Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blood GFAP as an emerging biomarker in brain and spinal cord disorders

Abstract

Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.

Key points

  • Glial fibrillary acidic protein (GFAP) levels reflect the clinical severity and extent of intracranial pathology after traumatic brain injury (TBI).

  • In 2018, the FDA authorized the marketing of a blood test for GFAP and ubiquitin carboxy-terminal hydrolase L1 for clinical use in mild TBI.

  • Growing evidence supports the potential clinical use of blood GFAP levels in numerous neuroinflammatory and neurodegenerative diseases, and in the context of CNS involvement in systemic diseases.

  • Successful validation of the GFAP point-of-care analysis platform might ameliorate the decision algorithms for acute neurological diseases with important economic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astrocytes have multiple physiological roles in the CNS.

Similar content being viewed by others

References

  1. US Food and Drug Administration. FDA authorizes marketing of first blood test to aid in the evaluation of concussion in adults. https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-blood-test-aid-evaluation-concussion-adults (2018)

  2. Messing, A. & Brenner, M. GFAP at 50. ASN Neuro 12, 1759091420949680 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Petzold, A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 1600, 17–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Tumani, H. et al. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev. Mol. Diagn. 8, 479–494 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018). This review article highlights the potential of highly sensitive immunoassays in the field of neurology by discussing the application of neurofilament light chain measurements in different neurological conditions.

    Article  CAS  PubMed  Google Scholar 

  6. Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Mondello, S. et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 70, 666–675 (2012).

    PubMed  Google Scholar 

  8. Abdelhak, A. et al. Glial activation markers in CSF and serum from patients with primary progressive multiple sclerosis: potential of serum GFAP as disease severity marker? Front. Neurol. 10, 280 (2019). A multicentre study exploring a broad spectrum of glial markers in primary progressive multiple sclerosis, underpinning the emerging potential of GFAP in this population.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ishiki, A. et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J. Neurochem. 136, 258–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Martinez, M. A. et al. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult. Scler. 21, 550–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Madeddu, R. et al. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis. Neurol. Sci. 34, 181–186 (2013).

    Article  PubMed  Google Scholar 

  12. Jesse, S. et al. Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer’s disease and Creutzfeldt-Jakob disease. J. Alzheimers Dis. 17, 541–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Abu-Rumeileh, S. et al. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimers Res. Ther. 12, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Petzold, A., Keir, G., Green, A. J., Giovannoni, G. & Thompson, E. J. An ELISA for glial fibrillary acidic protein. J. Immunol. Methods 287, 169–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Verkhratsky, A. & Butt, A. Glial Physiology and Pathophysiology 93–96 (Wiley, 2013).

  16. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010). A review article that provides key insights into the role of astrocytes in health and disease.

    Article  PubMed  Google Scholar 

  17. Yang, Z. & Wang, K. K. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 38, 364–374 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Middeldorp, J. & Hol, E. M. GFAP in health and disease. Prog. Neurobiol. 93, 421–443 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Clairembault, T. et al. Enteric GFAP expression and phosphorylation in Parkinson’s disease. J. Neurochem. 130, 805–815 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Kamphuis, W. et al. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS ONE 7, e42823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hol, E. M. & Capetanaki, Y. Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin. Cold Spring Harb. Perspect. Biol. 9, a021642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Junemann, A. G. et al. Elevated vitreous body glial fibrillary acidic protein in retinal diseases. Graefes Arch. Clin. Exp. Ophthalmol. 253, 2181–2186 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lei, J. et al. Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Crit. Care 19, 362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takano, R. et al. Astrocytic damage is far more severe than demyelination in NMO: a clinical CSF biomarker study. Neurology 75, 208–216 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Abdelhak, A., Huss, A., Kassubek, J., Tumani, H. & Otto, M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci. Rep. 8, 14798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yue, J. K. et al. Association between plasma GFAP concentrations and MRI abnormalities in patients with CT-negative traumatic brain injury in the TRACK-TBI cohort: a prospective multicentre study. Lancet Neurol. 18, 953–961 (2019). This study extensively investigates the association between blood GFAP, measured using a prototype assay on a point-of-care platform, and different neuroimaging abnormalities following TBI in a deeply curated prospective multicentre population.

    Article  CAS  PubMed  Google Scholar 

  27. Brinker, T., Stopa, E., Morrison, J. & Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11, 10 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tumani, H., Huss, A. & Bachhuber, F. The cerebrospinal fluid and barriers–anatomic and physiologic considerations. Handb. Clin. Neurol. 146, 21–32 (2017).

    Article  PubMed  Google Scholar 

  29. Plog, B. A. et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 35, 518–526 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oeckl, P. et al. Glial fibrillary acidic protein in serum is increased in Alzheimer’s Disease and correlates with cognitive impairment. J. Alzheimers Dis. 67, 481–488 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Petzold, A. et al. Protein aggregate formation permits millennium-old brain preservation. J. R. Soc. Interface 17, 20190775 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maas, A. I. R. et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 16, 987–1048 (2017).

    Article  PubMed  Google Scholar 

  33. Lingsma, H. F. & Cnossen, M. C. Identification of patients at risk for poor outcome after mTBI. Lancet Neurol. 16, 494–495 (2017).

    Article  PubMed  Google Scholar 

  34. Bouvier, D., Oris, C., Brailova, M., Durif, J. & Sapin, V. Interest of blood biomarkers to predict lesions in medical imaging in the context of mild traumatic brain injury. Clin. Biochem. 85, 5–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Papa, L. et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 73, 551–560 (2016). A prospective study reporting the dynamics of GFAP in the acute phase following TBI.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bazarian, J. J. et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 17, 782–789 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Cevik, S. et al. NRGN, S100B and GFAP levels are significantly increased in patients with structural lesions resulting from mild traumatic brain injuries. Clin. Neurol. Neurosurg. 183, 105380 (2019).

    Article  PubMed  Google Scholar 

  38. Huebschmann, N. A. et al. Comparing glial fibrillary acidic protein (GFAP) in serum and plasma following mild traumatic brain injury in older adults. Front. Neurol. 11, 1054 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Diaz-Arrastia, R. et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 31, 19–25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Czeiter, E. et al. Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine 56, 102785 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mahan, M. Y. et al. Glial fibrillary acidic protein (GFAP) outperforms S100 calcium-binding protein B (S100B) and ubiquitin C-terminal hydrolase L1 (UCH-L1) as predictor for positive computed tomography of the head in trauma subjects. World Neurosurg. 128, e434–e444 (2019).

    Article  PubMed  Google Scholar 

  42. Gill, J. et al. Glial fibrillary acidic protein elevations relate to neuroimaging abnormalities after mild TBI. Neurology 91, e1385–e1389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Posti, J. P. et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 are not specific biomarkers for mild CT-negative traumatic brain injury. J. Neurotrauma 34, 1427–1438 (2017).

    Article  Google Scholar 

  44. Papa, L. et al. Evaluating glial and neuronal blood biomarkers GFAP and UCH-L1 as gradients of brain injury in concussive, subconcussive and non-concussive trauma: a prospective cohort study. BMJ Paediatr. Open 3, e000473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mountney, A. et al. Functional and molecular correlates after single and repeated rat closed-head concussion: indices of vulnerability after brain injury. J. Neurotrauma 34, 2768–2789 (2017).

    Article  PubMed  Google Scholar 

  46. Johnson, V. E. et al. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol. 135, 711–726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bogoslovsky, T. et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 days after traumatic brain injury. J. Neurotrauma 34, 66–73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gardner, R. C. et al. Age-related differences in diagnostic accuracy of plasma glial fibrillary acidic protein and tau for identifying acute intracranial trauma on computed tomography: a TRACK-TBI study. J. Neurotrauma 35, 2341–2350 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Calcagnile, O., Holmen, A., Chew, M. & Unden, J. S100B levels are affected by older age but not by alcohol intoxication following mild traumatic brain injury. Scand. J. Trauma. Resusc. Emerg. Med. 21, 52 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Metting, Z., Wilczak, N., Rodiger, L. A., Schaaf, J. M. & van der Naalt, J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 78, 1428–1433 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Frankel, M. et al. Association of very early serum levels of S100B, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and spectrin breakdown product with outcome in ProTECT III. J. Neurotrauma 36, 2863–2871 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Anderson, T. N. et al. Blood-based biomarkers for prediction of intracranial hemorrhage and outcome in patients with moderate or severe traumatic brain injury. J. Trauma. Acute Care Surg. 89, 80–86 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shahim, P. et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology 95, e623–e636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peltz, C. B. et al. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology 95, e1126–e1133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okonkwo, D. O. et al. Point-of-care platform blood biomarker testing of glial fibrillary acidic protein versus S100 calcium-binding protein B for prediction of traumatic brain injuries: a Transforming Research and Clinical Knowledge in Traumatic Brain Injury study. J. Neurotrauma 37, 2460–2467 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ahadi, R. et al. Diagnostic value of serum levels of GFAP, pNF-H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury. Spine 40, e823–e830 (2015).

    Article  PubMed  Google Scholar 

  57. kwon, B. K. et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J. Neurotrauma 27, 669–682 (2010).

    Article  PubMed  Google Scholar 

  58. Lindblom, R. P. F. et al. Protein profiling in serum and cerebrospinal fluid following complex surgery on the thoracic aorta identifies biological markers of neurologic injury. J. Cardiovasc. Transl. Res. 11, 503–516 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50, e344–e418 (2019).

    Article  Google Scholar 

  60. Foerch, C. et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J. Neurol. Neurosurg. Psychiatry 77, 181–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Luger, S. et al. Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clin. Chem. 63, 377–385 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Dvorak, F., Haberer, I., Sitzer, M. & Foerch, C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc. Dis. 27, 37–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Foerch, C., Pfeilschifter, W., Zeiner, P. & Brunkhorst, R. Glial fibrillary acidic protein in patients with symptoms of acute stroke: diagnostic marker of cerebral hemorrhage [German]. Nervenarzt 85, 982–989 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Brunkhorst, R., Pfeilschifter, W. & Foerch, C. Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage–pathophysiological background and clinical findings. Transl. Stroke Res. 1, 246–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Unden, J. et al. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J. Neurol. 256, 72–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Foerch, C. et al. Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin. Chem. 58, 237–245 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Puspitasari, V., Gunawan, P. Y., Wiradarma, H. D. & Hartoyo, V. Glial fibrillary acidic protein serum level as a predictor of clinical outcome in ischemic stroke. Open. Access. Maced. J. Med. Sci. 7, 1471–1474 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu, G. & Geng, J. Glial fibrillary acidic protein as a prognostic marker of acute ischemic stroke. Hum. Exp. Toxicol. 37, 1048–1053 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Vos, P. E., van Gils, M., Beems, T., Zimmerman, C. & Verbeek, M. M. Increased GFAP and S100β but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur. J. Neurol. 13, 632–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Kedziora, J. et al. Biomarkers of neurological outcome after aneurysmal subarachnoid hemorrhage as early predictors at discharge from an intensive care unit. Neurocrit Care 34, 856–866 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zheng, Y. K. et al. Comparison of plasma copeptin and multiple biomarkers for assessing prognosis of patients with aneurysmal subarachnoid hemorrhage. Clin. Chim. Acta 475, 64–69 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Petzold, A. et al. Early identification of secondary brain damage in subarachnoid hemorrhage: a role for glial fibrillary acidic protein. J. Neurotrauma 23, 1179–1184 (2006).

    Article  PubMed  Google Scholar 

  73. Eng, L. F., Vanderhaeghen, J. J., Bignami, A. & Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351–354 (1971).

    Article  CAS  PubMed  Google Scholar 

  74. GBD 2016 Multiple Sclerosis Collaborators.Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 269–285 (2019).

    Article  Google Scholar 

  75. Mayer, C. A. et al. Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PLoS ONE 8, e62101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Storoni, M. et al. Serum GFAP levels in optic neuropathies. J. Neurol. Sci. 317, 117–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Watanabe, M. et al. Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology 93, e1299–e1311 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Högel, H. et al. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Mult. Scler. 26, 210–219 (2018).

    Article  PubMed  Google Scholar 

  79. Park, C. et al. The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions. Acta Neuropathol. Commun. 7, 130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pitt, D. & Ponath, G. Astrocytes play a crucial role in the formation and evolution of MS lesions–Yes. Mult. Scler. 25, 15–17 (2019).

    Article  PubMed  Google Scholar 

  81. Abdelhak, A., Weber, M. S. & Tumani, H. Primary progressive multiple sclerosis: putting together the puzzle. Front. Neurol. 8, 234 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). A key study that characterized the neurotoxic effect of a particular astrocyte subpopulation: the so-called A1 astrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, H. et al. Serum biomarkers in myelin oligodendrocyte glycoprotein antibody-associated disease. Neurol. Neuroimmunol. Neuroinflamm 7, e708 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lee, E. J. et al. Clinical implication of serum biomarkers and patient age in inflammatory demyelinating diseases. Ann. Clin. Transl. Neurol. 7, 992–1001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thebault, S. et al. Neurotoxicity after hematopoietic stem cell transplant in multiple sclerosis. Ann. Clin. Transl. Neurol. 7, 767–775 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ayrignac, X. et al. Serum GFAP in multiple sclerosis: correlation with disease type and MRI markers of disease severity. Sci. Rep. 10, 10923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gust, J. et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy. Ann. Neurol. 86, 42–54 (2019).

    CAS  PubMed  Google Scholar 

  88. Kuhle, J. et al. High plasma glial fibrillary acidic protein levels predict disability milestone EDSS 7 in non-active secondary progressive multiple sclerosis [abstract FC04.03]. Mult. Scler. J. 26, 10 (2020).

    Google Scholar 

  89. Fujihara, K. Neuromyelitis optica spectrum disorders: still evolving and broadening. Curr. Opin. Neurol. 32, 385–394 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lucchinetti, C. F. et al. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 24, 83–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Aktas, O. et al. Serum glial fibrillary acidic protein: a neuromyelitis optica spectrum disorder biomarker. Ann. Neurol. 89, 895–910 (2021). This study leveraged blood samples from a large multicentre cohort of participants with neuromyelitis optica spectrum disorder and described in detail the dynamics of blood GFAP levels following inflammatory-mediated astrocyte injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Benussi, A. et al. Serum glial fibrillary acidic protein (GFAP) is a marker of disease severity in frontotemporal lobar degeneration. J. Alzheimers Dis. 77, 1129–1141 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Heller, C. et al. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 91, 263–270 (2020).

    Article  PubMed  Google Scholar 

  94. Staffaroni, A. M. et al. Association of blood and cerebrospinal fluid tau level and other biomarkers with survival time in sporadic Creutzfeldt-Jakob disease. JAMA Neurol. 76, 969–977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Oeckl, P. et al. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J. Neurol. Neurosurg. Psychiatry 90, 4–10 (2019).

    Article  PubMed  Google Scholar 

  96. Elahi, F. M. et al. Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer’s disease. Alzheimers Dement. 16, 681–695 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Asken, B. M. et al. Plasma glial fibrillary acidic protein levels differ along the spectra of amyloid burden and clinical disease stage. J. Alzheimers Dis. 78, 265–276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chatterjee, P. et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl. Psychiatry 11, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Messing, A., Brenner, M., Feany, M. B., Nedergaard, M. & Goldman, J. E. Alexander disease. J. Neurosci. 32, 5017–5023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Messing, A. et al. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am. J. Pathol. 152, 391–398 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jany, P. L. et al. CSF and blood levels of GFAP in Alexander disease. eNeuro 2, e0080-15.2015 (2015).

    Article  Google Scholar 

  102. Kyllerman, M., Rosengren, L., Wiklund, L. M. & Holmberg, E. Increased levels of GFAP in the cerebrospinal fluid in three subtypes of genetically confirmed Alexander disease. Neuropediatrics 36, 319–323 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Schmidt, H. et al. Acute onset of adult Alexander disease. J. Neurol. Sci. 331, 152–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Su, W., Chen, H. B., Li, S. H. & Wu, D. Y. Correlational study of the serum levels of the glial fibrillary acidic protein and neurofilament proteins in Parkinson’s disease patients. Clin. Neurol. Neurosurg. 114, 372–375 (2012).

    Article  PubMed  Google Scholar 

  105. Lin, J. et al. Higher concentration of plasma glial fibrillary acidic protein in Wilson disease patients with neurological manifestations. Mov. Disord. 36, 1446–1450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosen, C. et al. Discriminatory analysis of biochip-derived protein patterns in CSF and plasma in neurodegenerative diseases. Front. Aging Neurosci. 3, 1 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Verberk, I. M. W. et al. Combination of plasma amyloid beta(1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. Alzheimers Res. Ther. 12, 118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cicognola, C. et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res. Ther. 13, 68 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Verberk, I. M. W. et al. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longev. 2, e87–e95 (2021). This study demonstrates that GFAP is a valuable marker in the context of prognostication of cognitive impairment in older people.

    Article  Google Scholar 

  110. Rajan, K. B. et al. Remote blood biomarkers of longitudinal cognitive outcomes in a population study. Ann. Neurol. 88, 1065–1076 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Jung, C. S. et al. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain 130, 3336–3341 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Gallego Perez-Larraya, J. et al. Diagnostic and prognostic value of preoperative combined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma. Cancer 120, 3972–3980 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Lyubimova, N. V. et al. Glial fibrillary acidic protein in the diagnosis and prognosis of malignant glial tumors. Bull. Exp. Biol. Med. 168, 503–506 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Kiviniemi, A. et al. Serum levels of GFAP and EGFR in primary and recurrent high-grade gliomas: correlation to tumor volume, molecular markers, and progression-free survival. J. Neurooncol 124, 237–245 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Ilhan-Mutlu, A. et al. Exploratory investigation of eight circulating plasma markers in brain tumor patients. Neurosurg. Rev. 36, 45–55 (2013). discussion 55–46.

    Article  PubMed  Google Scholar 

  116. Shih, C. C. et al. Pretreatment serum lactate level as a prognostic biomarker in patients undergoing supratentorial primary brain tumor resection. Oncotarget 8, 63715–63723 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lange, R. P. et al. Evaluation of eight plasma proteins as candidate blood-based biomarkers for malignant gliomas. Cancer Invest. 32, 423–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brommeland, T., Rosengren, L., Fridlund, S., Hennig, R. & Isaksen, V. Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol. Scand. 116, 380–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Tichy, J. et al. Prospective evaluation of serum glial fibrillary acidic protein (GFAP) as a diagnostic marker for glioblastoma. J. Neurooncol. 126, 361–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Ilhan-Mutlu, A. et al. High plasma-GFAP levels in metastatic myxopapillary ependymoma. J. Neurooncol. 113, 359–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Husain, H. et al. Pre- and post-operative plasma glial fibrillary acidic protein levels in patients with newly diagnosed gliomas. J. Neurooncol. 109, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vietheer, J. M. et al. Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma. J. Neurooncol. 135, 193–199 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Baumgarten, P. et al. Pre- and early postoperative GFAP serum levels in glioma and brain metastases. J. Neurooncol. 139, 541–546 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Nichols, N. R., Day, J. R., Laping, N. J., Johnson, S. A. & Finch, C. E. GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14, 421–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Battaglia, R. A. et al. Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. eLife 8, e47789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sullivan, S. M. et al. Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic–ischemic brain. Neurochem. Res. 37, 2364–2378 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. McMahon, P. J. et al. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma 32, 527–533 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Papa, L. et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann. Emerg. Med. 59, 471–483 (2012).

    Article  PubMed  Google Scholar 

  129. Okonkwo, D. O. et al. GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury study. J. Neurotrauma 30, 1490–1497 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shan, F., Long, Y. & Qiu, W. Autoimmune glial fibrillary acidic protein astrocytopathy: a review of the literature. Front. Immunol. 9, 2802 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, Z. et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS ONE 9, e92698 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wang, K. K. et al. Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a Transforming Research and Clinical Knowledge in Traumatic Brain Injury pilot study. J. Neurotrauma 33, 1270–1277 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Li, T., Chen, X., Zhang, C., Zhang, Y. & Yao, W. An update on reactive astrocytes in chronic pain. J. Neuroinflammation 16, 140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pitt, D. Contribution of astrocyte responses to MS pathogenesis [abstract PS14.02]. Presented at the 8th Joint ACTRIMS-ECTRIMS Meeting. https://cslide.ctimeetingtech.com/msdc2020/attendee/confcal/session/calendar?q=PS14.02 (2020).

  136. Burda, J. E., Bernstein, A. M. & Sofroniew, M. V. Astrocyte roles in traumatic brain injury. Exp. Neurol. 275, 305–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Thelin, E. P. et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front. Neurol. 8, 300 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Burman, J. et al. Assessing tissue damage in multiple sclerosis: a biomarker approach. Acta Neurol. Scand. 130, 81–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Papa, L. et al. GFAP out-performs S100β in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J. Neurotrauma 31, 1815–1822 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Posti, J. P. et al. The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 during the first week after a traumatic brain injury: correlations with clinical and imaging findings. Neurosurgery 79, 456–464 (2016).

    Article  PubMed  Google Scholar 

  141. Simani, L., Elmi, M. & Asadollahi, M. Serum GFAP level: a novel adjunctive diagnostic test in differentiate epileptic seizures from psychogenic attacks. Seizure 61, 41–44 (2018).

    Article  PubMed  Google Scholar 

  142. Elhady, M. et al. Circulating glial fibrillary acidic protein and ubiquitin carboxy-terminal hydrolase-L1 as markers of neuronal damage in children with epileptic seizures. Childs Nerv. Syst. 37, 879–884 (2021).

    Article  PubMed  Google Scholar 

  143. Nass, R. D. et al. Serum biomarkers of cerebral cellular stress after self-limiting tonic clonic seizures: an exploratory study. Seizure 85, 1–5 (2021).

    Article  PubMed  Google Scholar 

  144. Cooper, J. et al. Quantification of neurological blood-based biomarkers in critically Ill patients with coronavirus disease 2019. Crit. Care Explor. 2, e0238 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ballweg, T. et al. Association between plasma tau and postoperative delirium incidence and severity: a prospective observational study. Br. J. Anaesth. 126, 458–466 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Xin, X., Chen, J., Hua, W. & Wang, H. Intraoperative dexmedetomidine for prevention of postoperative delirium in elderly patients with mild cognitive impairment. Int. J. Geriatr. Psychiatry 36, 143–151 (2021).

    Article  PubMed  Google Scholar 

  147. Anderson, B. J. et al. Incidence, risk factors, and clinical implications of post-operative delirium in lung transplant recipients. J. Heart Lung Transpl. 37, 755–762 (2018).

    Article  Google Scholar 

  148. Gailiusas, M. et al. Association between serum biomarkers and postoperative delirium after cardiac surgery. Acta Med. Litu. 26, 8–10 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. Wu, L. et al. Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. J. Crit. Care 52, 172–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Jonesco, D. S. et al. A caspase-6-cleaved fragment of glial fibrillary acidic protein as a potential serological biomarker of CNS injury after cardiac arrest. PLoS ONE 14, e0224633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kaneko, T. et al. Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation 80, 790–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Helwig, K. et al. Elevated serum glial fibrillary acidic protein (GFAP) is associated with poor functional outcome after cardiopulmonary resuscitation. Neurocrit Care 27, 68–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Larsson, I. M. et al. Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. Resuscitation 85, 1654–1661 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Kanberg, N. et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95, e1754–e1759 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Petzold, A., Groves, M., Leis, A. A., Scaravilli, F. & Stokic, D. S. Neuronal and glial cerebrospinal fluid protein biomarkers are elevated after West Nile virus infection. Muscle Nerve 41, 42–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Galenko, O. et al. Circulating levels of biomarkers of cerebral injury in patients with atrial fibrillation. Am. J. Cardiol. 124, 1697–1700 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Jessen, N. A., Munk, A. S., Lundgaard, I. & Nedergaard, M. The glymphatic system: a beginner’s guide. Neurochem. Res. 40, 2583–2599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bouzier-Sore, A. K. & Pellerin, L. Unraveling the complex metabolic nature of astrocytes. Front. Cell. Neurosci. 7, 179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Boesmans, W., Rocha, N. P., Reis, H. J., Holt, M. & Vanden Berghe, P. The astrocyte marker Aldh1L1 does not reliably label enteric glial cells. Neurosci. Lett. 566, 102–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Guttenplan, K. A. & Liddelow, S. A. Astrocytes and microglia: models and tools. J. Exp. Med. 216, 71–83 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Miller, S. J. Astrocyte heterogeneity in the adult central nervous system. Front. Cell. Neurosci. 12, 401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zimmer, D. B., Chessher, J., Wilson, G. L. & Zimmer, W. E. S100A1 and S100B expression and target proteins in type I diabetes. Endocrinology 138, 5176–5183 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Zhao, T., Su, Z., Li, Y., Zhang, X. & You, Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal. Transduct. Target. Ther. 5, 201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lo, C. H. et al. Astrocyte heterogeneity in multiple sclerosis: current understanding and technical challenges. Front. Cell. Neurosci. 15, 726479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.A., M.F., S.A.-R., J.K.Y., L.D’A., A.H. and P.O. researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed and edited the manuscript before submission. H.T., A.C.L., A.P., J.K., G.T.M, A.J.G., and M.O. made a substantial contribution to discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hayrettin Tumani.

Ethics declarations

Competing interests

A.A. received research grants from the German Multiple Sclerosis Society (DMSG). P.O. received research support from the Michael J. Fox Foundation for Parkinson´s Research (grant ID MJFF-010349) and Alzheimer Forschung Initiative e.V. (20059CB). J.K. received speaker fees, research support, travel support and/or served on advisory boards of the Swiss MS Society, Swiss National Research Foundation (320030_189140/1), University of Basel, Progressive MS Alliance, Bayer, Biogen, Celgene, Merck, Novartis, Roche and Sanofi. G.T.M. reports funding from the US Department of Defense – TBI Endpoints Development Initiative (grant #W81XWH-14-2-0176), TRACK-TBI Precision Medicine (grant #W81XWH-18-2-0042), TRACK-TBI NETWORK (grant #W81XWH-15-9-0001), NIH-NINDS – TRACK-TBI (grant #U01NS086090), National Football League (NFL) Scientific Advisory Board, with support from the NFL for the research efforts of TRACK-TBI NETWORK. In addition, the US Department of Energy supports G.T.M. for a precision medicine collaboration, Abbott Laboratories has provided funding for TRACK-TBI clinical studies, NeuroTrauma Sciences LLC has provided funding to support TRACK-TBI data curation efforts, One Mind has provided funding for TRACK-TBI patients stipends and support to clinical sites. J.K.Y. received funding from NIH-NINDS – TRACK-TBI (grant #U01NS086090). A.J.G. reports personal fees from Bionure, Mylan, Neurona and Viela Bio; other support from Pipeline Therapeutics; and grants and other support from Inception Sciences outside the submitted work. M.O. gave scientific advice to Axon, Biogen Idec, Fujirebio and Roche. H.T. reports funding for research projects, lectures and travel from Bayer, Biogen, Genzyme, Merck Serono, Novartis, Roche and Teva, and received research support from DMSG and the German Ministry for Education and Research (BMBF). No other disclosures are reported.

Additional information

Peer review information

Nature Reviews Neurology thanks C.A. Gonçalves, C. Foerch, S. Mondello, K. Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

For this Review, we screened the published literature in PubMed using the following terms in the title or abstract: ‘GFAP’ OR ‘glial fibrillary acidic protein’, ‘blood’ OR ‘plasma’ OR ‘serum’, and the disease of interest. Hence, we added the following terms: ‘multiple sclerosis’, ‘MS’, ‘neuromyelitis optica’, ‘NMO’, ‘MOG antibody disease’, ‘MOG associated disease’, ‘traumatic brain injury’, ‘TBI’, ‘spinal trauma’, ‘spinal injury’, ‘stroke’, ‘cerebral ischemia’, ‘cerebral ischaemia’, ‘intracranial haemorrhage’, ‘intracranial hemorrhage, ‘subarachnoid haemorrhage’, ‘subarachnoid hemorrhage’, ‘Alzheimer’s’, ‘Parkinson’, ‘dementia’, ‘Creutzfeldt-Jakob disease’, ‘vascular cognitive impairment’, ‘vascular dementia’, ‘amyotrophic lateral sclerosis’, ‘motor neuron disease’, ‘ALS’, ‘MND’, ‘frontotemporal’, ‘prion’, ‘epilepsy’, ‘seizures’, ‘convulsions’, ‘encephalitis’, ‘encephalopathy’, ‘tumours’, ‘tumors’, ‘glioma’, ‘glioblastoma’, ‘COVID-19’, ‘SARS-CoV-2’, ‘cardiac arrest’, ‘hypoxic’ and ‘meningitis’. Animal studies, previous reviews, and studies reporting only GFAP values in CSF were considered beyond the scope of this article.

Glossary

Hook effect

An excess of the analyte of interest overwhelms the capture antibodies in immunoassays, resulting in a falsely low reading.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhak, A., Foschi, M., Abu-Rumeileh, S. et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 18, 158–172 (2022). https://doi.org/10.1038/s41582-021-00616-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-021-00616-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research