Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

Peripheral and central immune system crosstalk in Alzheimer disease — a research prospectus

A Publisher Correction to this article was published on 08 October 2021

This article has been updated

Abstract

Dysregulation of the immune system is a cardinal feature of Alzheimer disease (AD), and a considerable body of evidence indicates pathological alterations in central and peripheral immune responses that change over time. Considering AD as a systemic immune process raises important questions about how communication between the peripheral and central compartments occurs and whether this crosstalk represents a therapeutic target. We established a whitepaper workgroup to delineate the current status of the field and to outline a research prospectus for advancing our understanding of peripheral–central immune crosstalk in AD. To guide the prospectus, we begin with an overview of seminal clinical observations that suggest a role for peripheral immune dysregulation and peripheral–central immune communication in AD, followed by formative animal data that provide insights into possible mechanisms for these clinical findings. We then present a roadmap that defines important next steps needed to overcome conceptual and methodological challenges, opportunities for future interdisciplinary research, and suggestions for translating promising mechanistic studies into therapeutic interventions.

Key points

  • Alzheimer disease (AD) should be viewed as a systemic disease that involves dynamic processes in the peripheral and central immune compartments.

  • Clinical studies suggest that the peripheral and central immune systems are dysregulated in AD, are related to cognitive function and clinical status, and may change in a non-linear manner over time; burgeoning evidence also suggests that the roles of innate and adaptive immune processes differ depending on the pathological stage of AD.

  • Animal studies have provided insights into possible mechanisms for peripheral and central immune communication, including direct pathways that involve peripheral immune cell infiltration into the CNS, as well as indirect pathways that involve systemic inflammation-driven modulation of microglial function.

  • Longitudinal clinical studies to evaluate peripheral and central immune mechanisms are needed in combination with comprehensive assessment of the human exposome in demographically diverse cohorts.

  • Further mechanistic studies in animal models are critical to providing a better understanding of peripheral immune cell trafficking to the CNS, adaptive and innate immune system interfaces and astrocyte–microglia crosstalk.

  • Translational and interdisciplinary studies are needed to reconcile differences in immune pathways across species and to develop strategic immune-based therapies that are tailored to disease state and severity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

References

  1. Paouri, E. & Georgopoulos, S. Systemic and CNS inflammation crosstalk: implications for Alzheimer’s disease. Curr. Alzheimer Res. 16, 559–574 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Morris, G., Berk, M., Maes, M. & Puri, B. K. Could Alzheimer’s disease originate in the periphery and if so how so? Mol. Neurobiol. 56, 406–434 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Stephenson, J., Nutma, E., van der Valk, P. & Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 154, 204–219 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Webers, A., Heneka, M. T. & Gleeson, P. A. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol. Cell Biol. 98, 28–41 (2020).

    Article  PubMed  Google Scholar 

  5. Kinney, J. W. et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 4, 575–590 (2018).

    Article  Google Scholar 

  6. Le Page, A. et al. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp. Gerontol. 107, 59–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Jenny, N. S. et al. Long-term assessment of inflammation and healthy aging in late life: the Cardiovascular Health Study All Stars. J. Gerontol. A Biol. Sci. Med. Sci. 67, 970–976 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Metti, A. L. et al. Change in inflammatory markers and cognitive status in the oldest-old women from the Study of Osteoporotic Fractures. J. Am. Geriatrics Soc. 62, 662–666 (2014).

    Article  Google Scholar 

  9. Sundelof, J. et al. Systemic inflammation and the risk of Alzheimer’s disease and dementia: a prospective population-based study. J. Alzheimers Dis. 18, 79–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Lanzrein, A. S. et al. Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer disease: interleukin-1β, interleukin-6, interleukin-1 receptor antagonist, tumor necrosis factor-a, the soluble tumor necrosis factor receptors I and II, and α1-antichymotrypsin. Alzheimer Dis. Associated Disord. 12, 215–227 (1998).

    Article  CAS  Google Scholar 

  11. Ravaglia, G. et al. Blood inflammatory markers and risk of dementia: the Conselice Study of Brain Aging. Neurobiol. Aging 28, 1810–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Eriksson, U. K. et al. Associations of gene sequence variation and serum levels of C-reactive protein and interleukin-6 with Alzheimer’s disease and dementia. J. Alzheimers Dis. 23, 361–369 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Swardfager, W. et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry 68, 930–941 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Lai, K. S. P. et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry 88, 876–882 (2017).

    Article  PubMed  Google Scholar 

  15. Darweesh, S. K. L. et al. Inflammatory markers and the risk of dementia and Alzheimer’s disease: a meta-analysis. Alzheimers Dement. 14, 1450–1459 (2018).

    Article  PubMed  Google Scholar 

  16. Koyama, A. et al. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: a meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 68, 433–440 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, R. et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann. Neurol. 52, 168–174 (2002).

    Article  PubMed  Google Scholar 

  18. Engelhart, M. J. et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam Study. Arch. Neurol. 61, 668–672 (2004).

    Article  PubMed  Google Scholar 

  19. Tan, Z. S. et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 68, 1902–1908 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Weaver, J. D. et al. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59, 371–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Yaffe, K. et al. Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology 61, 76–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Singh-Manoux, A. et al. Interleukin-6 and C-reactive protein as predictors of cognitive decline in late midlife. Neurology 83, 486–493 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yaffe, K. et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 292, 2237–2242 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Tao, Q. et al. Association of chronic low-grade inflammation with risk of Alzheimer disease in ApoE4 carriers. JAMA Netw. Open 1, e183597 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Walker, K. A. et al. Systemic inflammation during midlife and cognitive change over 20 years: the ARIC Study. Neurology 92, e1256–e1267 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Gottesman, R. F. et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 74, 1246–1254 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bettcher, B. M. et al. Increases in a pro-inflammatory chemokine, MCP-1, are related to decreases in memory over time. Front. Aging Neurosci. 11, 25 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Marsland, A. L. et al. Interleukin-6 covaries inversely with cognitive performance among middle-aged community volunteers. Psychosom. Med. 68, 895–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wersching, H. et al. Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology 74, 1022–1029 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Jefferson, A. L. et al. Inflammatory biomarkers are associated with total brain volume: the Framingham Heart Study. Neurology 68, 1032–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Bettcher, B. M. et al. C-reactive protein is related to memory and medial temporal brain volume in older adults. Brain Behav. Immun. 26, 103–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Walker, K. A. et al. Association of peripheral inflammatory markers with connectivity in large-scale functional brain networks of non-demented older adults. Brain Behav. Immun. 87, 388–396 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Walker, K. A. et al. The association of mid- and late-life systemic inflammation with brain amyloid deposition: the ARIC-PET Study. J. Alzheimers Dis. 66, 1041–1052 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Shen, X. N. et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J. Neurol. Neurosurg. Psychiatry 90, 590–598 (2019).

    Article  PubMed  Google Scholar 

  35. Diniz, B. S. et al. Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J. Alzheimers Dis. 22, 1305–1311 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Saleem, M., Herrmann, N., Swardfager, W., Eisen, R. & Lanctot, K. L. Inflammatory markers in mild cognitive impairment: a meta-analysis. J. Alzheimers Dis. 47, 669–679 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Leung, R. et al. Inflammatory proteins in plasma are associated with severity of Alzheimer’s disease. PLoS ONE 8, e64971 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Galimberti, D. et al. Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol. Aging 27, 1763–1768 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Morgan, A. R. et al. Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimers Dement. 15, 776–787 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  40. Motta, M., Imbesi, R., Di Rosa, M., Stivala, F. & Malaguarnera, L. Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol. Lett. 114, 46–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Brosseron, F., Krauthausen, M., Kummer, M. & Heneka, M. T. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol. Neurobiol. 50, 534–544 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Riphagen, J. M. et al. Linking APOE-epsilon4, blood-brain barrier dysfunction, and inflammation to Alzheimer’s pathology. Neurobiol. Aging 85, 96–103 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Popp, J. et al. Markers of neuroinflammation associated with Alzheimer’s disease pathology in older adults. Brain Behav. Immun. 62, 203–211 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Bettcher, B. M. et al. Cerebrospinal fluid and plasma levels of inflammation differentially relate to CNS markers of Alzheimer’s disease pathology and neuronal damage. J. Alzheimers Dis. 62, 385–397 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Jack, C. R. Jr. et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  46. Yang, H. S. et al. Plasma IL-12/IFN-γ axis predicts cognitive trajectories in cognitively unimpaired older adults. Alzheimers Dement https://doi.org/10.1002/alz.12399 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Thome, A. D. et al. Functional alterations of myeloid cells during the course of Alzheimer’s disease. Mol. Neurodegener. 13, 61 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Saresella, M. et al. IL-33 and its decoy sST2 in patients with Alzheimer’s disease and mild cognitive impairment. J. Neuroinflammation 17, 174 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Dong, Y. et al. Neutrophil hyperactivation correlates with Alzheimer’s disease progression. Ann. Neurol. 83, 387–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nat. Immunol. 5, 133–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Pawelec, G. et al. T cells and aging, January 2002 update. Front. Biosci. 7, d1056–d1183 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Danielson, M. et al. Neuroinflammatory markers associate with cognitive decline after major surgery: findings of an explorative study. Ann. Neurol. 87, 370–382 (2020).

    Article  PubMed  Google Scholar 

  53. Holmes, C., Cunningham, C., Zotova, E., Culliford, D. & Perry, V. H. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 77, 212–218 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Cunningham, C. Systemic inflammation and delirium: important co-factors in the progression of dementia. Biochem. Soc. Trans. 39, 945–953 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304, 1787–1794 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Holmes, C. et al. Systemic infection, interleukin 1β, and cognitive decline in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 74, 788–789 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Holmes, C. et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 73, 768–774 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sipila, P. N. et al. Hospital-treated infectious diseases and the risk of dementia: a large, multicohort, observational study with a replication cohort. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(21)00144-4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rakic, S. et al. Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s disease. Acta Neuropathol. Commun. 6, 88 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Westin, K. et al. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS ONE 7, e30525 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Pillai, J. A. et al. Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Ann. Clin. Transl. Neurol. 7, 1225–1239 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ewers, M. et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci. Transl Med. 11, eaav6221 (2019).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Taipa, R. et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol. Aging 76, 125–132 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  66. Meyer, P. F. et al. Bi-directional association of cerebrospinal fluid immune markers with stage of Alzheimer’s disease pathogenesis. J. Alzheimers Dis. 63, 577–590 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bradburn, S., Murgatroyd, C. & Ray, N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Ageing Res. Rev. 50, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Hamelin, L. et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain 141, 1855–1870 (2018).

    Article  PubMed  Google Scholar 

  69. Whelan, C. D. et al. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol. Commun. 7, 169 (2019).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Larbi, A. et al. Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J. Alzheimers Dis. 17, 91–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Pellicano, M. et al. Immune profiling of Alzheimer patients. J. Neuroimmunol. 242, 52–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. McManus, R. M., Mills, K. H. & Lynch, M. A. T cells–protective or pathogenic in Alzheimer’s disease? J. Neuroimmune Pharmacol. 10, 547–560 (2015).

    Article  PubMed  Google Scholar 

  73. Saresella, M. et al. Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav. Immun. 25, 539–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Ciccocioppo, F. et al. The characterization of regulatory T-cell profiles in Alzheimer’s disease and multiple sclerosis. Sci. Rep. 9, 8788 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  75. Saresella, M. et al. PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 21, 927–938 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Le Page, A. et al. Differential phenotypes of myeloid-derived suppressor and T regulatory cells and cytokine levels in amnestic mild cognitive impairment subjects compared to mild Alzheimer diseased patients. Front. Immunol. 8, 783 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Lueg, G. et al. Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer’s disease. Neurobiol. Aging 36, 81–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Zotova, E. et al. Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain 136, 2677–2696 (2013).

    Article  PubMed  Google Scholar 

  80. Merlini, M., Kirabali, T., Kulic, L., Nitsch, R. M. & Ferretti, M. T. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: an immunohistochemical study. Neurodegener. Dis. 18, 49–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Zhuang, Z. Q. et al. Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis. 63, 1337–1346 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Cattaneo, A. et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 49, 60–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Walker, K. A., Ficek, B. N. & Westbrook, R. Understanding the role of systemic inflammation in Alzheimer’s disease. ACS Chem. Neurosci. 10, 3340–3342 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Dantzer, R., Konsman, J. P., Bluthe, R. M. & Kelley, K. W. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton. Neurosci. 85, 60–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Tejera, D. et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 38, e101064 (2019).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Town, T. et al. Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med. 14, 681–687 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Naert, G. & Rivest, S. CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 31, 6208–6220 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Varvel, N. H. et al. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer’s disease. J. Exp. Med. 212, 1803–1809 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Prokop, S. et al. |Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer’s disease-like mice. J. Exp. Med. 212, 1811–1818 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Kelly, R. J. et al. Glial activation in AβPP/PS1 mice is associated with infiltration of IFNγ-producing cells. J. Alzheimers Dis. 37, 63–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Zenaro, E. et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Minogue, A. M. et al. Age-associated dysregulation of microglial activation is coupled with enhanced blood-brain barrier permeability and pathology in APP/PS1 mice. Neurobiol. Aging 35, 1442–1452 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Cruz Hernandez, J. C. et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat. Neurosci. 22, 413–420 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Okroglic, S., Widmann, C. N., Urbach, H., Scheltens, P. & Heneka, M. T. Clinical symptoms and risk factors in cerebral microangiopathy patients. PLoS ONE 8, e53455 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Semmler, A. et al. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp. Neurol. 204, 733–740 (2007).

    Article  PubMed  Google Scholar 

  104. Sarlus, H. & Heneka, M. T. Microglia in Alzheimer’s disease. J. Clin. Invest. 127, 3240–3249 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  105. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Tancredi, V. et al. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci. Lett. 146, 176–178 (1992).

    Article  CAS  PubMed  Google Scholar 

  107. Murray, C. A., Clements, M. P. & Lynch, M. A. Interleukin-1 induces lipid peroxidation and membrane changes in rat hippocampus: an age-related study. Gerontology 45, 136–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. McAlpine, F. E. et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis. 34, 163–177 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. MacPherson, K. P. et al. Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol. Dis. 102, 81–95 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Hewett, S. J., Csernansky, C. A. & Choi, D. W. Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 13, 487–494 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Tejera, D. & Heneka, M. T. In vivo phagocytosis analysis of amyloid beta. Methods Mol. Biol. 2034, 287–292 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Marsh, S. E. et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc. Natl Acad. Sci. USA 113, E1316–E1325 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Spani, C. et al. Reduced β-amyloid pathology in an APP transgenic mouse model of Alzheimer’s disease lacking functional B and T cells. Acta Neuropathol. Commun. 3, 71 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Togo, T. et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Itagaki, S., McGeer, P. L. & Akiyama, H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci. Lett. 91, 259–264 (1988).

    Article  CAS  PubMed  Google Scholar 

  120. Rogers, J., Luber-Narod, J., Styren, S. D. & Civin, W. H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9, 339–349 (1988).

    Article  CAS  PubMed  Google Scholar 

  121. Rosset, M. B., Lui, G., Dansokho, C., Chaigneau, T. & Dorothee, G. Vaccine-induced Aβ-specific CD8+ T cells do not trigger autoimmune neuroinflammation in a murine model of Alzheimer’s disease. J. Neuroinflammation 12, 95 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Monsonego, A. et al. Aβ-induced meningoencephalitis is IFN-γ-dependent and is associated with T cell-dependent clearance of Aβ in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 103, 5048–5053 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Browne, T. C. et al. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J. Immunol. 190, 2241–2251 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Cao, C. et al. Aβ-specific Th2 cells provide cognitive and pathological benefits to Alzheimer’s mice without infiltrating the CNS. Neurobiol. Dis. 34, 63–70 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Ethell, D. W. et al. Aβ-specific T-cells reverse cognitive decline and synaptic loss in Alzheimer’s mice. Neurobiol. Dis. 23, 351–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Toly-Ndour, C. et al. MHC-independent genetic factors control the magnitude of CD4+ T cell responses to amyloid-β peptide in mice through regulatory T cell-mediated inhibition. J. Immunol. 187, 4492–4500 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Dansokho, C. et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139, 1237–1251 (2016).

    Article  PubMed  Google Scholar 

  128. Baruch, K. et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Laurent, C. et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140, 184–200 (2017).

    Article  PubMed  Google Scholar 

  130. Harach, T. et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep. 7, 41802 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Wang, X. et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 29, 787–803 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Minter, M. R. et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Dodiya, H. B. et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J. Exp. Med. 216, 1542–1560 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Farfara, D. et al. γ-Secretase component presenilin is important for microglia β-amyloid clearance. Ann. Neurol. 69, 170–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Ledo, J. H. et al. Presenilin 1 phosphorylation regulates amyloid-β degradation by microglia. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0856-8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fung, S. et al. Early-onset familial Alzheimer disease variant PSEN2 N141I heterozygosity is associated with altered microglia phenotype. J. Alzheimers Dis. 77, 675–688 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Glymour, M. M. & Bibbins-Domingo, K. The future of observational epidemiology: improving data and design to align with population health. Am. J. Epidemiol. 188, 836–839 (2019).

    Article  PubMed  Google Scholar 

  139. Heneka, M. T., Golenbock, D. T. & Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol. 16, 229–236 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Morris, J. K., Honea, R. A., Vidoni, E. D., Swerdlow, R. H. & Burns, J. M. Is Alzheimer’s disease a systemic disease? Biochim. Biophys. Acta 1842, 1340–1349 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Wang, J., Gu, B. J., Masters, C. L. & Wang, Y. J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 13, 612–623 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Ritchie, K., Ritchie, C. W., Yaffe, K., Skoog, I. & Scarmeas, N. Is late-onset Alzheimer’s disease really a disease of midlife? Alzheimers Dement. 1, 122–130 (2015).

    Article  Google Scholar 

  143. Gui, Y., Marks, J. D., Das, S., Hyman, B. T. & Serrano-Pozo, A. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer’s disease brains. Brain Pathol. 30, 151–164 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Boche, D., Gerhard, A., Rodriguez-Vieitez, E. & Faculty, M. Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 46, 2831–2847 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Turkheimer, F. E. et al. Increased serum peripheral C-reactive protein is associated with reduced brain barriers permeability of TSPO radioligands in healthy volunteers and depressed patients: implications for inflammation and depression. Brain Behav. Immun. 91, 487–497 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Gottesman, R. F. et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317, 1443–1450 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Da Mesquita, S., Fu, Z. & Kipnis, J. The meningeal lymphatic system: a new player in neurophysiology. Neuron 100, 375–388 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. McAlpine, C. S. et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 595, 701–706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wildsmith, K. R. et al. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS. PLoS ONE 7, e38013 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Cenini, G. et al. Dissecting Alzheimer’s disease pathogenesis in human 2D and 3D models. Mol. Cell Neurosci. 110, 103568 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Shi, Y. & Holtzman, D. M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18, 759–772 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Scheiblich, H., Trombly, M., Ramirez, A. & Heneka, M. T. Neuroimmune connections in aging and neurodegenerative diseases. Trends Immunol. 41, 300–312 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. McGeer, P. L., Rogers, J. & McGeer, E. G. Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J. Alzheimers Dis. 9, 271–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Arvanitakis, Z. et al. Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology. Neurology 70, 2219–2225 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was facilitated by the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment (ISTAART), through the Immunity and Neurodegeneration Professional Interest Area (PIA). The views and opinions expressed by the authors in this publication represent those of the authors and do not necessarily reflect those of the PIA membership, ISTAART or the Alzheimer’s Association. B.M.B. is a funded investigator of the NIH/NIA (R01 AG058772) and the Department of Defense CDMRP. M.G.T. is a funded investigator of the NIH/NIA (7RF1AG057247), the Parkinson’s Foundation and the Michael J. Fox Foundation for Parkinson’s Research. G.D. is a funded investigator of the Fondation Plan Alzheimer, Fondation pour la Recherche Medicale, LECMA/Fondation Vaincre Alzheimer and Alzheimer Research UK. M.T.H. is a funded investigator of the German Research Council (DFG) Cluster of Excellence and has received support from this work through an NIH grant (R01 AG059752-02).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Brianne M. Bettcher.

Ethics declarations

Competing interests

M.G.T. is a member of the Medical Scientific Advisory Group to the Alzheimer’s Association and a consultant to INmune Bio. G.D. is listed as an inventor on patent WO2014206899A1 related to a peripheral immunomodulatory approach for treating Alzheimer disease and related disorders, and on patent WO2018172540A1 related to peripheral immune biomarkers for predicting the progression of Alzheimer disease. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks O. Garaschuk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettcher, B.M., Tansey, M.G., Dorothée, G. et al. Peripheral and central immune system crosstalk in Alzheimer disease — a research prospectus. Nat Rev Neurol 17, 689–701 (2021). https://doi.org/10.1038/s41582-021-00549-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-021-00549-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing