Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cohort-guided insights into gene–environment interactions in autism spectrum disorders

Abstract

Prospective birth cohorts offer unprecedented opportunities to investigate the pathogenesis of complex disorders such as autism, in which gene–environment interactions must be appreciated in a temporal context. This Perspective article considers the history of autism research, including missteps that reflected an incomplete understanding of the epidemiology of autistic spectrum disorders, the effects of advocacy and philanthropy on the trajectory of scientific inquiry, and the current and future roles of prospective birth cohort research in illuminating the pathology of these and other complex disorders wherein exposures during gestation might not manifest until later in life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of contributions to autism research.

Similar content being viewed by others

References

  1. Lai, M. C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).

    Article  Google Scholar 

  2. Orinstein, A. J. et al. Intervention for optimal outcome in children and adolescents with a history of autism. J. Dev. Behav. Pediatr. 35, 247–256 (2014).

    Article  Google Scholar 

  3. Fombonne, E. Editorial: The rising prevalence of autism. J. Child. Psychol. Psychiatry 59, 717–720 (2018).

    Article  Google Scholar 

  4. Starko, K. M., Ray, C. G., Dominguez, L. B., Stromberg, W. L. & Woodall, D. F. Reye’s syndrome and salicylate use. Pediatrics 66, 859–864 (1980).

    Article  CAS  Google Scholar 

  5. Wakefield, A. J. et al. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351, 637–641 (1998); retraction 375, 445 (2010).

    Article  CAS  Google Scholar 

  6. Geier, D. A. & Geier, M. R. A comparative evaluation of the effects of MMR immunization and mercury doses from thimerosal-containing childhood vaccines on the population prevalence of autism. Med. Sci. Monit. 10, PI33–PI39 (2004).

    CAS  Google Scholar 

  7. Hornig, M. et al. Lack of association between measles virus vaccine and autism with enteropathy: a case-control study. PLoS ONE 3, e3140 (2008).

    Article  Google Scholar 

  8. Gerber, J. S. & Offit, P. A. Vaccines and autism: a tale of shifting hypotheses. Clin. Infect. Dis. 48, 456–461 (2009).

    Article  Google Scholar 

  9. Velasquez-Manoff, M. The anti-vaccine movement’s new frontier. New York Times https://www.nytimes.com/2022/05/25/magazine/anti-vaccine-movement.html (2022).

  10. Hansen, S. N., Schendel, D. E. & Parner, E. T. Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr. 169, 56–62 (2015).

    Article  Google Scholar 

  11. Kanner, L. Problems of nosology and psychodynamics of early infantile autism. Am. J. Orthopsychiatry 19, 416–426 (1949).

    Article  CAS  Google Scholar 

  12. Chess, S. Autism in children with congenital rubella. J. Autism Child. Schizophr. 1, 33–47 (1971).

    Article  CAS  Google Scholar 

  13. Folstein, S. & Rutter, M. Infantile autism: a genetic study of 21 twin pairs. J. Child. Psychol. Psychiatry 18, 297–321 (1977).

    Article  CAS  Google Scholar 

  14. Tick, B., Bolton, P., Happe, F., Rutter, M. & Rijsdijk, F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J. Child. Psychol. Psychiatry 57, 585–595 (2016).

    Article  Google Scholar 

  15. Folstein, S. & Rutter, M. Genetic influences and infantile autism. Nature 265, 726–728 (1977).

    Article  CAS  Google Scholar 

  16. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  Google Scholar 

  17. Suren, P. et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309, 570–577 (2013).

    Article  CAS  Google Scholar 

  18. Zhou, X. et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 54, 1305–1319 (2022).

    Article  CAS  Google Scholar 

  19. Stromland, K., Nordin, V., Miller, M., Akerstrom, B. & Gillberg, C. Autism in thalidomide embryopathy: a population study. Dev. Med. Child. Neurol. 36, 351–356 (1994).

    Article  CAS  Google Scholar 

  20. Che, X. et al. Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01415-4 (2022).

    Article  Google Scholar 

  21. Hours, C., Recasens, C. & Baleyte, J. M. ASD and ADHD comorbidity: what are we talking about? Front. Psychiatry 13, 837424 (2022).

    Article  Google Scholar 

  22. Kennedy, M. et al. Early severe institutional deprivation is associated with a persistent variant of adult attention-deficit/hyperactivity disorder: clinical presentation, developmental continuities and life circumstances in the English and Romanian Adoptees study. J. Child. Psychol. Psychiatry 57, 1113–1125 (2016).

    Article  Google Scholar 

  23. Kumsta, R. et al. Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1. Transl. Psychiatry 6, e830 (2016).

    Article  CAS  Google Scholar 

  24. Moore, S. J. et al. A clinical study of 57 children with fetal anticonvulsant syndromes. J. Med. Genet. 37, 489–497 (2000).

    Article  CAS  Google Scholar 

  25. Chess, S. Follow-up report on autism in congenital rubella. J. Autism Child. Schizophr. 7, 69–81 (1977).

    Article  CAS  Google Scholar 

  26. Hertz-Picciotto, I. et al. A prospective study of environmental exposures and early biomarkers in autism spectrum disorder: design, protocols, and preliminary data from the MARBLES study. Env. Health Perspect. 126, 117004 (2018).

    Article  CAS  Google Scholar 

  27. Pedersen, C. B. et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

    Article  CAS  Google Scholar 

  28. Schendel, D. E. et al. The International Collaboration for Autism Registry Epidemiology (iCARE): multinational registry-based investigations of autism risk factors and trends. J. Autism Dev. Disord. 43, 2650–2663 (2013).

    Article  Google Scholar 

  29. Boyd, A. et al. Cohort profile: the ‘children of the 90s’ – the index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).

    Article  Google Scholar 

  30. Pinto-Martin, J. et al. The central New Jersey neonatal brain haemorrhage study: design of the study and reliability of ultrasound diagnosis. Paediatr. Perinat. Epidemiol. 6, 273–284 (1992).

    Article  CAS  Google Scholar 

  31. Roth, C. et al. Folic acid supplements in pregnancy and severe language delay in children. JAMA 306, 1566–1573 (2011).

    Article  CAS  Google Scholar 

  32. Liu, X., Zou, M., Sun, C., Wu, L. & Chen, W. X. Prenatal folic acid supplements and offspring’s autism spectrum disorder: a meta-analysis and meta-regression. J. Autism Dev. Disord. 52, 522–539 (2022).

    Article  Google Scholar 

  33. Schmidt, R. J. et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am. J. Clin. Nutr. 96, 80–89 (2012).

    Article  CAS  Google Scholar 

  34. Maruvada, P. et al. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop. Am. J. Clin. Nutr. 112, 1390–1403 (2020).

    Article  Google Scholar 

  35. Naderi, N. & House, J. D. Recent developments in folate nutrition. Adv. Food Nutr. Res. 83, 195–213 (2018).

    Article  Google Scholar 

  36. Schmidt, R. J., Iosif, A. M., Guerrero Angel, E. & Ozonoff, S. Association of maternal prenatal vitamin use with risk for autism spectrum disorder recurrence in young siblings. JAMA Psychiatry 76, 391–398 (2019).

    Article  Google Scholar 

  37. Cheslack-Postava, K. et al. Increased risk of autism spectrum disorders at short and long interpregnancy intervals in Finland. J. Am. Acad. Child. Adolesc. Psychiatry 53, 1074–1081.e4 (2014).

    Article  Google Scholar 

  38. Gunnes, N. et al. Interpregnancy interval and risk of autistic disorder. Epidemiology 24, 906–912 (2013).

    Article  Google Scholar 

  39. Ly, L. et al. Impact of mothers’ early life exposure to low or high folate on progeny outcome and DNA methylation patterns. Environ. Epigenet. 6, dvaa018 (2020).

    Article  Google Scholar 

  40. Ly, L. et al. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Mol. Hum. Reprod. 23, 461–477 (2017).

    Article  CAS  Google Scholar 

  41. Golding, J. et al. Ancestral smoking and developmental outcomes: a review of publications from a population birth cohort. Biol. Reprod. 105, 625–631 (2021).

    Article  Google Scholar 

  42. Golding, J., Steer, C. & Pembrey, M. Parental and grandparental ages in the autistic spectrum disorders: a birth cohort study. PLoS ONE 5, e9939 (2010).

    Article  Google Scholar 

  43. Golding, J. et al. Grand-maternal smoking in pregnancy and grandchild’s autistic traits and diagnosed autism. Sci. Rep. 7, 46179 (2017).

    Article  Google Scholar 

  44. Goines, P. E. et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol. Autism 2, 13 (2011).

    Article  CAS  Google Scholar 

  45. Jones, K. L. et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol. Psychiatry 22, 273–279 (2017).

    Article  CAS  Google Scholar 

  46. Casey, S. et al. Maternal mid-gestation cytokine dysregulation in mothers of children with autism spectrum disorder. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-021-05271-7 (2021).

    Article  Google Scholar 

  47. Krakowiak, P. et al. Neonatal cytokine profiles associated with autism spectrum disorder. Biol. Psychiatry 81, 442–451 (2017).

    Article  CAS  Google Scholar 

  48. Abdallah, M. W. et al. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish historic birth cohort. Brain Behav. Immun. 26, 170–176 (2012).

    Article  CAS  Google Scholar 

  49. Heuer, L. S. et al. An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: the early markers for autism study. Biol. Psychiatry 86, 255–264 (2019).

    Article  CAS  Google Scholar 

  50. Zerbo, O. et al. Neonatal cytokines and chemokines and risk of autism spectrum disorder: the early markers for autism (EMA) study: a case-control study. J. Neuroinflammation 11, 113 (2014).

    Article  Google Scholar 

  51. Abdallah, M. W. et al. Neonatal levels of cytokines and risk of autism spectrum disorders: an exploratory register-based historic birth cohort study utilizing the Danish newborn screening biobank. J. Neuroimmunol. 252, 75–82 (2012).

    Article  CAS  Google Scholar 

  52. Walsh, P., Elsabbagh, M., Bolton, P. & Singh, I. In search of biomarkers for autism: scientific, social and ethical challenges. Nat. Rev. Neurosci. 12, 603–612 (2011).

    Article  CAS  Google Scholar 

  53. Hultman, C. M., Sparen, P. & Cnattingius, S. Perinatal risk factors for infantile autism. Epidemiology 13, 417–423 (2002).

    Article  Google Scholar 

  54. Eaton, W. W., Mortensen, P. B., Thomsen, P. H. & Frydenberg, M. Obstetric complications and risk for severe psychopathology in childhood. J. Autism Dev. Disord. 31, 279–285 (2001).

    Article  CAS  Google Scholar 

  55. Schendel, D. & Bhasin, T. K. Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics 121, 1155–1164 (2008).

    Article  Google Scholar 

  56. Movsas, T. Z. et al. Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J. Pediatr. 163, 73–78 (2013).

    Article  Google Scholar 

  57. Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348–351 (2017).

    Article  CAS  Google Scholar 

  58. Jaddoe, V. W. et al. The Generation R study: design and cohort profile. Eur. J. Epidemiol. 21, 475–484 (2006).

    Article  Google Scholar 

  59. Kazdoba, T. M. et al. Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr. Top. Behav. Neurosci. 28, 1–52 (2016).

    CAS  Google Scholar 

  60. Ergaz, Z., Weinstein-Fudim, L. & Ornoy, A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod. Toxicol. 64, 116–140 (2016).

    Article  CAS  Google Scholar 

  61. Christensen, J. et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309, 1696–1703 (2013).

    Article  CAS  Google Scholar 

  62. Tsugiyama, L. E., Ida-Eto, M., Ohkawara, T., Noro, Y. & Narita, M. Altered neuronal activity in the auditory brainstem following sound stimulation in thalidomide-induced autism model rats. Congenit. Anom. 60, 82–86 (2020).

    Article  CAS  Google Scholar 

  63. Matsuzaki, J. et al. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity. Neuroreport 23, 113–118 (2012).

    Article  Google Scholar 

  64. Uccelli, N. A. et al. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J. Neurochem. 159, 128–144 (2021).

    Article  CAS  Google Scholar 

  65. Frith, C. Is autism a disconnection disorder? Lancet Neurol. 3, 577 (2004).

    Article  Google Scholar 

  66. Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).

    Article  Google Scholar 

  67. Bauman, M. D. et al. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol. Psychiatry 75, 332–341 (2014).

    Article  CAS  Google Scholar 

  68. De Miranda, J. et al. Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. mBio 1, e00176-10 (2010).

    Article  Google Scholar 

  69. Bauman, M. D. et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl. Psychiatry 3, e278 (2013).

    Article  CAS  Google Scholar 

  70. Hsiao, E. Y. & Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 25, 604–615 (2011).

    Article  CAS  Google Scholar 

  71. Glass, R., Norton, S., Fox, N. & Kusnecov, A. W. Maternal immune activation with staphylococcal enterotoxin A produces unique behavioral changes in C57BL/6 mouse offspring. Brain Behav. Immun. 75, 12–25 (2019).

    Article  CAS  Google Scholar 

  72. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  Google Scholar 

  73. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17 (2019).

    Article  CAS  Google Scholar 

  74. Stoltenberg, C. et al. The Autism Birth Cohort: a paradigm for gene-environment-timing research. Mol. Psychiatry 15, 676–680 (2010).

    Article  CAS  Google Scholar 

  75. Kanner, L. Autistic disturbances of affective contact. Nerv. Child. 2, 217 (1943).

    Google Scholar 

  76. Asperger, H. Die “Autistischen Psychopathen” im Kindesalter. Arch. Psychiatr. Nervenkr. 117, 76–136 (1944).

    Article  Google Scholar 

  77. Wing, L. Asperger’s syndrome: a clinical account. Psychol. Med. 11, 115–129 (1981).

    Article  CAS  Google Scholar 

  78. Stein, Z., Susser, M., Saenger, G. & Marolla, F. Famine and Human Development: The Dutch Hunger Winter of 1944–1945 (Oxford Univ. Press, 1975).

  79. Wing, L. & Gould, J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J. Autism Dev. Disord. 9, 11–29 (1979).

    Article  CAS  Google Scholar 

  80. Schopler, E., Rutter, M. & Chess, S. Editorial: Change of journal scope and title. J. Autism Dev. Disord. 9, 1–10 (1979).

    Article  CAS  Google Scholar 

  81. Meryash, D. L., Szymanski, L. S. & Gerald, P. S. Infantile autism associated with the fragile-X syndrome. J. Autism Dev. Disord. 12, 295–301 (1982).

    Article  CAS  Google Scholar 

  82. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338, 131–137 (1991).

    Article  Google Scholar 

  83. Lord, C., Rutter, M. & Le Couteur, A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).

    Article  CAS  Google Scholar 

  84. Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S. & Romano, J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 370, 247–261 (1996).

    Article  CAS  Google Scholar 

  85. Rutter, M. et al. Quasi-autistic patterns following severe early global privation. English and Romanian Adoptees (ERA) Study Team. J. Child. Psychol. Psychiatry 40, 537–549 (1999).

    Article  CAS  Google Scholar 

  86. Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205–223 (2000).

    Article  CAS  Google Scholar 

  87. Courchesne, E., Carper, R. & Akshoomoff, N. Evidence of brain overgrowth in the first year of life in autism. JAMA 290, 337–344 (2003).

    Article  Google Scholar 

  88. Reichenberg, A. et al. Advancing paternal age and autism. Arch. Gen. Psychiatry 63, 1026–1032 (2006).

    Article  Google Scholar 

  89. Sadik, A. et al. Parental inflammatory bowel disease and autism in children. Nat. Med. 28, 1406–1411 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, writing the manuscript, discussions of its content and review or editing the manuscript before submission.

Corresponding author

Correspondence to W. Ian Lipkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Catherine Lord and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SFARI: https://www.sfari.org

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipkin, W.I., Bresnahan, M. & Susser, E. Cohort-guided insights into gene–environment interactions in autism spectrum disorders. Nat Rev Neurol 19, 118–125 (2023). https://doi.org/10.1038/s41582-022-00764-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-022-00764-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing