Abstract
Prospective birth cohorts offer unprecedented opportunities to investigate the pathogenesis of complex disorders such as autism, in which gene–environment interactions must be appreciated in a temporal context. This Perspective article considers the history of autism research, including missteps that reflected an incomplete understanding of the epidemiology of autistic spectrum disorders, the effects of advocacy and philanthropy on the trajectory of scientific inquiry, and the current and future roles of prospective birth cohort research in illuminating the pathology of these and other complex disorders wherein exposures during gestation might not manifest until later in life.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Lai, M. C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).
Orinstein, A. J. et al. Intervention for optimal outcome in children and adolescents with a history of autism. J. Dev. Behav. Pediatr. 35, 247–256 (2014).
Fombonne, E. Editorial: The rising prevalence of autism. J. Child. Psychol. Psychiatry 59, 717–720 (2018).
Starko, K. M., Ray, C. G., Dominguez, L. B., Stromberg, W. L. & Woodall, D. F. Reye’s syndrome and salicylate use. Pediatrics 66, 859–864 (1980).
Wakefield, A. J. et al. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351, 637–641 (1998); retraction 375, 445 (2010).
Geier, D. A. & Geier, M. R. A comparative evaluation of the effects of MMR immunization and mercury doses from thimerosal-containing childhood vaccines on the population prevalence of autism. Med. Sci. Monit. 10, PI33–PI39 (2004).
Hornig, M. et al. Lack of association between measles virus vaccine and autism with enteropathy: a case-control study. PLoS ONE 3, e3140 (2008).
Gerber, J. S. & Offit, P. A. Vaccines and autism: a tale of shifting hypotheses. Clin. Infect. Dis. 48, 456–461 (2009).
Velasquez-Manoff, M. The anti-vaccine movement’s new frontier. New York Times https://www.nytimes.com/2022/05/25/magazine/anti-vaccine-movement.html (2022).
Hansen, S. N., Schendel, D. E. & Parner, E. T. Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr. 169, 56–62 (2015).
Kanner, L. Problems of nosology and psychodynamics of early infantile autism. Am. J. Orthopsychiatry 19, 416–426 (1949).
Chess, S. Autism in children with congenital rubella. J. Autism Child. Schizophr. 1, 33–47 (1971).
Folstein, S. & Rutter, M. Infantile autism: a genetic study of 21 twin pairs. J. Child. Psychol. Psychiatry 18, 297–321 (1977).
Tick, B., Bolton, P., Happe, F., Rutter, M. & Rijsdijk, F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J. Child. Psychol. Psychiatry 57, 585–595 (2016).
Folstein, S. & Rutter, M. Genetic influences and infantile autism. Nature 265, 726–728 (1977).
Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).
Suren, P. et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309, 570–577 (2013).
Zhou, X. et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 54, 1305–1319 (2022).
Stromland, K., Nordin, V., Miller, M., Akerstrom, B. & Gillberg, C. Autism in thalidomide embryopathy: a population study. Dev. Med. Child. Neurol. 36, 351–356 (1994).
Che, X. et al. Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01415-4 (2022).
Hours, C., Recasens, C. & Baleyte, J. M. ASD and ADHD comorbidity: what are we talking about? Front. Psychiatry 13, 837424 (2022).
Kennedy, M. et al. Early severe institutional deprivation is associated with a persistent variant of adult attention-deficit/hyperactivity disorder: clinical presentation, developmental continuities and life circumstances in the English and Romanian Adoptees study. J. Child. Psychol. Psychiatry 57, 1113–1125 (2016).
Kumsta, R. et al. Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1. Transl. Psychiatry 6, e830 (2016).
Moore, S. J. et al. A clinical study of 57 children with fetal anticonvulsant syndromes. J. Med. Genet. 37, 489–497 (2000).
Chess, S. Follow-up report on autism in congenital rubella. J. Autism Child. Schizophr. 7, 69–81 (1977).
Hertz-Picciotto, I. et al. A prospective study of environmental exposures and early biomarkers in autism spectrum disorder: design, protocols, and preliminary data from the MARBLES study. Env. Health Perspect. 126, 117004 (2018).
Pedersen, C. B. et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).
Schendel, D. E. et al. The International Collaboration for Autism Registry Epidemiology (iCARE): multinational registry-based investigations of autism risk factors and trends. J. Autism Dev. Disord. 43, 2650–2663 (2013).
Boyd, A. et al. Cohort profile: the ‘children of the 90s’ – the index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).
Pinto-Martin, J. et al. The central New Jersey neonatal brain haemorrhage study: design of the study and reliability of ultrasound diagnosis. Paediatr. Perinat. Epidemiol. 6, 273–284 (1992).
Roth, C. et al. Folic acid supplements in pregnancy and severe language delay in children. JAMA 306, 1566–1573 (2011).
Liu, X., Zou, M., Sun, C., Wu, L. & Chen, W. X. Prenatal folic acid supplements and offspring’s autism spectrum disorder: a meta-analysis and meta-regression. J. Autism Dev. Disord. 52, 522–539 (2022).
Schmidt, R. J. et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am. J. Clin. Nutr. 96, 80–89 (2012).
Maruvada, P. et al. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop. Am. J. Clin. Nutr. 112, 1390–1403 (2020).
Naderi, N. & House, J. D. Recent developments in folate nutrition. Adv. Food Nutr. Res. 83, 195–213 (2018).
Schmidt, R. J., Iosif, A. M., Guerrero Angel, E. & Ozonoff, S. Association of maternal prenatal vitamin use with risk for autism spectrum disorder recurrence in young siblings. JAMA Psychiatry 76, 391–398 (2019).
Cheslack-Postava, K. et al. Increased risk of autism spectrum disorders at short and long interpregnancy intervals in Finland. J. Am. Acad. Child. Adolesc. Psychiatry 53, 1074–1081.e4 (2014).
Gunnes, N. et al. Interpregnancy interval and risk of autistic disorder. Epidemiology 24, 906–912 (2013).
Ly, L. et al. Impact of mothers’ early life exposure to low or high folate on progeny outcome and DNA methylation patterns. Environ. Epigenet. 6, dvaa018 (2020).
Ly, L. et al. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Mol. Hum. Reprod. 23, 461–477 (2017).
Golding, J. et al. Ancestral smoking and developmental outcomes: a review of publications from a population birth cohort. Biol. Reprod. 105, 625–631 (2021).
Golding, J., Steer, C. & Pembrey, M. Parental and grandparental ages in the autistic spectrum disorders: a birth cohort study. PLoS ONE 5, e9939 (2010).
Golding, J. et al. Grand-maternal smoking in pregnancy and grandchild’s autistic traits and diagnosed autism. Sci. Rep. 7, 46179 (2017).
Goines, P. E. et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol. Autism 2, 13 (2011).
Jones, K. L. et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol. Psychiatry 22, 273–279 (2017).
Casey, S. et al. Maternal mid-gestation cytokine dysregulation in mothers of children with autism spectrum disorder. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-021-05271-7 (2021).
Krakowiak, P. et al. Neonatal cytokine profiles associated with autism spectrum disorder. Biol. Psychiatry 81, 442–451 (2017).
Abdallah, M. W. et al. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish historic birth cohort. Brain Behav. Immun. 26, 170–176 (2012).
Heuer, L. S. et al. An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: the early markers for autism study. Biol. Psychiatry 86, 255–264 (2019).
Zerbo, O. et al. Neonatal cytokines and chemokines and risk of autism spectrum disorder: the early markers for autism (EMA) study: a case-control study. J. Neuroinflammation 11, 113 (2014).
Abdallah, M. W. et al. Neonatal levels of cytokines and risk of autism spectrum disorders: an exploratory register-based historic birth cohort study utilizing the Danish newborn screening biobank. J. Neuroimmunol. 252, 75–82 (2012).
Walsh, P., Elsabbagh, M., Bolton, P. & Singh, I. In search of biomarkers for autism: scientific, social and ethical challenges. Nat. Rev. Neurosci. 12, 603–612 (2011).
Hultman, C. M., Sparen, P. & Cnattingius, S. Perinatal risk factors for infantile autism. Epidemiology 13, 417–423 (2002).
Eaton, W. W., Mortensen, P. B., Thomsen, P. H. & Frydenberg, M. Obstetric complications and risk for severe psychopathology in childhood. J. Autism Dev. Disord. 31, 279–285 (2001).
Schendel, D. & Bhasin, T. K. Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics 121, 1155–1164 (2008).
Movsas, T. Z. et al. Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J. Pediatr. 163, 73–78 (2013).
Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348–351 (2017).
Jaddoe, V. W. et al. The Generation R study: design and cohort profile. Eur. J. Epidemiol. 21, 475–484 (2006).
Kazdoba, T. M. et al. Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr. Top. Behav. Neurosci. 28, 1–52 (2016).
Ergaz, Z., Weinstein-Fudim, L. & Ornoy, A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod. Toxicol. 64, 116–140 (2016).
Christensen, J. et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309, 1696–1703 (2013).
Tsugiyama, L. E., Ida-Eto, M., Ohkawara, T., Noro, Y. & Narita, M. Altered neuronal activity in the auditory brainstem following sound stimulation in thalidomide-induced autism model rats. Congenit. Anom. 60, 82–86 (2020).
Matsuzaki, J. et al. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity. Neuroreport 23, 113–118 (2012).
Uccelli, N. A. et al. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J. Neurochem. 159, 128–144 (2021).
Frith, C. Is autism a disconnection disorder? Lancet Neurol. 3, 577 (2004).
Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).
Bauman, M. D. et al. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol. Psychiatry 75, 332–341 (2014).
De Miranda, J. et al. Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. mBio 1, e00176-10 (2010).
Bauman, M. D. et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl. Psychiatry 3, e278 (2013).
Hsiao, E. Y. & Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 25, 604–615 (2011).
Glass, R., Norton, S., Fox, N. & Kusnecov, A. W. Maternal immune activation with staphylococcal enterotoxin A produces unique behavioral changes in C57BL/6 mouse offspring. Brain Behav. Immun. 75, 12–25 (2019).
Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).
Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17 (2019).
Stoltenberg, C. et al. The Autism Birth Cohort: a paradigm for gene-environment-timing research. Mol. Psychiatry 15, 676–680 (2010).
Kanner, L. Autistic disturbances of affective contact. Nerv. Child. 2, 217 (1943).
Asperger, H. Die “Autistischen Psychopathen” im Kindesalter. Arch. Psychiatr. Nervenkr. 117, 76–136 (1944).
Wing, L. Asperger’s syndrome: a clinical account. Psychol. Med. 11, 115–129 (1981).
Stein, Z., Susser, M., Saenger, G. & Marolla, F. Famine and Human Development: The Dutch Hunger Winter of 1944–1945 (Oxford Univ. Press, 1975).
Wing, L. & Gould, J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J. Autism Dev. Disord. 9, 11–29 (1979).
Schopler, E., Rutter, M. & Chess, S. Editorial: Change of journal scope and title. J. Autism Dev. Disord. 9, 1–10 (1979).
Meryash, D. L., Szymanski, L. S. & Gerald, P. S. Infantile autism associated with the fragile-X syndrome. J. Autism Dev. Disord. 12, 295–301 (1982).
MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338, 131–137 (1991).
Lord, C., Rutter, M. & Le Couteur, A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).
Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S. & Romano, J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 370, 247–261 (1996).
Rutter, M. et al. Quasi-autistic patterns following severe early global privation. English and Romanian Adoptees (ERA) Study Team. J. Child. Psychol. Psychiatry 40, 537–549 (1999).
Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205–223 (2000).
Courchesne, E., Carper, R. & Akshoomoff, N. Evidence of brain overgrowth in the first year of life in autism. JAMA 290, 337–344 (2003).
Reichenberg, A. et al. Advancing paternal age and autism. Arch. Gen. Psychiatry 63, 1026–1032 (2006).
Sadik, A. et al. Parental inflammatory bowel disease and autism in children. Nat. Med. 28, 1406–1411 (2022).
Author information
Authors and Affiliations
Contributions
All authors contributed to researching data for the article, writing the manuscript, discussions of its content and review or editing the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neurology thanks Catherine Lord and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
SFARI: https://www.sfari.org
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lipkin, W.I., Bresnahan, M. & Susser, E. Cohort-guided insights into gene–environment interactions in autism spectrum disorders. Nat Rev Neurol 19, 118–125 (2023). https://doi.org/10.1038/s41582-022-00764-0
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41582-022-00764-0
This article is cited by
-
Tongue-coating microbiota as a predictive biomarker of washed microbiota transplantation efficacy in pediatric autism: integration with clinical features
Journal of Translational Medicine (2025)
-
Dysregulation of the mTOR-FMRP pathway and synaptic plasticity in an environmental model of ASD
Molecular Psychiatry (2025)
-
Validation of plasma protein glycation and oxidation biomarkers for the diagnosis of autism
Molecular Psychiatry (2024)