Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complement in neurological disorders and emerging complement-targeted therapeutics

Abstract

The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies.

Key points

  • Complement has an important physiological role in host immune defences and tissue remodelling.

  • The physiological role of complement extends to the regulation of synaptic development.

  • Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies.

  • For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available.

  • Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention.

  • The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The main proteins involved in the complement activation cascades.
Fig. 2: The role of complement in neurological diseases.
Fig. 3: Complement involvement in synaptic pruning in health and disease.

Similar content being viewed by others

References

  1. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hawksworth, O. A., Coulthard, L. G. & Woodruff, T. M. Complement in the fundamental processes of the cell. Mol. Immunol. 84, 17–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I — molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol. 6, 257 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Arvieux, J., Yssel, H. & Colomb, M. G. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones. Immunology 65, 229–235 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Kemper, C. & Atkinson, J. P. T-cell regulation: with complements from innate immunity. Nat. Rev. Immunol. 7, 9–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kemper, C., Mitchell, L. M., Zhang, L. & Hourcade, D. E. The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc. Natl Acad. Sci. USA 105, 9023–9028 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tenner, A. J., Stevens, B. & Woodruff, T. M. New tricks for an ancient system: physiological and pathological roles of complement in the CNS. Mol. Immunol. 102, 3–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kemper, C., Pangburn, M. K. & Fishelson, Z. Complement nomenclature 2014. Mol. Immunol. 61, 56–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Bohlson, S. S., Garred, P., Kemper, C. & Tenner, A. J. Complement nomenclature — deconvoluted. Front. Immunol. 10, 1308 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nonaka, M. Evolution of the complement system. Subcell. Biochem. 80, 31–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Almitairi, J. O. M. et al. Structure of the C1r–C1s interaction of the C1 complex of complement activation. Proc. Natl Acad. Sci. USA 115, 768–773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mortensen, S. A. et al. Models of the complement C1 complex. Proc. Natl Acad. Sci. USA 115, E3866 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sharp, T. H. et al. Insights into IgM-mediated complement activation based on in situ structures of IgM-C1-C4b. Proc. Natl Acad. Sci. USA 116, 11900–11905 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zwarthoff, S. A. et al. Functional characterization of alternative and classical pathway C3/C5 convertase activity and inhibition using purified models. Front. Immunol. 9, 1691 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kjaer, T. R. et al. Oligomerization of mannan-binding lectin dictates binding properties and complement activation. Scand. J. Immunol. 84, 12–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Escudero-Esparza, A., Kalchishkova, N., Kurbasic, E., Jiang, W. G. & Blom, A. M. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J. 27, 5083–5093 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Nan, R. et al. Flexibility in mannan-binding lectin-associated serine proteases-1 and -2 provides insight on lectin pathway activation. Structure 25, 364–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong, N. K., Kojima, M., Dobo, J., Ambrus, G. & Sim, R. B. Activities of the MBL-associated serine proteases (MASPs) and their regulation by natural inhibitors. Mol. Immunol. 36, 853–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Blaum, B. S. et al. Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat. Chem. Biol. 11, 77 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Chen, Z. A. et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass-spectrometry and modelling. Mol. Cell Proteom. 15, 2730–2743 (2016).

    Article  CAS  Google Scholar 

  23. Li, X. X., Lee, J. D., Kemper, C. & Woodruff, T. M. The complement receptor C5aR2: a powerful modulator of innate and adaptive immunity. J. Immunol. 202, 3339–3348 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Bayly-Jones, C., Bubeck, D. & Dunstone, M. A. The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos. Trans. R. Soc. Lond. B 372, 20160221 (2017).

    Article  CAS  Google Scholar 

  25. Hansch, G. M. et al. Macrophages release arachidonic acid, prostaglandin E2, and thromboxane in response to late complement components. J. Immunol. 133, 2145–2150 (1984).

    CAS  PubMed  Google Scholar 

  26. Tradtrantip, L., Yao, X., Su, T., Smith, A. J. & Verkman, A. S. Bystander mechanism for complement-initiated early oligodendrocyte injury in neuromyelitis optica. Acta Neuropathol. 134, 35–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, C., Yang, L. & Liu, Y. Soluble complement complex C5b-9 promotes microglia activation. J. Neuroimmunol. 267, 16–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Triantafilou, K., Hughes, T. R., Triantafilou, M. & Morgan, B. P. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci. 126, 2903–2913 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Carroll, M. C. The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Alexander, J. J., Anderson, A. J., Barnum, S. R., Stevens, B. & Tenner, A. J. The complement cascade: Yin-Yang in neuroinflammation — neuro-protection and -degeneration. J. Neurochem. 107, 1169–1187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tabib, A., Karbian, N. & Mevorach, D. Demyelination, strokes, and eculizumab: lessons from the congenital CD59 gene mutations. Mol. Immunol. 89, 69–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Karbian, N. et al. Molecular pathogenesis of human CD59 deficiency. Neurol. Genet. 4, e280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mevorach, D. et al. Therapy with eculizumab for patients with CD59 p.Cys89Tyr mutation. Ann. Neurol. 80, 708–717 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kawamoto, M., Murakami, Y., Kinoshita, T. & Kohara, N. Recurrent aseptic meningitis with PIGT mutations: a novel pathogenesis of recurrent meningitis successfully treated by eculizumab. BMJ Case Rep. bcr2018225910 (2018).

  35. Acosta, J. et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc. Natl Acad. Sci. USA 97, 5450–5455 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh, P., Sahoo, R., Vaidya, A., Chorev, M. & Halperin, J. A. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr. Rev. 36, 272–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carpanini, S. M., Torvell, M. & Morgan, B. P. Therapeutic inhibition of the complement system in diseases of the central nervous system. Front. Immunol. 10, 362 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alexander, J. J. Blood–brain barrier (BBB) and the complement landscape. Mol. Immunol. 102, 26–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Jacob, A. & Alexander, J. J. Complement and blood–brain barrier integrity. Mol. Immunol. 61, 149–152 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Luchena, C., Zuazo-Ibarra, J., Alberdi, E., Matute, C. & Capetillo-Zarate, E. Contribution of neurons and glial cells to complement-mediated synapse removal during development, aging and in Alzheimer’s disease. Mediators Inflamm. 2018, 2530414 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hafer-Macko, C. E. et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann. Neurol. 39, 625–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Goodfellow, J. A. et al. Overexpression of GD1a ganglioside sensitizes motor nerve terminals to anti-GD1a antibody-mediated injury in a model of acute motor axonal neuropathy. J. Neurosci. 25, 1620–1628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Halstead, S. K. et al. Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain 127, 2109–2123 (2004).

    Article  PubMed  Google Scholar 

  44. Willison, H. J. et al. The role of complement and complement regulators in mediating motor nerve terminal injury in murine models of Guillain–Barré syndrome. J. Neuroimmunol. 201–202, 172–182 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Halstead, S. K. et al. Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. Brain 131, 1197–1208 (2008).

    Article  PubMed  Google Scholar 

  46. Basta, M., Illa, I. & Dalakas, M. C. Increased in vitro uptake of the complement C3b in the serum of patients with Guillain–Barré syndrome, myasthenia gravis and dermatomyositis. J. Neuroimmunol. 71, 227–229 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Dalakas, M. C. & Engel, W. K. Immunoglobulin and complement deposits in nerves of patients with chronic relapsing polyneuropathy. Arch. Neurol. 37, 637–640 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Quast, I., Keller, C. W., Hiepe, F., Tackenberg, B. & Lunemann, J. D. Terminal complement activation is increased and associated with disease severity in CIDP. Ann. Clin. Transl Neurol. 3, 730–735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stathopoulos, P., Alexopoulos, H. & Dalakas, M. C. Autoimmune antigenic targets at the node of Ranvier in demyelinating disorders. Nat. Rev. Neurol. 11, 143–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Querol, L., Devaux, J., Rojas-Garcia, R. & Illa, I. Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications. Nat. Rev. Neurol. 13, 533–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Manso, C. et al. Anti-neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo. J. Clin. Invest. 129, 2222–2236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Uncini, A. & Vallat, J. M. Autoimmune nodo-paranodopathies of peripheral nerve: the concept is gaining ground. J. Neurol. Neurosurg. Psychiatry 89, 627–635 (2018).

    Article  PubMed  Google Scholar 

  53. Roggenbuck, J. J., Boucraut, J., Delmont, E., Conrad, K. & Roggenbuck, D. Diagnostic insights into chronic-inflammatory demyelinating polyneuropathies. Ann. Transl Med. 6, 337 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Roux, T. et al. Rituximab in chronic inflammatory demyelinating polyradiculoneuropathy with associated diseases. J. Peripher. Nerv. Syst. 23, 235–240 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Velardo, D. et al. Rituximab in refractory chronic inflammatory demyelinating polyradiculoneuropathy: report of four cases. J. Neurol. 264, 1011–1014 (2017).

    Article  PubMed  Google Scholar 

  56. Vlam, L. et al. Complement activity is associated with disease severity in multifocal motor neuropathy. Neurol. Neuroimmunol. Neuroinflamm. 2, e119 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Harschnitz, O. et al. Autoantibody pathogenicity in a multifocal motor neuropathy induced pluripotent stem cell-derived model. Ann. Neurol. 80, 71–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Weiss, M. D., Dalakas, M. C., Lauter, C. J., Willison, H. J. & Quarles, R. H. Variability in the binding of anti-MAG and anti-SGPG antibodies to target antigens in demyelinating neuropathy and IgM paraproteinemia. J. Neuroimmunol. 95, 174–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Lombardi, R. et al. IgM deposits on skin nerves in anti-myelin-associated glycoprotein neuropathy. Ann. Neurol. 57, 180–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Ritz, M. F. et al. Anti-MAG IgM penetration into myelinated fibers correlates with the extent of myelin widening. Muscle Nerve 22, 1030–1037 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Dalakas, M. C. Advances in the diagnosis, immunopathogenesis and therapies of IgM-anti-MAG antibody-mediated neuropathies. Ther. Adv. Neurol. Disord. 11, 1756285617746640 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Li, M., Peake, P. W., Charlesworth, J. A., Tracey, D. J. & Moalem-Taylor, G. Complement activation contributes to leukocyte recruitment and neuropathic pain following peripheral nerve injury in rats. Eur. J. Neurosci. 26, 3486–3500 (2007).

    Article  PubMed  Google Scholar 

  63. Fritzinger, D. C. & Benjamin, D. E. The complement system in neuropathic and postoperative pain. Open Pain J. 9, 26–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Griffin, R. S. et al. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J. Neurosci. 27, 8699–8708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, M. et al. Pain and the immune system: emerging concepts of IgG-mediated autoimmune pain and immunotherapies. J. Neurol. Neurosurg. Psychiatry 91, 177–188 (2020). An insightful view of autoimmune markers and autoimmunity in patients with common neurological disorders dominated by pain.

    Article  PubMed  Google Scholar 

  66. Ruff, R. L. & Lisak, R. P. Nature and action of antibodies in myasthenia gravis. Neurol. Clin. 36, 275–291 (2018).

    Article  PubMed  Google Scholar 

  67. Cetin, H. & Vincent, A. Pathogenic mechanisms and clinical correlations in autoimmune myasthenic syndromes. Semin. Neurol. 38, 344–354 (2018).

    Article  PubMed  Google Scholar 

  68. Romi, F., Kristoffersen, E. K., Aarli, J. A. & Gilhus, N. E. The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo. J. Neuroimmunol. 158, 191–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Howard, J. F. Jr. Myasthenia gravis: the role of complement at the neuromuscular junction. Ann. NY Acad. Sci. 1412, 113–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Morgan, B. P. et al. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin. Exp. Immunol. 146, 294–302 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chamberlain-Banoub, J., Neal, J. W., Mizuno, M., Harris, C. L. & Morgan, B. P. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin. Exp. Immunol. 146, 278–286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kusner, L. L., Sengupta, M. & Kaminski, H. J. Acetylcholine receptor antibody-mediated animal models of myasthenia gravis and the role of complement. Ann. NY Acad. Sci. 1413, 136–142 (2018).

    Article  PubMed  Google Scholar 

  73. Souroujon, M. C., Brenner, T. & Fuchs, S. Development of novel therapies for MG: studies in animal models. Autoimmunity 43, 446–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Dalakas, M. C. Immunotherapy in myasthenia gravis in the era of biologics. Nat. Rev. Neurol. 15, 113–124 (2019).

    Article  PubMed  Google Scholar 

  75. Farrugia, M. E. & Vincent, A. Autoimmune mediated neuromuscular junction defects. Curr. Opin. Neurol. 23, 489–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Dalakas, M. C. Inflammatory muscle diseases. N. Engl. J. Med. 373, 393–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Dalakas, M. C. Myositis: are autoantibodies pathogenic in necrotizing myopathy? Nat. Rev. Rheumatol. 14, 251–252 (2018).

    Article  PubMed  Google Scholar 

  78. Kissel, J. T., Mendell, J. R. & Rammohan, K. W. Microvascular deposition of complement membrane attack complex in dermatomyositis. N. Engl. J. Med. 314, 329–334 (1986).

    Article  CAS  PubMed  Google Scholar 

  79. Emslie-Smith, A. M. & Engel, A. G. Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann. Neurol. 27, 343–356 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Lahoria, R., Selcen, D. & Engel, A. G. Microvascular alterations and the role of complement in dermatomyositis. Brain 139, 1891–1903 (2016).

    Article  PubMed  Google Scholar 

  81. Nauta, A. J. et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur. J. Immunol. 32, 1726–1736 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Sakuta, R. et al. Diagnostic significance of membrane attack complex and vitronectin in childhood dermatomyositis. J. Child. Neurol. 20, 597–602 (2005).

    Article  PubMed  Google Scholar 

  83. Basta, M. & Dalakas, M. C. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J. Clin. Invest. 94, 1729–1735 (1994). A clinico-immunopathological study that demonstrates the beneficial effect of IVIg in complement-mediated damage in dermatomyositis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Watanabe, Y. et al. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy. J. Neurol. Neurosurg. Psychiatry 87, 1038–1044 (2016).

    Article  PubMed  Google Scholar 

  85. Wang, L. et al. Myopathy with anti-signal recognition particle antibodies: clinical and histopathological features in Chinese patients. Neuromuscul. Disord. 24, 335–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Dalakas, M. C. Necrotising autoimmune myopathy (NAM): antibodies seem to be specific markers in aiding diagnosis. J. Neurol. Neurosurg. Psychiatry 87, 1037 (2016).

    Article  PubMed  Google Scholar 

  87. Moghadam-Kia, S., Aggarwal, R. & Oddis, C. V. (2017). Biologics for idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 29, 645–651 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Dalakas M. C. in Contemporary Neurology Series (eds Bielekova, R., Birnbaum, R. & Lisak, R.) 177–192 (Oxford University Press, 2020).

  89. Glaubitz, S., Zeng, R. & Schmidt, J. New insights into the treatment of myositis. Ther. Adv. Musculoskelet. Dis. 12, 1759720X19886494 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fujihara, K. Neuromyelitis optica spectrum disorders: still evolving and broadening. Curr. Opin. Neurol. 32, 385–394 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dalmau, J. & Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med. 378, 840–851 (2018).

    Article  PubMed  Google Scholar 

  92. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Ingram, G., Hakobyan, S., Robertson, N. P. & Morgan, B. P. Elevated plasma C4a levels in multiple sclerosis correlate with disease activity. J. Neuroimmunol. 223, 124–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Ingram, G. et al. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol. Commun. 2, 53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Barnett, M. H., Parratt, J. D., Cho, E. S. & Prineas, J. W. Immunoglobulins and complement in postmortem multiple sclerosis tissue. Ann. Neurol. 65, 32–46 (2009). An important study of human postmortem tissue that shows the potential pathogenic role of complement in multiple sclerosis.

    Article  PubMed  Google Scholar 

  97. Breij, E. C. et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann. Neurol. 63, 16–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Schwab, C. & McGeer, P. L. Complement activated C4d immunoreactive oligodendrocytes delineate small cortical plaques in multiple sclerosis. Exp. Neurol. 174, 81–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Brink, B. P. et al. The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J. Neuropathol. Exp. Neurol. 64, 147–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). A very important study that demonstrates the physiological role of complement in synapse formation.

    Article  CAS  PubMed  Google Scholar 

  101. Stephan, A. H. et al. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460–13474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rosen, A. M. & Stevens, B. The role of the classical complement cascade in synapse loss during development and glaucoma. Adv. Exp. Med. Biol. 703, 75–93 (2010).

    Article  PubMed  Google Scholar 

  103. Howell, G. R. et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Invest. 121, 1429–1444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Werneburg, S. et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52, 167–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Tran, G. T. et al. Attenuation of experimental allergic encephalomyelitis in complement component 6-deficient rats is associated with reduced complement C9 deposition, P-selectin expression, and cellular infiltrate in spinal cords. J. Immunol. 168, 4293–4300 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Michailidou, I. et al. Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis. Acta Neuropathol. Commun. 6, 36 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Peschl, P. et al. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. J. Neuroinflammation 14, 208 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Alexopoulos, H. et al. Anti-aquaporin-4 autoantibodies in systemic lupus erythematosus persist for years and induce astrocytic cytotoxicity but not CNS disease. J. Neuroimmunol. 289, 8–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Soltys, J. et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J. Clin. Invest. 129, 2000–2013 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Marignier, R., Cobo Calvo, A. & Vukusic, S. Neuromyelitis optica and neuromyelitis optica spectrum disorders. Curr. Opin. Neurol. 30, 208–215 (2017).

    Article  PubMed  Google Scholar 

  111. Wang, H. et al. Increased soluble C5b-9 in CSF of neuromyelitis optica. Scand. J. Immunol. 79, 127–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Guo, Y. et al. Pathogenic implications of cerebrospinal fluid barrier pathology in neuromyelitis optica. Acta Neuropathol. 133, 597–612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu, Y., Zhong, L. & Geng, J. Neuromyelitis optica spectrum disorder: pathogenesis, treatment, and experimental models. Mult. Scler. Relat. Disord. 27, 412–418 (2019).

    Article  PubMed  Google Scholar 

  114. Yao, X. & Verkman, A. S. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol. Commun. 5, 57 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yao, X. & Verkman, A. S. Marked central nervous system pathology in CD59 knockout rats following passive transfer of neuromyelitis optica immunoglobulin G. Acta Neuropathol. Commun. 5, 15 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Alexopoulos, H. & Dalakas, M. C. The immunobiology of autoimmune encephalitides. J. Autoimmun. 104, 102339 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Malviya, M. et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann. Clin. Transl Neurol. 4, 768–783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martinez-Hernandez, E. et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 77, 589–593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Carvajal-Gonzalez, A. et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 137, 2178–2192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kortvelyessy, P. et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2, e75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Platt, M. P., Agalliu, D. & Cutforth, T. Hello from the other side: how autoantibodies circumvent the blood–brain barrier in autoimmune encephalitis. Front. Immunol. 8, 442 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Stoltzner, S. E. et al. Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease. Am. J. Pathol. 156, 489–499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eikelenboom, P., Hack, C. E., Kamphorst, W. & Rozemuller, J. M. Distribution pattern and functional state of complement proteins and alpha 1-antichymotrypsin in cerebral beta/A4 deposits in Alzheimer’s disease. Res. Immunol. 143, 617–620 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Eikelenboom, P. & Stam, F. C. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol. 57, 239–242 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. Morgan, B. P. Complement in the pathogenesis of Alzheimer’s disease. Semin. Immunopathol. 40, 113–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016). A paper that illustrates in mouse models how complement affects synaptic loss in Alzheimer disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shi, Q. et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl Med. 9, eaaf6295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Maier, M. et al. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J. Neurosci. 28, 6333–6341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wyss-Coray, T. et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc. Natl Acad. Sci. USA 99, 10837–10842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hernandez, M. X. et al. Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Mol. Neurodegener. 12, 66 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Fonseca, M. I. et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J. Immunol. 183, 1375–1383 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Tenner, A. J. Complement-mediated events in Alzheimer’s disease: mechanisms and potential therapeutic targets. J. Immunol. 204, 306–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Sta, M. et al. Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol. Dis. 42, 211–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Woodruff, T. M. et al. The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J. Immunol. 181, 8727–8734 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Lee, J. D. et al. Pharmacological inhibition of complement C5a-C5a1 receptor signalling ameliorates disease pathology in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. Br. J. Pharmacol. 174, 689–699 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Singhrao, S. K., Neal, J. W., Morgan, B. P. & Gasque, P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp. Neurol. 159, 362–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Woodruff, T. M. et al. Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J. 20, 1407–1417 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Kossmann, T., Stahel, P. F., Morganti-Kossmann, M. C., Jones, J. L. & Barnum, S. R. Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. J. Neuroimmunol. 73, 63–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma 18, 773–781 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Bellander, B. M., von Holst, H., Fredman, P. & Svensson, M. Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. J. Neurosurg. 85, 468–475 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Anderson, A. J., Robert, S., Huang, W., Young, W. & Cotman, C. W. Activation of complement pathways after contusion-induced spinal cord injury. J. Neurotrauma 21, 1831–1846 (2004).

    Article  PubMed  Google Scholar 

  142. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sellgren, C. M. et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22, 374–385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zanjani, H. et al. Complement activation in very early Alzheimer disease. Alzheimer Dis. Assoc. Disord. 19, 55–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Mohebnasab, M. et al. Current and future approaches for monitoring responses to anti-complement therapeutics. Front. Immunol. 10, 2539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zelek, W. M., Xie, L., Morgan, B. P. & Harris, C. L. Compendium of current complement therapeutics. Mol. Immunol. 114, 341–352 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Lunemann, J. D., Quast, I. & Dalakas, M. C. Efficacy of intravenous immunoglobulin in neurological diseases. Neurotherapeutics 13, 34–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Dalakas, M. C. Mechanistic effects of IVIg in neuroinflammatory diseases: conclusions based on clinicopathologic correlations. J. Clin. Immunol. 34, S120–S126 (2014).

    Article  PubMed  CAS  Google Scholar 

  149. Dalakas, M. C. Intravenous immunoglobulin in autoimmune neuromuscular diseases. JAMA 291, 2367–2375 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Lunemann, J. D., Nimmerjahn, F. & Dalakas, M. C. Intravenous immunoglobulin in neurology — mode of action and clinical efficacy. Nat. Rev. Neurol. 11, 80–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Lutz, H. U. et al. Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level. Blood 103, 465–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Dalakas, M. C. et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N. Engl. J. Med. 329, 1993–2000 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Raju, R. & Dalakas, M. C. Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 128, 1887–1896 (2005).

    Article  PubMed  Google Scholar 

  154. Appeltshauser, L., Weishaupt, A., Sommer, C. & Doppler, K. Complement deposition induced by binding of anti-contactin-1 auto-antibodies is modified by immunoglobulins. Exp. Neurol. 287, 84–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Keller, C. W., Quast, I., Dalakas, M. C. & Lunemann, J. D. IVIG efficacy in CIDP patients is not associated with terminal complement inhibition. J. Neuroimmunol. 330, 23–27 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Davidson, A. I. et al. Inhibition of complement in Guillain–Barré syndrome: the ICA-GBS study. J. Peripher. Nerv. Syst. 22, 4–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Hughes, R. A. et al. Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurol. 7, 136–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Winter, M. et al. Dose-dependent inhibition of demyelination and microglia activation by IVIG. Ann. Clin. Transl Neurol. 3, 828–843 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Esen, F., Ozcan, P. E., Tuzun, E. & Boone, M. D. Mechanisms of action of intravenous immunoglobulin in septic encephalopathy. Rev. Neurosci. 29, 417–423 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Mastellos, D. C., Ricklin, D. & Lambris, J. D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 18, 707–729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P. & Lambris, J. D. Complement component C3 — the “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev. 274, 33–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03500549 (2020).

  163. Reis, E. S. et al. Safety profile after prolonged C3 inhibition. Clin. Immunol. 197, 96–106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Socie, G. et al. Eculizumab in paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome: 10-year pharmacovigilance analysis. Br. J. Haematol. 182, 297–310 (2019).

    Article  CAS  Google Scholar 

  165. Collongues, N., Ayme-Dietrich, E., Monassier, L. & de Seze, J. Pharmacotherapy for neuromyelitis optica spectrum disorders: current management and future options. Drugs 79, 125–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Howard, J. F. Jr et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve 48, 76–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Howard, J. F. Jr et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 16, 976–986 (2017). The study of eculizumab in myasthenia gravis on which approval of the drug is based.

    Article  CAS  PubMed  Google Scholar 

  168. Muppidi, S. et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve 60, 14–24 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhou, Y. et al. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J. Immunol. 179, 8562–8567 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Pittock, S. J. et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019). The study of eculizumab in NMOSD on which approval of the drug is based.

    Article  CAS  PubMed  Google Scholar 

  172. Duchow, A., Paul, F. & Bellmann-Strobl, J. Current and emerging biologics for the treatment of neuromyelitis optica spectrum disorders. Expert Opin. Biol. Ther. 20, 1061–1072 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Misawa, S. et al. Safety and efficacy of eculizumab in Guillain–Barré syndrome: a multicentre, double-blind, randomised phase 2 trial. Lancet Neurol. 17, 519–529 (2018). A study that shows the potential for a therapeutic effect of eculizumab in GBS.

    Article  CAS  PubMed  Google Scholar 

  174. Fitzpatrick, A. M. et al. An open label clinical trial of complement inhibition in multifocal motor neuropathy. J. Peripher. Nerv. Syst. 16, 84–91 (2011).

    Article  PubMed  Google Scholar 

  175. Lee, J. W. et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood 133, 530–539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Stern, R. M. & Connell, N. T. Ravulizumab: a novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria. Therapeutic Adv. Hematol. 10, 2040620719874728 (2019).

    Article  CAS  Google Scholar 

  177. Peffault de Latour, R. et al. Pharmacokinetic and pharmacodynamic effects of ravulizumab and eculizumab on complement component 5 in adults with paroxysmal nocturnal haemoglobinuria: results of two phase 3 randomised, multicentre studies. Br. J. Haematol. https://doi.org/10.1111/bjh.16711 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kulasekararaj, A. G. et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood 133, 540–549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03920293 (2020).

  180. Howard, J. F. Jr. et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol. 77, 582–592 (2020). This phase II trial shows that daily subcutaneous injection of zilucoplan in patients with generalized myasthenia gravis leads to rapid, meaningful and sustained improvements in Quantitative Myasthenia Gravis and Myasthenia Gravis Activities of Daily Living scores over 12 weeks compared with placebo.

    Article  PubMed  Google Scholar 

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02534909 (2020).

  182. Kassa, E., Ciulla, T. A., Hussain, R. M. & Dugel, P. U. Complement inhibition as a therapeutic strategy in retinal disorders. Expert Opin. Biol. Ther. 19, 335–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Sampei, Z. et al. Antibody engineering to generate SKY59, a long-acting anti-C5 recycling antibody. PLoS ONE 13, e0209509 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lansita, J. A. et al. Nonclinical development of ANX005: a humanized anti-C1q antibody for treatment of autoimmune and neurodegenerative diseases. Int. J. Toxicol. 36, 449–462 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Paidassi, H. et al. The lectin-like activity of human C1q and its implication in DNA and apoptotic cell recognition. FEBS Lett. 582, 3111–3116 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Bartko, J. et al. A randomized, first-in-human, healthy volunteer trial of sutimlimab, a humanized antibody for the specific inhibition of the classical complement pathway. Clin. Pharmacol. Ther. 104, 655–663 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jager, U. et al. Inhibition of complement C1s improves severe hemolytic anemia in cold agglutinin disease: a first-in-human trial. Blood 133, 893–901 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Eskandary, F. et al. Anti-C1s monoclonal antibody BIVV009 in late antibody-mediated kidney allograft rejection — results from a first-in-patient phase 1 trial. Am. J. Transpl. 18, 916–926 (2018).

    Article  CAS  Google Scholar 

  189. Nonaka, S. & Nakanishi, H. Microglial clearance of focal apoptotic synapses. Neurosci. Lett. 707, 134317 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Gorelik, A. et al. Developmental activities of the complement pathway in migrating neurons. Nat. Commun. 8, 15096 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Coulthard, L. G., Hawksworth, O. A. & Woodruff, T. M. Complement: the emerging architect of the developing brain. Trends Neurosci. 41, 373–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Hillmen, P. et al. Long-term safety and efficacy of sustained eculizumab treatment in patients with paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 162, 62–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Benamu, E. & Montoya, J. G. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr. Opin. Infect. Dis. 29, 319–329 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Clancy, M. et al. Disseminated cryptococcosis associated with administration of eculizumab. Am. J. Health Syst. Pharm. 75, 1018–1022 (2018).

    Article  PubMed  Google Scholar 

  195. Crew, P. E. et al. Unusual Neisseria species as a cause of infection in patients taking eculizumab. J. Infect. 78, 113–118 (2019).

    Article  PubMed  Google Scholar 

  196. Dalakas, M. C. Guillain–Barré syndrome: the first documented COVID-19-triggered autoimmune neurologic disease: more to come with myositis in the offing. Neurol. Neuroimmunol. Neuroinflamm. 7, e781 (2020). An opinion paper that highlights and defends the view that patients with myasthenia gravis who are receiving common immunotherapies and who are clinically stable do not have increased susceptibility to COVID-19.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Hatzidionysiou, K., Svenungsson, E. & Faustini, F. Could severe COVID-19 be considered a complementopathy? Lupus Sci. Med. 7, e000415 (2020).

    Article  Google Scholar 

  198. Risitano, A. M. et al. Complement as a target in COVID-19? Nat. Rev. Immunol. 20, 343–344 (2020). A highly topical opinion paper about how complement could be a target in COVID-19.

    Article  CAS  PubMed  Google Scholar 

  199. Smith, K., Pace, A., Ortiz, S., Kazani, S. & Rottinghaus, S. A phase 3 open-label, randomized, controlled study to evaluate the efficacy and safety of intravenously administered ravulizumab compared with best supportive care in patients with COVID-19 severe pneumonia, acute lung injury, or acute respiratory distress syndrome: a structured summary of a study protocol for a randomised controlled trial. Trials 21, 639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Giudice, V. et al. Combination of ruxolitinib and eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Front. Pharmacol. 11, 857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mastaglio, S. et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin. Immunol. 215, 108450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dalakas M. C. Progress in the therapy of myasthenia gravis: getting closer to effective targeted immunotherapies. Curr. Opin. Neurol. 33, 545–552 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Diurno, F. et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience Eur. Rev. Med. Pharmacol. Sci. 24, 4040–4047 (2020).

    CAS  PubMed  Google Scholar 

  204. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Marinos C. Dalakas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Opsonization

The molecular mechanism by which antigens, microorganisms or apoptotic cells are targeted by antibodies and complement breakdown products so that attraction to the cell surface receptors of phagocytes and natural killer cells increases; when the antigen is coated in opsonins, binding to immune cells is greatly increased.

Anaphylatoxins

Small pro-inflammatory oligopeptide fragments, such as C3a and C5a, that are produced during activation of the complement system and have important functions in the immune response and host defence.

Zymogens

Inactive precursors of enzymes that requires a biochemical change to become an active enzyme; also called pro-enzymes.

Quantitative Myasthenia Gravis

A physician-administered scale that assesses the severity of myasthenia gravis, ranging from 0 to 39, with higher scores representing more severe impairment.

Myasthenia Gravis Activities of Daily Living

A patient-reported index of daily living assessment, where a score >6 suggests that patients are moderately or severely affected by myasthenia gravis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalakas, M.C., Alexopoulos, H. & Spaeth, P.J. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 16, 601–617 (2020). https://doi.org/10.1038/s41582-020-0400-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-020-0400-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing