease. Ann. Neurol. 58, 155–160 (2005).

    PubMed  Google Scholar 

  48. Yaffe, K., Freimer, D. & Chen, H. Olfaction and risk of dementia in a biracial cohort of older adults. Neurology 88, 456–462 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Lehrner, J., Pusswald, G., Gleiss, A., Auff, E. & Dal-Bianco, P. Odor identification and self-reported olfactory functioning in patients with subtypes of mild cognitive impairment. Clin. Neuropsychol. 23, 818–830 (2009).

    PubMed  Google Scholar 

  50. Quarmley, M. et al. Odor identification screening improves diagnostic classification in incipient Alzheimer’s Disease. J. Alzheimers Dis. 55, 1497–1507 (2017).

    Google Scholar 

  51. Schubert, C. R. et al. Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults. J. Am. Geriatr. Soc. 56, 1517–1521 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. Fischer, M. E. et al. Age-related sensory impairments and risk of cognitive impairment. J. Am. Geriatr. Soc. 64, 1981–1987 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Devanand, D. P., Less, S. & Manly, J. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. Neurology 84, 182–189 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Murphy, C., Nordin, S. & Acosta, L. Odor learning, recall, and recognition memory in young and elderly adults. Neuropsychology 11, 126–137 (1997).

    CAS  PubMed  Google Scholar 

  55. Delis, D. C., Kramer, J. H., Kaplan, E. & Ober, B. A. The California Verbal Learning Test (Psychological Corporation, 1987).

  56. Nordin, S. & Murphy, C. Impaired sensory and cognitive olfactory function in questionable Alzheimer’s disease. Neuropsychology 10, 113–119 (1996).

    Google Scholar 

  57. Gilbert, P. E. & Murphy, C. The effect of the ApoE ε4 allele on recognition memory for olfactory and visual stimuli in patients with pathologically confirmed Alzheimer’s disease, probable Alzheimer’s disease and healthy elderly controls. J. Exp. Clin. Neuropsychol. 26, 779–794 (2004).

    Google Scholar 

  58. Gilbert, P. E. & Murphy, C. Differences between recognition memory and remote memory for olfactory and visual stimuli in nondemented elderly individuals genetically at risk for Alzheimer’s disease. Exp. Gerontol. 39, 433–441 (2004).

    PubMed  Google Scholar 

  59. Sundermann, E., Gilbert, P. E. & Murphy, C. Apolipoprotein E ε4 genotype and gender: effects on memory. Am. J. Geriatr. Psychiatry 15, 869–878 (2007).

    PubMed  Google Scholar 

  60. Albers, A. D. et al. Episodic memory of odors stratifies Alzheimer biomarkers in normal elderly. Ann. Neurol. 8, 846–857 (2016).

    Google Scholar 

  61. Gilbert, P. E., Barr, J. & Murphy, C. Differences in olfactory and visual memory in patients with pathologically confirmed Alzheimer’s disease and the Lewy body variant of Alzheimer’s disease. J. Int. Neuropsychol. Soc. 10, 835–842 (2004).

    PubMed  Google Scholar 

  62. Haase, L., Wang, M., Green, E. & Murphy, C. Functional connectivity during recognition memory in individuals genetically at risk for Alzheimer’s disease. Hum. Brain Mapp. 34, 530–542 (2013).

    PubMed  Google Scholar 

  63. Murphy, C. et al. Olfactory thresholds are associated with degree of dementia in Alzheimer’s disease. Neurobiol. Aging 11, 465–469 (1990).

    CAS  PubMed  Google Scholar 

  64. Bacon, A. W., Bondi, M. W., Salmon, D. P. & Murphy, C. Very early changes in olfactory functioning due to Alzheimer’s disease and the role of apolipoprotein E in olfaction. Ann. NY Acad. Sci. 30, 723–731 (1998).

    Google Scholar 

  65. Lorig, T. S., Elmes, D. G., Zald, D. H. & Pardo, J. V. A computer-controlled olfactometer for fMRI and electrophysiological studies of olfaction. Behav. Res. Methods, Instruments, Computers 31, 370–375 (1999).

    CAS  Google Scholar 

  66. Morgan, C. D. & Murphy, C. Olfactory event-related potentials in Alzheimer’s disease. J. Int. Neuropsychol. Soc. 8, 753–763 (2002).

    PubMed  Google Scholar 

  67. Morgan, C. & Murphy, C. Individuals at risk for Alzheimer’s disease show differential patterns of ERP brain activity during odour identification. Behav. Brain Funct. 8, 37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Murphy, C., Solomon, E. S., Haase, L., Wang, M. & Morgan, C. D. Olfaction in aging and Alzheimer’s disease: event-related potentials to a cross-modal odor recognition memory task discriminate ApoE 4+ and ApoE 4- individuals. Ann. NY Acad. Sci. 1170, 647–657 (2009).

    PubMed  Google Scholar 

  69. Kareken, D. A. et al. Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex. NeuroImage 22, 456–465 (2004).

    PubMed  Google Scholar 

  70. Wang, J. E. et al. Olfactory deficit detected by fMRI in early Alzheimer’s disease. Brain Res. 1357, 184–194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Vasavada, M. M. et al. Central olfactory dysfunction in Alzheimer’s disease and mild cognitive impairment: a functional MRI study. J. Alzheimers Dis. 59, 359–368 (2017).

    CAS  Google Scholar 

  72. Li, W., Howard, J. D. & Gottfried, J. A. Disruption of odour quality coding in piriform cortex mediates olfactory deficits in Alzheimer’s disease. Brain 133, 2714–2716 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Mormino, E. C. et al. Aβ deposition in aging is associated with increases in brain activation during successful memory encoding. Cerebral Cortex 22, 1813–1823 (2011).

    PubMed  Google Scholar 

  74. Woodward, J. L. et al. Semantic memory activation in amnestic mild cognitive impairment. Brain 132, 20168–20178 (2009).

    Google Scholar 

  75. Vassilaki, M. et al. Neuroimaging biomarkers and impaired olfaction in cognitively normal individuals. Ann. Neurol. 81, 871–882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bahar-Fuchs, A. et al. Olfactory deficits and amyloid-β burden in Alzheimer’s disease, mild cognitive impairment, and healthy aging: a PiB PET study. J. Alzheimers Dis. 22, 1081–1087 (2010).

    Google Scholar 

  77. McEvoy, L. K. et al. Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology 259, 834–843 (2011).

    PubMed  PubMed Central  Google Scholar 

  78. McEvoy, L. K. et al. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 251, 195–120 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Hagemeier, J. et al. Odor identification deficit in mild cognitive impairment and Alzheimer’s disease is associated with hippocampal and deep gray matter atrophy. Psychiatry Res.Neuroimaging 255, 87–93 (2016).

    PubMed  Google Scholar 

  80. Murphy, C. et al. Olfactory function and structural integrity of entorhinal cortex and hippocampus in non-demented middle-aged and older adults at risk for Alzheimer’s disease [abstract 203]. Chem. Senses 41, e1–e110 (2016).

    Google Scholar 

  81. Christen-Zaech, S. et al. Early olfactory involvement in Alzheimer’s disease. Can. J. Neurol. Sci. 30, 20–25 (2003).

    CAS  PubMed  Google Scholar 

  82. Thomann, P. A. et al. Reduced olfactory bulb and tract volume in early Alzheimer’s disease—a MRI study. Neurobiol. Aging 30, 838–841 (2009).

    PubMed  Google Scholar 

  83. Thomann, P. A. et al. MRI-derived atrophy of the olfactory bulb and tract in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 17, 213–221 (2009).

    Google Scholar 

  84. Servello, A. et al. Olfactory dysfunction, olfactory bulb volume and Alzheimer’s disease: is there a correlation? a pilot study1. J. Alzheimers Dis. 48, 395–402 (2015).

    Google Scholar 

  85. Schofield, P. W., Ebrahimi, H., Jones, A. L., Bateman, G. A. & Murray, S. R. An olfactory ‘stress test’ may detect preclinical Alzheimer’s disease. BMC 12, 24 (2012).

    Google Scholar 

  86. Pelton, G. H., Soleimani, L., Roose, S. P., Tabert, M. H. & Devanand, M. D. Olfactory deficits predict cognitive improvement on donepezil in patients with depression and cognitive impairment: a randomized controlled pilot study. Alzheimer Dis. Assoc. Disord. 30, 67–69 (2016).

    Google Scholar 

  87. Velayudhan, L. & Lovestone, S. Smell identification test as a treatment response marker in patients with Alzhiemer disease receiving donepezil. J. Clin. Psychopharmacol. 29, 387–390 (2009).

    CAS  PubMed  Google Scholar 

  88. Brinton, R. D. Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer’s disease. Adv. Drug Deliv. Rev. 60, 1504–1511 (2008).

    CAS  Google Scholar 

  89. Sundermann, E., Gilbert, P. E. & Murphy, C. Estrogen and performance in recognition memory for olfactory and visual stimuli in females diagnosed with Alzheimer’s disease. J. Int. Neuropsychol. Soc. 12, 400–404 (2006).

    PubMed  Google Scholar 

  90. Sundermann, E. E., Gilbert, P. E. & Murphy, C. The effect of hormone therapy on olfactory sensitivity is dependent on apolipoprotein E genotype. Horm. Behav. 54, 528–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Doty, R. L. et al. Influences of hormone replacement therapy on olfactory and cognitive function in postmenopausal women. Neurobiol. Aging. 36, 2053–2059 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nordin, S., Monsch, A. U. & Murphy, C. Unawareness of smell loss in normal aging and Alzheimer’s disease: discrepancy between self-reported and diagnosed smell sensitivity. J. Gerontol. B Psychol. Sci. Soc. Sci. 50, 187–192 (1995).

    Google Scholar 

  93. Devanand, D. P. et al. Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am. J. Psychiatry 157, 1399–1405 (2000).

    CAS  PubMed  Google Scholar 

  94. Wehling, E., Nordin, S., Espeseth, T., Reinvang, I. & Lundervold, A. J. Unawareness of olfactory dysfunction and its association with cognitive functioning in middle aged and old adults. Arch. Clin. Neuropsychol. 26, 260–269 (2011).

    PubMed  Google Scholar 

  95. Dalton, P. et al. Olfactory assessment using the NIH Toolbox. Neurology 80, 32–36 (2013).

    Google Scholar 

  96. Saito, S., Ayabe-Kanamura, S. & Takashima, Y. Development of a smell identification test using a novel stick-type odour presentation kit. Chem. Senses 31, 379–391 (2006).

    PubMed  Google Scholar 

  97. Murphy, C. et al. Prevalence of olfactory impairment in older adults. JAMA 288, 2307–2312 (2002).

    Google Scholar 

  98. Nordin, S., Brämerson, A., Liden, E. & Bende, M. The Scandinavian Odor-Identification Test: development, reliability, validity and normative data. Acta Otolaryngol. 118, 226–234 (1998).

    CAS  Google Scholar 

  99. Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E. & Kobal, G. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 (1997).

    CAS  PubMed  Google Scholar 

  100. Doty, R. L., Shaman, P. & Dann, M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol. Behav. 32, 489–502 (1984).

    CAS  PubMed  Google Scholar 

  101. Christensen, T., Larsson, E.-M., Holm, I. D., Nielsen, O. B. F. & Andersen, S. Olfactory testing in consecutive patients referred with suspected dementia. BMC Geriatr. 17, 129 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Lin, F. R. et al. Hearing loss and cognition in the Baltimore Longitudinal Study of Aging. Neuropsychology 25, 763–770 (2011).

    PubMed  PubMed Central  Google Scholar 

  103. Loughrey, D. G., Kelly, M. E., Kelley, G. A., Brennan, S. & Lawlor, B. A. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: a systematic review and meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2513, 1–12 (2017).

    Google Scholar 

  104. Adrait, A. et al. Do hearing aids influence behavioral and psychological symptoms of dementia and quality of life in hearing impaired Alzheimer’s disease patients and their caregivers? J. Alzheimers Dis. 58, 109–121 (2017).

    Google Scholar 

  105. Nguyen, M. F. et al. Efficacy of hearing aids on the cognitive status of patients with Alzheimer’s disease and hearing loss: a multicenter controlled randomized trial. J. Alzheimers Dis. 58, 123–137 (2017).

    Google Scholar 

  106. Lin, F. R. et al. Association of hearing impairment with brain volume changes in older adults. Neuroimage 90, 84–92 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Weinstein, B. E. & Ventry, I. M. Hearing impairment and social isolation in the elderly. J. Speech Hear. Res. 25, 593–599 (1982).

  108. Lin, F. R. & Albert, A. Hearing loss and dementia – who’s listening. Aging Mental Health, 18, 671–673 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Goldstein, L. E. et al. Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361, 1258–1265 (2003).

    CAS  PubMed  Google Scholar 

  110. Iseri, P. K., Altinas, O., Tokay, T. & Yuksel, N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer’s disease. J. Neuroophthalmol. 26, 18–24 (2006).

    PubMed  Google Scholar 

  111. Beshira, F., Feke, G. T., Trempe, C. L., McMeel, J. W. & Schepens, C. L. Retinal abnormalities in early Alzheimer’s disease. Invest. Ophthalmol. Vis. Sci. 48, 2285–2289 (2007).

    Google Scholar 

  112. Pillai, J. A. et al. Retinal nerve fiber layer thinning in Alzheimer’s disease: a case-control study in comparison to normal aging, Parkinson’s disease, and non-Alzheimer’s dementia. Am. J. Alzheimers Dis. Other Demen. 31, 430–436 (2016).

    Google Scholar 

  113. Cunha, J. P. et al. OCT in Alzheimer’s disease: thinning of the RNFL and superior hemiretina. Graefes Arch. Clin. Exp. Ophthalmol. 255, 1827–1835 (2017).

    PubMed  Google Scholar 

  114. Polo, V. et al. Visual function and its correlation with retinal changes in patients with Alzheimer’s disease. Eye 31, 1034–1041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Paquet, C. et al. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 420, 97–99 (2007).

    CAS  PubMed  Google Scholar 

  116. Kesler, A., Vakhapova, V., Korczyn, A. D., Naftaliev, E. & Neudorfer, M. Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin. Neurol. Neurosurg. 113, 523–526 (2011).

    PubMed  Google Scholar 

  117. Ascaso, F. J. et al. Reginal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study. J. Neurol. 261, 1522–1530 (2014).

    PubMed  Google Scholar 

  118. Lad, E. M. et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLOS ONE 13, e0192646 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Gilmore, G. C., Groth, K. E. & Thomas, C. W. Stimulus contrast and word reading speed in Alzheimer’s disease. Exp. Aging Res. 31, 15–33 (2005).

    PubMed  Google Scholar 

  120. Risacher, S. L. et al. Visual contrast sensitivity in Alzheimer’s disease, mild cognitive impairement, and older adults with cognitive complaints. Neurobiol. Aging 34, 1133–1144 (2013).

    PubMed  Google Scholar 

  121. Toner, C. K. et al. Vision-fair neuropsychological assessment in normal aging, Parkinson’s disease and Alzheimer’s disease. Psychol. Aging 27, 785–790 (2012).

    PubMed  Google Scholar 

  122. Risacher, S. L. et al. Visual contrast sensitivity is associated with amyloid and tau deposition. Alzheimers Dement. 13, 154–155 (2017).

    Google Scholar 

  123. Granholm, E. et al. Tropicamide effects on pupil size and pupillary light reflexes in Alzheimer’s and Parkinson’s disease. Int. J. Psychophysiol. 47, 95–115 (2003).

    PubMed  Google Scholar 

  124. Braak, H. & Del Tredici, K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr. Opin. Neurol. 15, 708–714 (2012).

    Google Scholar 

  125. Bittner, D. M., Wieseler, I., Wilhelm, H., Riepe, M. W. & Müller, N. G. Repetitive pupil light reflex: potential marker in Alzheimer’s disease? J. Alzheimers Dis. 42, 1469–1477 (2014).

    CAS  Google Scholar 

  126. Granholm, E. L. et al. Pupillary responses as a biomarker of early risk for Alzheimer’s disease. J. Alzheimer’ Dis. 56, 1419–1428 (2017).

    CAS  Google Scholar 

  127. Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Conti, M. Z. et al. Odor identification deficit predicts clinical conversion from mild cognitive impairment to dementia due to Alzheimer’s disease. Arch. Clin. Neuropsychol. 18, 391–399 (2013).

    Google Scholar 

  129. Eibenstein, A. et al. Olfactory screening test in mild cognitive impairment. Neurol. Sci. 26, 156–160 (2005).

    CAS  PubMed  Google Scholar 

  130. Westervelt, H. J., Bruce, J. M., Coon, W. G. & Tremont, G. Odor identification in mild cognitive impairment subtypes. J. Clin. Exp. Neuropsychol. 30, 151–156 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by NIH grant R01AG004085-26 from the National Institute on Aging. The author gratefully acknowledges C. Frank, A. Jacobson, M. Boquet, E. Farley and J. Liu for research assistance, and the patients and staff of the UCSD ADRC, particularly D. Salmon and D. Galasko and the late L. Thal and R. Katzman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Murphy.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat Rev Neurol 15, 11–24 (2019). https://doi.org/10.1038/s41582-018-0097-5

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-018-0097-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research