Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bruton tyrosine kinase inhibitors for multiple sclerosis

Abstract

Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood–brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.

Key points

  • Bruton tyrosine kinase (BTK) is an important intracellular signalling molecule involved in regulating the maturation, proliferation, survival and activation of B cells and myeloid cells.

  • BTK inhibitors might concurrently target adaptive and innate immune mechanisms in the periphery and central nervous system (CNS).

  • This ability makes BTK inhibitors a promising therapeutic approach for relapsing and progressive forms of multiple sclerosis (MS).

  • Preclinical studies show that BTK inhibition can suppress key pathological features of MS, including B cell activation, CNS lymphocyte infiltration, leptomeningeal inflammation, pro-inflammatory microglial activation and demyelination.

  • The efficacy and safety of five BTK inhibitors are currently being evaluated in clinical trials in patients with relapsing and progressive MS.

  • The BTK inhibitors under investigation in clinical trials differ in their selectivity, mode of binding, target occupancy, inhibitory potency and CNS penetrance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bruton tyrosine kinase signalling pathways in B cells, macrophages and microglia.
Fig. 2: Putative mechanism of action of Bruton tyrosine kinase inhibitors in multiple sclerosis.

Similar content being viewed by others

References

  1. Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Krämer, J. et al. Imaging in mice and men: pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog. Neurobiol. 182, 101663 (2019).

    Article  PubMed  Google Scholar 

  5. Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Bar-Or, A. & Li, R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol. 20, 470–483 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Healy, L. M., Stratton, J. A., Kuhlmann, T. & Antel, J. The role of glial cells in multiple sclerosis disease progression. Nat. Rev. Neurol. 18, 237–248 (2022).

    Article  PubMed  Google Scholar 

  8. Ruiz, F., Vigne, S. & Pot, C. Resolution of inflammation during multiple sclerosis. Semin. Immunopathol. 41, 711–726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DiSabato, D. J., Quan, N. & Godbout, J. P. Neuroinflammation: the devil is in the details. J. Neurochem. 139, 136–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minagar, A., Maghzi, A. H., McGee, J. C. & Alexander, J. S. Emerging roles of endothelial cells in multiple sclerosis pathophysiology and therapy. Neurol. Res. 34, 738–745 (2012).

    Article  PubMed  Google Scholar 

  11. Yong, H. Y. F. & Yong, V. W. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat. Rev. Neurol. 18, 40–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Dangond, F. et al. Facing the urgency of therapies for progressive MS — a progressive MS alliance proposal. Nat. Rev. Neurol. 17, 185–192 (2021).

    Article  PubMed  Google Scholar 

  13. Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 9, 3116 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  15. Choi, S. R. et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937 (2012).

    Article  PubMed  Google Scholar 

  16. Absinta, M. et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J. Clin. Invest. 126, 2597–2609 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Lassmann, H. The contribution of neuropathology to multiple sclerosis research. Eur. J. Neurol. 29, 2869–2877 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lassmann, H., Raine, C. S., Antel, J. & Prineas, J. W. Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J. Neuroimmunol. 86, 213–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Calvi, A. et al. In vivo imaging of chronic active lesions in multiple sclerosis. Mult. Scler. 28, 683–690 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackle, K. et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain 143, 2073–2088 (2020).

    Article  PubMed  Google Scholar 

  24. Elliott, C. et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. 25, 1915–1925 (2019).

    Article  PubMed  Google Scholar 

  25. Preziosa, P. et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol. Neuroimmunol. Neuroinflamm. 9, e1139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Absinta, M. & Dal-Bianco, A. Slowly expanding lesions are a marker of progressive MS — yes. Mult. Scler. 27, 1679–1681 (2021).

    Article  PubMed  Google Scholar 

  29. Simmons, S. B. & Ontaneda, D. Slowly expanding lesions: a new target for progressive multiple sclerosis trials. Neurology 98, 699–700 (2022).

    Article  PubMed  Google Scholar 

  30. Guerrero, B. L. & Sicotte, N. L. Microglia in multiple sclerosis: friend or foe? Front. Immunol. 11, 374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Hauser, S. L. et al. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med. 383, 546–557 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Gelfand, J. M., Cree, B. A. C. & Hauser, S. L. Ocrelizumab and other CD20(+) B-cell-depleting therapies in multiple sclerosis. Neurotherapeutics 14, 835–841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhargava, P. et al. Trial of intrathecal rituximab in progressive multiple sclerosis patients with evidence of leptomeningeal contrast enhancement. Mult. Scler. Relat. Disord. 30, 136–140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Komori, M. et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann. Clin. Transl. Neurol. 3, 166–179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, R., Patterson, K. R. & Bar-Or, A. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 19, 696–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Bonnan, M. et al. No early effect of intrathecal rituximab in progressive multiple sclerosis (EFFRITE Clinical Trial). Mult. Scler. Int. 2021, 8813498–707 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. Torke, S. & Weber, M. S. Inhibition of Bruton’s tyrosine kinase as a novel therapeutic approach in multiple sclerosis. Exp. Opin. Investig. Drugs 29, 1143–1150 (2020).

    Article  CAS  Google Scholar 

  42. Brunner, C., Müller, B. & Wirth, T. Bruton’s tyrosine kinase is involved in innate and adaptive immunity. Histol. Histopathol. 20, 945–955 (2005).

    CAS  PubMed  Google Scholar 

  43. Rip, J., Van Der Ploeg, E. K., Hendriks, R. W. & Corneth, O. B. J. The role of Bruton’s tyrosine kinase in immune cell signaling and systemic autoimmunity. Crit. Rev. Immunol. 38, 17–62 (2018).

    Article  PubMed  Google Scholar 

  44. Torke, S. et al. Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 140, 535–548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carnero Contentti, E. & Correale, J. Bruton’s tyrosine kinase inhibitors: a promising emerging treatment option for multiple sclerosis. Exp. Opin. Emerg. Drugs 25, 377–381 (2020).

    Article  CAS  Google Scholar 

  46. Smith, C. I. et al. Expression of Bruton’s agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J. Immunol. 152, 557–565 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Merino, A. Bruton’s tyrosine kinase inhibitors: a new generation of promising agents for multiple sclerosis therapy. Cells 10, 2560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ellmeier, W., Abramova, A. & Schebesta, A. Tec family kinases: regulation of FcεRI-mediated mast-cell activation. FEBS J. 278, 1990–2000 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Hata, D. et al. Involvement of Bruton’s tyrosine kinase in FcεRI-dependent mast cell degranulation and cytokine production. J. Exp. Med. 187, 1235–1247 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwaki, S. et al. Btk plays a crucial role in the amplification of FcεRI-mediated mast cell activation by kit. J. Biol. Chem. 280, 40261–40270 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, E. J., Yoon, J. H. & Chung, K. C. Bruton’s tyrosine kinase phosphorylates cAMP-responsive element-binding protein at serine 133 during neuronal differentiation in immortalized hippocampal progenitor cells. J. Biol. Chem. 279, 1827–1837 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Martin, E. et al. Bruton’s tyrosine kinase inhibition promotes myelin repair. Brain Plast. 5, 123–133 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu, C. G. et al. Inhibition of Bruton tyrosine kinase reduces neuroimmune cascade and promotes recovery after spinal cord injury. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23010355 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).

    Article  CAS  PubMed  Google Scholar 

  55. Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Tsukada, S. et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72, 279–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Hendriks, R. W., Yuvaraj, S. & Kil, L. P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer 14, 219–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Mahajan, S. et al. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton’s tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)propenamide]. J. Biol. Chem. 274, 9587–9599 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Kiss, R. et al. Identification of a novel inhibitor of JAK2 tyrosine kinase by structure-based virtual screening. Bioorg. Med. Chem. Lett. 19, 3598–3601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van den Akker, E. et al. The Btk inhibitor LFM-A13 is a potent inhibitor of Jak2 kinase activity. Biol. Chem. 385, 409–413 (2004).

    Article  PubMed  Google Scholar 

  61. Pan, Z. et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2, 58–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Wen, T., Wang, J., Shi, Y., Qian, H. & Liu, P. Inhibitors targeting Bruton’s tyrosine kinase in cancers: drug development advances. Leukemia 35, 312–332 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Jansset Biotech, Inc. Imbruvica (Ibrutinib) Capsules and Tablets [Prescribing Information] (Jansset Biotech, Inc., 2020).

  64. AstraZeneca. Calquence (Acalabrutinib) Capsules [Prescribing Information] (AstraZeneca, 2019).

  65. BeiGene USA, Inc. Brukinsa (Zanubrutinib) Capsules [Prescribing Information] (BeiGene USA, Inc., 2019).

  66. Estupinan, H. Y., Berglof, A., Zain, R. & Smith, C. I. E. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front. Cell Dev. Biol. 9, 630942 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ringheim, G. E., Wampole, M. & Oberoi, K. Bruton’s tyrosine kinase (BTK) inhibitors and autoimmune diseases: making sense of BTK inhibitor specificity profiles and recent clinical trial successes and failures. Front. Immunol. 12, 662223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Corneth, O. B. et al. Enhanced expression of Bruton’s tyrosine kinase in B cells drives systemic autoimmunity by disrupting T cell homeostasis. J. Immunol. 197, 58–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Kil, L. P. et al. Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119, 3744–3756 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Mano, H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev. 10, 267–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Dickson, E. J. & Hille, B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem. J. 476, 1–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Solvason, N. et al. Transgene expression of bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells. J. Exp. Med. 187, 1081–1091 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Uckun, F. M. et al. BTK as a mediator of radiation-induced apoptosis in DT-40 lymphoma B cells. Science 273, 1096–1100 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, C. I. et al. The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays 23, 436–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Ekman, N. et al. The BMX tyrosine kinase is activated by IL-3 and G-CSF in a PI-3K dependent manner. Oncogene 19, 4151–4158 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Schaeffer, E. M. et al. Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 284, 638–641 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Basile, N. et al. Clinical and molecular analysis of 49 patients with X-linked agammaglobulinemia from a single center in Argentina. J. Clin. Immunol. 29, 123–129 (2009).

    Article  PubMed  Google Scholar 

  78. Väliaho, J., Smith, C. I. & Vihinen, M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum. Mutat. 27, 1209–1217 (2006).

    Article  PubMed  Google Scholar 

  79. Rawlings, D. J. et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Cancro, M. P. et al. xid mice reveal the interplay of homeostasis and Bruton’s tyrosine kinase-mediated selection at multiple stages of B cell development. Int. Immunol. 13, 1501–1514 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Thomas, J. D. et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Middendorp, S., Dingjan, G. M. & Hendriks, R. W. Impaired precursor B cell differentiation in Bruton’s tyrosine kinase-deficient mice. J. Immunol. 168, 2695–2703 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Ng, Y. S., Wardemann, H., Chelnis, J., Cunningham-Rundles, C. & Meffre, E. Bruton’s tyrosine kinase is essential for human B cell tolerance. J. Exp. Med. 200, 927–934 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, BTK, and CD21. Immunity 14, 603–615 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Spaargaren, M. et al. The B cell antigen receptor controls integrin activity through Btk and PLCgamma2. J. Exp. Med. 198, 1539–1550 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lunemann, J. D., Malhotra, S., Shinohara, M. L., Montalban, X. & Comabella, M. Targeting inflammasomes to treat neurological diseases. Ann. Neurol. 90, 177–188 (2021).

    Article  PubMed  Google Scholar 

  87. Schmitz, R., Baumann, G. & Gram, H. Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. J. Mol. Biol. 260, 664–677 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Fujimoto, M. et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13, 47–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Fütterer, K., Wong, J., Grucza, R. A., Chan, A. C. & Waksman, G. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. J. Mol. Biol. 281, 523–537 (1998).

    Article  PubMed  Google Scholar 

  90. Rowley, R. B., Burkhardt, A. L., Chao, H. G., Matsueda, G. R. & Bolen, J. B. Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J. Biol. Chem. 270, 11590–11594 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Y., Fairfax, K., Light, A., Huntington, N. D. & Tarlinton, D. M. CD19 differentially regulates BCR signalling through the recruitment of PI3K. Autoimmunity 47, 430–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Okada, T., Maeda, A., Iwamatsu, A., Gotoh, K. & Kurosaki, T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 13, 817–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Saito, K., Scharenberg, A. M. & Kinet, J. P. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates BTK. J. Biol. Chem. 276, 16201–16206 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Haxhinasto, S. A. & Bishop, G. A. Synergistic B cell activation by CD40 and the B cell antigen receptor: role of B lymphocyte antigen receptor-mediated kinase activation and tumor necrosis factor receptor-associated factor regulation. J. Biol. Chem. 279, 2575–2582 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Ying, H., Li, Z., Yang, L. & Zhang, J. Syk mediates BCR- and CD40-signaling integration during B cell activation. Immunobiology 216, 566–570 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Tanwar, S. et al. Mediation of transitional B cell maturation in the absence of functional Bruton’s tyrosine kinase. Sci. Rep. 7, 46029 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Su, Y. W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 29, 3702–3711 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, W. S. & Heckman, C. A. The sevenfold way of PKC regulation. Cell. Signal. 10, 529–542 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Taylor, C. W. & Tovey, S. C. IP(3) receptors: toward understanding their activation. Cold Spring Harb. Perspect. Biol. 2, a004010 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin, X. & Wang, D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin. Immunol. 16, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. David, L. et al. Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome. Proc. Natl Acad. Sci. USA 115, 1499–1504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shinohara, H., Maeda, S., Watarai, H. & Kurosaki, T. IkappaB kinase beta-induced phosphorylation of CARMA1 contributes to CARMA1 Bcl10 MALT1 complex formation in B cells. J. Exp. Med. 204, 3285–3293 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mohamed, A. J. et al. Bruton’s tyrosine kinase (BTK): function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev. 228, 58–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Berland, R. & Wortis, H. H. Normal B-1a cell development requires B cell-intrinsic NFATc1 activity. Proc. Natl Acad. Sci. USA 100, 13459–13464 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Bhattacharyya, S. et al. NFATc1 affects mouse splenic B cell function by controlling the calcineurin–NFAT signaling network. J. Exp. Med. 208, 823–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barrington, R. A., Borde, M., Rao, A. & Carroll, M. C. Involvement of NFAT1 in B cell self-tolerance. J. Immunol. 177, 1510–1515 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Gerondakis, S. & Siebenlist, U. Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb. Perspect. Biol. 2, a000182 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Teixeira, C., Stang, S. L., Zheng, Y., Beswick, N. S. & Stone, J. C. Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood 102, 1414–1420 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Yasuda, T. et al. Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 28, 499–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Westerberg, L., Greicius, G., Snapper, S. B., Aspenström, P. & Severinson, E. Cdc42, Rac1, and the Wiskott–Aldrich syndrome protein are involved in the cytoskeletal regulation of B lymphocytes. Blood 98, 1086–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. O’Rourke, L. M. et al. CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8, 635–645 (1998).

    Article  PubMed  Google Scholar 

  113. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Chiu, C. W., Dalton, M., Ishiai, M., Kurosaki, T. & Chan, A. C. BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins. EMBO J. 21, 6461–6472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Muta, T. et al. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature 368, 70–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Nishizumi, H., Horikawa, K., Mlinaric-Rascan, I. & Yamamoto, T. A double-edged kinase Lyn: a positive and negative regulator for antigen receptor-mediated signals. J. Exp. Med. 187, 1343–1348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jefferies, C. A. et al. Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J. Biol. Chem. 278, 26258–26264 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Gray, P. et al. MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J. Biol. Chem. 281, 10489–10495 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Lee, K. G. et al. Bruton’s tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc. Natl Acad. Sci. USA 109, 5791–5796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. O’Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  PubMed  Google Scholar 

  121. Botos, I., Segal, D. M. & Davies, D. R. The structural biology of Toll-like receptors. Structure 19, 447–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Muroi, M. & Tanamoto, K. TRAF6 distinctively mediates MyD88- and IRAK-1-induced activation of NF-kappaB. J. Leukoc. Biol. 83, 702–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Rip, J. et al. Toll-like receptor signaling drives BTK-mediated autoimmune disease. Front. Immunol. 10, 95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kenny, E. F. et al. Bruton’s tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS ONE 8, e74103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kawakami, Y. et al. Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon Fc epsilon RI cross-linking. Mol. Cell Biol. 14, 5108–5113 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Furumoto, Y., Nunomura, S., Terada, T., Rivera, J. & Ra, C. The FcϵRIβ immunoreceptor tyrosine-based activation motif exerts inhibitory control on MAPK and IκB kinase phosphorylation and mast cell cytokine production. J. Biol. Chem. 279, 49177–49187 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Simon, M., Vanes, L., Geahlen, R. L. & Tybulewicz, V. L. Distinct roles for the linker region tyrosines of Syk in FcepsilonRI signaling in primary mast cells. J. Biol. Chem. 280, 4510–4517 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Saitoh, S. et al. LAT is essential for Fc(epsilon)RI-mediated mast cell activation. Immunity 12, 525–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Jongstra-Bilen, J. et al. Dual functions of Bruton’s tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J. Immunol. 181, 288–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Liang, C. et al. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur. J. Med. Chem. 151, 315–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Pal Singh, S., Dammeijer, F. & Hendriks, R. W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 17, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Di Paolo, J. A. et al. Specific BTK inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat. Chem. Biol. 7, 41–50 (2011).

    Article  PubMed  Google Scholar 

  134. Kiefer, F. et al. The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol. Cell Biol. 18, 4209–4220 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Horwood, N. J. et al. Bruton’s tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J. Immunol. 176, 3635–3641 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Doyle, S. L., Jefferies, C. A., Feighery, C. & O’Neill, L. A. Signaling by Toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J. Biol. Chem. 282, 36953–36960 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, X. et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase BTK. Nat. Immunol. 12, 416–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Rijvers, L. et al. Human T-bet + B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight https://doi.org/10.1172/jci.insight.160909 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gruber, R. et al. Central effects of BTK inhibition in neuroinflammation. Neurology 94, 808 (2020).

    Google Scholar 

  140. Gruber, R. et al. Evaluating the effect of BTK inhibitor tolebrutinib in human microglia. Mult. Scler. 27, P391 (2021).

    Google Scholar 

  141. Cui, L. Y., Chu, S. F. & Chen, N. H. The role of chemokines and chemokine receptors in multiple sclerosis. Int. Immunopharmacol. 83, 106314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kowarik, M. C. et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J. Neuroinflammation 9, 93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Luo, C. et al. The role of microglia in multiple sclerosis. Neuropsychiatr. Dis. Treat. 13, 1661–1667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dong, Y. & Yong, V. W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 15, 704–717 (2019).

    Article  PubMed  Google Scholar 

  146. Kamma, E., Lasisi, W., Libner, C., Ng, H. S. & Plemel, J. R. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J. Neuroinflammation 19, 45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Puthenparampil, M. et al. BAFF index and CXCL13 levels in the cerebrospinal fluid associate respectively with intrathecal IgG synthesis and cortical atrophy in multiple sclerosis at clinical onset. J. Neuroinflammation 14, 11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jain, R. W. & Yong, V. W. B cells in central nervous system disease: diversity, locations and pathophysiology. Nat. Rev. Immunol. 22, 513–524 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Arneth, B. M. Impact of B cells to the pathophysiology of multiple sclerosis. J. Neuroinflammation 16, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Flach, A. C. et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc. Natl Acad. Sci. USA 113, 3323–3328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Owens, T. D. et al. Phase 1 clinical trial evaluating safety, exposure and pharmacodynamics of BTK inhibitor tolebrutinib (PRN2246, SAR442168). Clin. Transl. Sci. 15, 442–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Caldwell, R. D. et al. Discovery of evobrutinib: an oral, potent, and highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J. Med. Chem. 62, 7643–7655 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Comi, G. et al. Role of B cells in multiple sclerosis and related disorders. Ann. Neurol. 89, 13–23 (2021).

    Article  PubMed  Google Scholar 

  154. Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis — from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

    Article  PubMed  Google Scholar 

  155. Nyhoff, L. E. et al. Bruton’s tyrosine kinase is not essential for B cell survival beyond early developmental stages. J. Immunol. 200, 2352–2361 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Bame, E. et al. Next-generation Bruton’s tyrosine kinase inhibitor BIIB091 selectively and potently inhibits B cell and Fc receptor signaling and downstream functions in B cells and myeloid cells. Clin. Transl. Immunol. 10, e1295 (2021).

    Article  CAS  Google Scholar 

  157. de Rooij, M. F. et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119, 2590–2594 (2012).

    Article  PubMed  Google Scholar 

  158. Herman, S. E. et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia 28, 2188–2196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Francesco, M. et al. PRN2246, a potent and selective blood–brain barrier penetrating BTK inhibitor, exhibits efficacy in central nervous system immunity. Mult. Scler. 23, P989 (2017).

    Google Scholar 

  160. Bassani, C. et al. The role of human and mouse BTK in myeloid cells (P3-4.006). Neurology 98, 2707 (2022).

    Google Scholar 

  161. Boschert, U. et al. T cell mediated experimental CNS autoimmunity induced by PLP in SJL mice is modulated by evobrutinib (M2951): a novel Bruton’s tyrosine kinase inhibitor. Mult. Scler. 23, P678 (2017).

    Google Scholar 

  162. Bhargava, P. et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 144, 1396–1408 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Li, R. et al. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol. 143, 505–521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, J. et al. Targeting microglia and macrophages: a potential treatment strategy for multiple sclerosis. Front. Pharmacol. 10, 286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mangla, A. et al. Pleiotropic consequences of Bruton tyrosine kinase deficiency in myeloid lineages lead to poor inflammatory responses. Blood 104, 1191–1197 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Alankus, Y., Grenningloh, R., Haselmayer, P., Bender, A. & Bruttger, J. BTK inhibition prevents inflammatory macrophage differentiation: a potential role in MS. Mult. Scler. 24, P557 (2018).

    Google Scholar 

  167. Pellerin, K. et al. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain 144, 2361–2374 (2021).

    Article  PubMed  Google Scholar 

  168. Weber, M. et al. Fenebrutinib reduces disease activity in a mouse model of infammatory multiple sclerosis, which is associated with reduced microglial activation. Mult. Scler. 27, P680 (2021).

    Google Scholar 

  169. Gruber, R. et al. Decoding Bruton’s tyrosine kinase signaling in neuroinflammation. Mult. Scler. 26, P0311 (2020).

    Google Scholar 

  170. Gruber, R. et al. Evaluating the effect of a Bruton’s tyrosine kinase inhibitor in a murine experimental autoimmune encephalomyelitis model of multiple sclerosis. Mult. Scler. 28, P174 (2022).

    Google Scholar 

  171. Geladaris, A. et al. Targeting BTK in chronic CNS autoimmunity inhibits activation of microglia. Mult. Scler. 27, P971 (2021).

    Google Scholar 

  172. Barr, H. et al. Microglial BTK signaling regulates immune-mediated cortical demyelination. Mult. Scler. 27, P196 (2021).

    Google Scholar 

  173. Brullo, C., Villa, C., Tasso, B., Russo, E. & Spallarossa, A. BTK inhibitors: a medicinal chemistry and drug delivery perspective. Int. J. Mol. Sci. 22, 7641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zain, R. & Vihinen, M. Structure–function relationships of covalent and non-covalent BTK inhibitors. Front. Immunol. 12, 694853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Baillie, T. A. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. Engl. 55, 13408–13421 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Crawford, J. J. et al. Discovery of GDC-0853: a potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J. Med. Chem. 61, 2227–2245 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Weber, M. et al. Fenebrutinib demonstrates the highest potency of Bruton tyrosine kinase inhibitors (BTKis) in phase 3 clinical development for multiple sclerosis (MS). Neurology 96, 4437 (2021).

    Google Scholar 

  178. Turner, T., Brun, P., Ofengheim, D. & Gruber, R. Comparative CNS pharmacology of tolebrutinib versus other BTK inhibitor candidates for treating MS. Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS) Forum (West Palm Beach, FL, USA) 162 (ACTRIMS, 2022).

  179. Piasecka-Stryczynska, K. et al. Concentration of evobrutinib, a BTK inhibitor, in cerebrospinal fluid during treatment of patients with relapsing multiple sclerosis in a phase 2 study. Mult. Scler. Relat. Disord. 51, 103001 (2021).

    Article  Google Scholar 

  180. Smith, P. et al. Phase 1 clinical trial of PRN2246 (SAR441268), a covalent BTK inhibitor demonstrates safety, CNS exposure and therapeutic levels of BTK occupancy. Mult. Scler. 25, P072 (2019).

    Google Scholar 

  181. Lipsky, A. & Lamanna, N. Managing toxicities of Bruton tyrosine kinase inhibitors. Hematol. Am. Soc. Hematol. Educ. Program 2020, 336–345 (2020).

    Article  Google Scholar 

  182. Fiorcari, S. et al. BTK inhibition impairs the innate response against fungal infection in patients with chronic lymphocytic leukemia. Front. Immunol. 11, 2158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tam, C. S. et al. A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenstrom macroglobulinemia: the ASPEN study. Blood 136, 2038–2050 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rotstein, D. L. All Bruton’s tyrosine kinase inhibitors have similar efficacy and risks: no. Mult. Scler. 28, 1500–1502 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Montalban, X. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 380, 2406–2417 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Reich, D. S. et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 20, 729–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Vermersch, P. et al. MRI and clinical outcomes of evobrutinib, a Bruton’s tyrosine kinase inhibitor, in relapsing multiple sclerosis over 2.5 years of the open-label extension to a phase 2 trial. Mult. Scler. 28, P731 (2022).

    Google Scholar 

  188. Montalban, X. et al. Safety and efficacy of evobrutinib, a Bruton tyrosine kinase inhibitor, in relapsing multiple sclerosis over 2.5 years of the open-label extension to a phase 2 trial. Int. J. MS Care 21, DMT02 (2022).

    Google Scholar 

  189. Oh, J. et al. MRI, safety, and efficacy outcomes in patients with relapsing MS: 18-month results from the long-term extension study of tolebrutinib. Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS) Forum (West Palm Beach, FL, USA) 102 (ACTRIMS, 2022).

  190. Kuhle, J. et al. Evobrutinib, a Bruton’s tyrosine kinase inhibitor, decreases neurofilament light chain levels over 2.5 years of treatment in patients with relapsing multiple sclerosis. Mult. Scler. 28, EP1021 (2022).

    Google Scholar 

  191. Syed, S. et al. Efficacy and safety of tolebrutinib in patients with highly active relapsing MS: subgroup analysis of the phase 2b study. Neurology 96, 2260 (2021).

    Google Scholar 

  192. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Correale, J. BTK inhibitors as potential therapies for multiple sclerosis. Lancet Neurol. 20, 689–691 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Häusser-Kinzel, S. & Weber, M. S. The role of B cells and antibodies in multiple sclerosis, neuromyelitis optica, and related disorders. Front. Immunol. 10, 201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Jeske, S. S. et al. Adenosine-producing regulatory B cells in head and neck cancer. Cancer Immunol. Immunother. 69, 1205–1216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lünemann, J. D., Ruck, T., Muraro, P. A., Bar-Or, A. & Wiendl, H. Immune reconstitution therapies: concepts for durable remission in multiple sclerosis. Nat. Rev. Neurol. 16, 56–62 (2020).

    Article  PubMed  Google Scholar 

  197. Ruck, T., Nimmerjahn, F., Wiendl, H. & Lünemann, J. D. Next-generation antibody-based therapies in neurology. Brain 145, 1229–1241 (2022).

    Article  PubMed  Google Scholar 

  198. Steinmaurer, A., Wimmer, I., Berger, T., Rommer, P. S. & Sellner, J. Bruton’s tyrosine kinase inhibition in the treatment of preclinical models and multiple sclerosis. Curr. Pharm. Des. 28, 437–444 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Bauer, R. A. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov. Today 20, 1061–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Timofeeva, N. & Gandhi, V. Ibrutinib combinations in CLL therapy: scientific rationale and clinical results. Blood Cancer J. 11, 79 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tsouki, F. & Williams, A. Multifaceted involvement of microglia in gray matter pathology in multiple sclerosis. Stem Cell 39, 993–1007 (2021).

    Article  Google Scholar 

  202. Sucksdorff, M. et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143, 3318–3330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Becker, A. et al. Safety, tolerability, pharmacokinetics, target occupancy, and concentration-QT analysis of the novel BTK inhibitor evobrutinib in healthy volunteers. Clin. Transl. Sci. 13, 325–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Haselmayer, P. et al. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J. Immunol. 202, 2888–2906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Herman, A. E. et al. Safety, pharmacokinetics, and pharmacodynamics in healthy volunteers treated with GDC-0853, a selective reversible Bruton’s tyrosine kinase inhibitor. Clin. Pharmacol. Ther. 103, 1020–1028 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Angst, D. et al. Discovery of LOU064 (remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s tyrosine kinase. J. Med. Chem. 63, 5102–5118 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Gabizon, R. & London, N. A fast and clean BTK inhibitor. J. Med. Chem. 63, 5100–5101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kaul, M. et al. Remibrutinib (LOU064): a selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin. Transl. Sci. 14, 1756–1768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhang, B. et al. Orelabrutinib, a potent and selective Bruton’s tyrosine kinase inhibitor with superior safety profile and excellent PK/PD properties. Cancer Res. 80, CT132 (2020).

    Article  Google Scholar 

  210. Nimmerjahn, F. & Ravetch, J. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  211. Bonilla, F. A. & Oettgen, H. C. Adaptive immunity. J. Allergy Clin. Immunol. 125, S33–S40 (2010).

    Article  PubMed  Google Scholar 

  212. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Medzhitov, R. & Janeway, C. Jr. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  214. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 599 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 15, 447–458 (2019).

    Article  PubMed  Google Scholar 

  217. Baaklini, C. S., Rawji, K. S., Duncan, G. J., Ho, M. F. S. & Plemel, J. R. Central nervous system remyelination: roles of glia and innate immune cells. Front. Mol. Neurosci. 12, 225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research of authors is supported by the German Research Council (DFG) grants SFB-CRC TR128 A09 and SFB-CRC TR128 Z02 and funding from Deutsche Myasthenie Gesellschaft, all to H.W. Editorial and graphics assistance was provided by Elevate Scientific Solutions, a division of Envision Pharma Group, and funded by Sanofi. Writing assistance (assistance with drafting of the manuscript text and tables as directed by the authors, data checking and incorporation of comments from reviewers) was provided by R. J. Hogan and C. Underwood of Elevate Scientific Solutions.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and H.W. researched data for the article and J.K. wrote the first draft. All authors contributed substantially to discussions of the manuscript content, critically reviewed the drafts and approved the final version for submission.

Corresponding author

Correspondence to Heinz Wiendl.

Ethics declarations

Competing interests

J.K. declares that she has received honoraria for lecturing from Biogen, Merck, Mylan, Novartis, Roche, Sanofi and Teva and has received financial research support from Amicus Therapeutics and Sanofi. A.B.-O. declares that he has received grant support to the University of Pennsylvania from Biogen Idec, EMD Serono, Novartis and Roche Genentech. He has participated as a speaker in meetings sponsored by and received consulting fees from Accure, Atara Biotherapeutics, Biogen, Bristol-Myers Squibb, GlaxoSmithKline, Gossamer, Janssen, Medimmune, EMD Serono, Novartis, Roche Genentech and Sanofi. T.J.T. is an employee of and may have ownership interests in Sanofi. H.W. declares that he has acted as a member of the Scientific Advisory Boards of Abbvie, Alexion, Argenx, Bristol Myers Squibb, Janssen, Merck and Novartis. He also declares that he has received speaker’s honoraria and travel support from Alexion, Biogen, Bristol-Myers Squibb, F. Hoffmann-La Roche, Genzyme, Merck, Neurodiem, Novartis, Roche, Teva and WebMD Global and acts as a paid consultant for Abbvie, Actelion, Argenx, Biogen, Bristol-Myers Squibb, EMD Serono, Fondazione Cariplo, Gossamer Bio, Idorsia, Immunic, Immunovant, Janssen, Lundbeck, Merck, NexGen, Novartis, PSI Contract Research Organization, Roche, Sanofi, UCB and Worldwide Clinical Trials. His research is funded by Alexion, Amicus Therapeutics, Argenx, Biogen, CSL Behring, F. Hoffmann-La Roche, Genzyme, Merck, Novartis, Roche and UCB.

Peer review

Peer review information

Nature Reviews Neurology thanks Marco Salvetti, who co-reviewed with Gianmarco Bellucci; Roland Liblau; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria PubMed was searched between 10 November 2021 and 5 May 2022 using terms related to BTK (Bruton’s tyrosine kinase, BTKi*, BTK inhibit*, Bruton’s tyrosine kinase inhibit*) in combination with the following terms: MS OR multiple sclerosis, immune cell*, cancer OR tumour OR tumour OR malignanc*, immune deficienc* OR immune disease* OR immunodeficienc*, mechanism of action OR MOA, B cell OR microglia OR macrophage, pharmacodynamic* OR pharmacokinetic* OR pharmacolog*, safe* OR adverse effect* OR adverse event*. Searches did not use date, language or other filters. All article types were included if the topic was potentially relevant. Results were initially selected according to the article title and then were screened on the basis of the abstract. The full text was retrieved for all potentially relevant articles.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer, J., Bar-Or, A., Turner, T.J. et al. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 19, 289–304 (2023). https://doi.org/10.1038/s41582-023-00800-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-023-00800-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing