Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assessing disease progression and treatment response in progressive multiple sclerosis

Abstract

Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.

Key points

  • Effective treatment of progressive multiple sclerosis (MS) remains an urgent medical need.

  • The recent approvals of treatments for progressive forms of MS highlight the importance of better disease monitoring measures in clinical trials and practice.

  • Traditional MRI biomarkers do not adequately track progressive MS. Advances in MRI, such as brain atrophy and lesion volume analysis, show promise in assessing disease progression and response to treatment.

  • Remyelination is key in MS neuroprotection. MRI techniques such as magnetization transfer and myelin water fraction imaging, alongside PET scans, provide deeper insights into myelin repair and inflammation.

  • Changes in optical coherence tomography, a non-invasive imaging modality that measures retinal layer thickness, reflect brain atrophy and MS progression, offering a valuable window into neurodegeneration and treatment efficacy.

  • Body fluid biomarkers, such as neurofilament light in blood, and immune activation and neuronal damage markers in cerebrospinal fluid are emerging as important tools for assessing disease activity and treatment response in progressive MS.

  • Patient-reported outcomes capture the unique experience of individuals with MS, which is of particular importance in progressive forms of the disease. These assessments can help evaluate hidden symptoms such as fatigue and cognitive impairment and are becoming vital in clinical trials and routine practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kappos, L. et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol. 77, 1132–1140 (2020).

    Article  PubMed  Google Scholar 

  3. Lublin, F. D. et al. How patients with multiple sclerosis acquire disability. Brain 145, 3147–3161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kuhlmann, T. et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 22, 78–88 (2023).

    Article  PubMed  Google Scholar 

  6. Ocrevus (ocrelizumab) product information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761053s012lbl.pdf (Genentech, Inc., Roche Group, 2018).

  7. European Medicines Agency (EMA). Assessment Report: Ocrevus. https://www.ema.europa.eu/en/documents/variation-report/ocrevus-h-c-004043-x-0039-epar-assessment-report-variation_en.pdf (2017).

  8. Mayzent (siponimod) product information. https://www.novartis.com/us-en/sites/novartis_us/files/mayzent.pdf (Novartis Pharmaceuticals Corporation, 2023).

  9. Novartis Pharma GmbH. Mayzent summary of product characteristics. ema.europa.eu/en/documents/product-information/mayzent-epar-product-information_en.pdf (2023).

  10. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Dalla Costa, G. et al. A wearable device perspective on the standard definitions of disability progression in multiple sclerosis. Mult. Scler. 30, 103–112 (2024).

    Article  PubMed  Google Scholar 

  13. Hechenberger, S. et al. Information processing speed as a prognostic marker of physical impairment and progression in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 57, 103353 (2022).

    Article  PubMed  Google Scholar 

  14. Koch, M. W. et al. Reliability of outcome measures in clinical trials in secondary progressive multiple sclerosis. Neurology 96, e111–e120 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Lublin, F. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075–1084 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. LaRocca, N. G. et al. The MSOAC approach to developing performance outcomes to measure and monitor multiple sclerosis disability. Mult. Scler. 24, 1469–1484 (2018).

    Article  PubMed  Google Scholar 

  17. Zhang, T. et al. CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis. Effects of physical comorbidities on disability progression in multiple sclerosis. Neurology 90, e419–e427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salter, A., Lancia, S., Kowalec, K., Fitzgerald, K. C. & Marrie, R. A. Investigating the prevalence of comorbidity in multiple sclerosis clinical trial populations. Neurology 102, e209135 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marrie, R. A. et al. Etiology, effects and management of comorbidities in multiple sclerosis: recent advances. Front. Immunol. 14, 1197195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chard, D. & Trip, S. A. Resolving the clinico-radiological paradox in multiple sclerosis. F1000Res 6, 1828 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jacobsen, C. et al. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J. Neurol. Neurosurg. Psychiatry 85, 1109–1115 (2014).

    Article  PubMed  Google Scholar 

  22. Ghione, E. et al. Brain atrophy is associated with disability progression in patients with MS followed in a clinical routine. Am. J. Neuroradiol. 39, 2237–2242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zivadinov, R. et al. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev. Neurother. 16, 777–793 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Rocca, M. A. et al. Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 88, 403–413 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim, Y., Varosanec, M., Kosa, P. & Bielekova, B. Confounder-adjusted MRI-based predictors of multiple sclerosis disability. Front. Radiol. 2, 971157 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ingle, G. T. et al. Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain 126, 2528–2536 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. University of California SFMSETet al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann. Neurol. 85, 653–666 (2019).

    Article  Google Scholar 

  28. Sprenger, T. et al. Association of brain volume loss and long-term disability outcomes in patients with multiple sclerosis treated with teriflunomide. Mult. Scler. 26, 1207–1216 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Tsivgoulis, G. et al. The effect of disease modifying therapies on disease progression in patients with relapsing–remitting multiple sclerosis: a systematic review and meta-analysis. PLoS ONE 10, e0144538 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sormani, M. P., Arnold, D. L. & De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol. 75, 43–49 (2014).

    Article  PubMed  Google Scholar 

  31. Guevara, C. et al. Prospective assessment of no evidence of disease activity-4 status in early disease stages of multiple sclerosis in routine clinical practice. Front. Neurol. 10, 788 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rovira, À. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat. Rev. Neurol. 11, 471–482 (2015).

    Article  PubMed  Google Scholar 

  33. Hanninen, K. et al. Thalamic atrophy without whole brain atrophy is associated with absence of 2-year NEDA in multiple sclerosis. Front. Neurol. 10, 459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. van de Pavert, S. H. P. et al. DIR-visible grey matter lesions and atrophy in multiple sclerosis: partners in crime? J. Neurol. Neurosurg. Psychiatry 87, 461–467 (2016).

    Article  PubMed  Google Scholar 

  35. Calabrese, M. et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing–remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150 (2009).

    Article  PubMed  Google Scholar 

  36. Popescu, B. F. G. et al. What drives MRI-measured cortical atrophy in multiple sclerosis. Mult. Scler. 21, 1280–1290 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. De Stefano, N. et al. Evidence of early cortical atrophy in MS. Relevance to white matter changes and disability. Neurology 60, 1157–1162 (2013).

    Article  Google Scholar 

  38. Steenwijk, M. D. et al. What explains gray matter atrophy in long-standing multiple sclerosis? Radiology https://doi.org/10.1148/radiol.14132708 (2014).

    Article  PubMed  Google Scholar 

  39. Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3900 (2015).

    Article  PubMed  Google Scholar 

  40. Sepulcre, J. et al. Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch. Neurol. 66, 173–179 (2009).

    Article  PubMed  Google Scholar 

  41. Mühlau, M. et al. White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI. Mult. Scler. 19, 1485–1492 (2013).

    Article  PubMed  Google Scholar 

  42. Geurts, J. J. G. et al. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 11, 1082–1092 (2012).

    Article  PubMed  Google Scholar 

  43. Zivadinov, R. et al. A serial 10-year follow-up study of atrophied brain lesion volume and disability progression in patients with relapsing–remitting MS. Am. J. Neuroradiol. 40, 446–452 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Genovese, A. V. et al. Atrophied brain T2 lesion volume at MRI is associated with disability progression and conversion to secondary progressive multiple sclerosis. Radiology 293, 424–433 (2019).

    Article  PubMed  Google Scholar 

  45. Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y. et al. Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation. Am. J. Neuroradiol. 37, 1629–1635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dal-Bianco, A. et al. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain 144, 833–847 (2021).

    Article  PubMed  Google Scholar 

  48. Ng Kee Kwong, K. C. et al. The prevalence of paramagnetic rim lesions in multiple sclerosis: a systematic review and meta-analysis. PLoS ONE 16, e0256845 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474–1483 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hemond, C. C. et al. Paramagnetic rim lesions are associated with pathogenic CSF profiles and worse clinical status in multiple sclerosis: a retrospective cross-sectional study. Mult. Scler. 28, 2046–2056 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Altokhis, A. I. et al. Longitudinal clinical study of patients with iron rim lesions in multiple sclerosis. Mult. Scler. 28, 2202–2211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Absinta, M. et al. Identification of chronic active multiple sclerosis lesions on 3 T MRI. Am. J. Neuroradiol. 39, 1233–1238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Renner, B. et al. S1.5: Diagnostic potential of paramagnetic rim lesions for MS in a multicenter setting. In Proc. ACTRIMS Forum 2022 - Invited Program. Mult. Scler. J. 28 (suppl), 3–19 (2022).

  54. Elliott, C. et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 142, 2787–2799 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Harrison, D. M. et al. Lesion heterogeneity on high-field susceptibility MRI is associated with multiple sclerosis severity. Am. J. Neuroradiol. 37, 1447–1453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elliott, C. et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. 25, 1915–1925 (2019).

    Article  PubMed  Google Scholar 

  57. Beynon, V. et al. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurol. Open 4, e000240 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Elliott, C. et al. MRI characteristics of chronic MS lesions by phase rim detection and/or slowly expanding properties (4101). Neurology 96, 4101 (2021).

    Article  Google Scholar 

  59. Calvi, A. et al. Relationship between paramagnetic rim lesions and slowly expanding lesions in multiple sclerosis. Mult. Scler. 29, 352–362 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Elliott, C. et al. Lesion-level correspondence and longitudinal properties of paramagnetic rim and slowly expanding lesions in multiple sclerosis. Mult. Scler. 29, 680–690 (2023).

  61. Harrison, D. M. et al. Leptomeningeal enhancement at 7 T in multiple sclerosis: frequency, morphology, and relationship to cortical volume. J. Neuroimaging 27, 461–468 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zivadinov, R. et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 23, 1336–1345 (2017).

    Article  PubMed  Google Scholar 

  63. Ighani, M. et al. No association between cortical lesions and leptomeningeal enhancement on 7-tesla MRI in multiple sclerosis. Mult. Scler. 26, 165–176 (2020).

    Article  PubMed  Google Scholar 

  64. Bevan, R. J. et al. Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Ann. Neurol. 84, 829–842 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Bergsland, N. et al. Leptomeningeal contrast enhancement is related to focal cortical thinning in relapsing–remitting multiple sclerosis: a cross-sectional MRI study. Am. J. Neuroradiol. 40, 620–625 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Makshakov, G. et al. Leptomeningeal contrast enhancement is associated with disability progression and grey matter atrophy in multiple sclerosis. Neurol. Res. Int. 2017, 8652463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Müller, J. Choroid plexus volume in multiple sclerosis vs neuromyelitis optica spectrum disorder: a retrospective, cross-sectional analysis. Neurol. Neuroimmunol. Neuroinflamm. 9, e1147 (2022).

  68. Klistorner, S. et al. Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann. Clin. Transl. Neurol. 9, 1528–1537 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Eden, D. et al. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain 142, 633–646 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Casserly, C. et al. Spinal cord atrophy in multiple sclerosis: a systematic review and meta-analysis. J. Neuroimaging 28, 556–586 (2018).

    Article  PubMed  Google Scholar 

  71. Singhal, T. et al. The effect of glatiramer acetate on spinal cord volume in relapsing–remitting multiple sclerosis. J. Neuroimaging 27, 33–36 (2017).

    Article  PubMed  Google Scholar 

  72. Dupuy, S. L. et al. The effect of intramuscular interferon beta-1a on spinal cord volume in relapsing–remitting multiple sclerosis. BMC Med. Imaging 16, 56 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cawley, N. et al. Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis. Mult. Scler. 24, 932–941 (2018).

    Article  PubMed  Google Scholar 

  74. Allen, I., McQuaid, S., Mirakhur, M. & Nevin, G. Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. J. Neurol. Sci. 22, 141–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Zeis, T., Graumann, U., Reynolds, R. & Schaeren-Wiemers, N. Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131, 288–303 (2007).

    Article  PubMed  Google Scholar 

  76. Dutta, D. J. et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl Acad. Sci. USA 115, 11832–11837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mesaros, S. et al. Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. Am. J. Neuroradiol. 32, 1016–1020 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kolasa, M. et al. Diffusion tensor imaging and disability progression in multiple sclerosis: a 4-year follow-up study. Brain Behav. 9, e01194 (2019).

    Article  PubMed  Google Scholar 

  79. Bodini, B. et al. Corpus callosum damage predicts disability progression and cognitive dysfunction in primary-progressive MS after five years. Hum. Brain Mapp. 34, 1163–1172 (2013).

    Article  PubMed  Google Scholar 

  80. Franklin, R. J. M. & Simons, M. CNS remyelination and inflammation: from basic mechanisms to therapeutic opportunities. Neuron 110, 3549–3565 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    Article  PubMed  Google Scholar 

  82. Lubetzki, C. et al. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    Article  PubMed  Google Scholar 

  83. Schultz, V. et al. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination. Glia 65, 1350–1360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131, 1464–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ricigliano, V. A. G. et al. Spontaneous remyelination in lesions protects the integrity of surrounding tissues over time in multiple sclerosis. Eur. J. Neurol. 29, 1719–1729 (2022).

    Article  PubMed  Google Scholar 

  87. Stephan Bramow, J. M. et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain 133, 2983–2998 (2010).

    Article  PubMed  Google Scholar 

  88. Van der Weijden, C. W. J. et al. Myelin quantification with MRI: a systematic review of accuracy and reproducibility. NeuroImage 226, 117561 (2021).

    Article  PubMed  Google Scholar 

  89. Moccia, M. et al. Pathologic correlates of the magnetization transfer ratio in multiple sclerosis. Neurology 95, e2965–e2976 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Mancini, M. et al. An interactive meta-analysis of MRI biomarkers of myelin. eLife 9, e61523 (2020).

    CAS  Google Scholar 

  91. Petiet, A. et al. Ultrahigh field imaging of myelin disease models: toward specific markers of myelin integrity? J. Comp. Neurol. 527, 2179–2189 (2019).

    Article  PubMed  Google Scholar 

  92. Hertanu, A. et al. Inhomogeneous magnetization transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. NeuroImage 265, 11978 (2023).

    Article  Google Scholar 

  93. Alsop, D. C. et al. Inhomogeneous magnetization transfer imaging: concepts and directions for further development. NMR Biomed. 36, e4543 (2023).

    Article  Google Scholar 

  94. Chen, J. T. et al. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann. Neurol. 63, 254–262 (2008).

    Article  PubMed  Google Scholar 

  95. Lazzarotto, A. et al. Clinically relevant profiles of myelin content changes in patients with multiple sclerosis: a multimodal and multicompartment imaging study. Mult. Scler. 28, 1881–1890 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, J. T. et al. Clinically feasible MTR is sensitive to cortical demyelination in MS. Neurology 80, 246–252 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kolb, H. et al. 7 T MRI differentiates remyelinated from demyelinated multiple sclerosis lesions. Ann. Neurol. 90, 612–626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rahmanzadeh, R. et al. A new advanced MRI biomarker for remyelinated lesions in multiple sclerosis. Ann. Neurol. 92, 486–502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eshaghi, A. et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat. Commun. 12, 2078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ananthavarathan, P., Sahi, N. & Chard, D. T. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev. Neurother. 24, 201–216 (2024).

    Article  CAS  PubMed  Google Scholar 

  101. Stankoff, B. et al. Imaging of CNS myelin by positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 9304–9309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stankoff, B. et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann. Neurol. 69, 673–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, C. et al. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann. Neurol. 74, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Auvity, S. et al. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB. Eur. J. Nucl. Med. Mol. Imaging 47, 490–501 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Bodini, B. et al. Positron emission tomography in multiple sclerosis — straight to the target. Nat. Rev. Neurol. 17, 663–675 (2021).

    Article  PubMed  Google Scholar 

  106. Bodini, B. et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann. Neurol. 79, 726–738 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pytel, V. et al. Amyloid PET findings in multiple sclerosis are associated with cognitive decline at 18 months. Mult. Scler. Relat. Disord. 39, 101926 (2020).

    Article  PubMed  Google Scholar 

  108. Carotenuto, A. et al. [18F]florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging 47, 366–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, M. et al. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: a longitudinal study. eClinicalMedicine 37, 100982 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Van der Weijden, C. W. J. et al. Quantitative assessment of myelin density using [11C]MeDAS PET in patients with multiple sclerosis: a first-in-human study. Eur. J. Nucl. Med. Mol. Imaging 49, 3492–3507 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ricigliano, V. A. G. & Stankoff, B. Choroid plexuses at the interface of peripheral immunity and tissue repair in multiple sclerosis. Curr. Opin. Neurol. 36, 214–221 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Wei, W. et al. Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med. Image Anal. 58, 101546 (2019).

    Article  PubMed  Google Scholar 

  113. Wei, W. et al. Predicting PET-derived myelin content from multisequence MRI for individual longitudinal analysis in multiple sclerosis. NeuroImage 223, 117308 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Lazzarotto, A. et al. Time is myelin: early cortical myelin repair prevents atrophy and clinical progression in multiple sclerosis. Brain 147, 1331–1343 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. El Behi, M. et al. Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain 140, 967–980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Heß, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yong, H. Y. F. & Yong, V. W. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat. Rev. Neurol. 18, 40–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Nutma, E. et al. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 142, 3440–3455 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hamzaoui, M. et al. Positron emission tomography with [18F]-DPA-714 unveils a smoldering component in most multiple sclerosis lesions which drives disease progression. Ann. Neurol. 94, 366–383 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Rissanen, E. et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand ¹¹C-PK11195. J. Nucl. Med. 55, 939–944 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Sucksdorff, M. et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143, 3318–3330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Datta, G. et al. 11C-PBR28 and 18F-PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis. J. Nucl. Med. 58, 1477–1482 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Herranz, E. et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann. Neurol. 80, 776–790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bodini, B. et al. Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of worsening disability in multiple sclerosis. J. Nucl. Med. 61, 1043–1049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nylund, M. et al. Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Commun. 4, fcab301 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Poirion, E. et al. Structural and clinical correlates of a periventricular gradient of neuroinflammation in multiple sclerosis. Neurology 96, e1865–e1875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sucksdorff, M. et al. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. Neurol. Neuroimmunol. Neuroinflamm. 6, e574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sucksdorff, M. et al. Evaluation of the effect of fingolimod treatment on microglial activation using serial PET imaging in multiple sclerosis. J. Nucl. Med. 58, 1646–1651 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Petzold, A. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 16, 797–812 (2017).

    Article  PubMed  Google Scholar 

  130. Saidha, S. et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann. Neurol. 78, 801–813 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Guerrieri, S., Comi, G. & Leocani, L. Optical coherence tomography and visual evoked potentials as prognostic and monitoring tools in progressive multiple sclerosis. Front. Neurosci. 15, 692599 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pulicken, M. et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 69, 2085–2092 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Henderson, A. P. et al. An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131, 277–287 (2008).

    PubMed  Google Scholar 

  134. Gelfand, J. M. et al. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS ONE 7, e36847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Albrecht, P. et al. Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult. Scler. J. 18, 1422–1429 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Balk, L. J. et al. Disease course heterogeneity and OCT in multiple sclerosis. Mult. Scler. 20, 1198–1206 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Cellerino, M. et al. Relationship between retinal inner nuclear layer, age, and disease activity in progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 6, e596 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Martinez-Lapiscina, E. H. et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 15, 574–584 (2016).

    Article  PubMed  Google Scholar 

  139. Bsteh, G. et al. Peripapillary retinal nerve fibre layer thinning rate as a biomarker discriminating stable and progressing relapsing–remitting multiple sclerosis. Eur. J. Neurol. 26, 865–871 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Bsteh, G. et al. Macular ganglion cell-inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult. Scler. 27, 684–694 (2020).

    Article  PubMed  Google Scholar 

  141. Sotirchos, E. S. et al. Progressive multiple sclerosis is associated with faster and specific retinal layer atrophy. Ann. Neurol. 87, 885–896 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ratchford, J. N. et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 80, 47–54 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. El Ayoubi, N. K. et al. Rate of retinal layer thinning as a biomarker for conversion to progressive disease in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 9, e200030 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Brown, J. A. et al. Patient-tailored, connectivity-based forecasts of spreading brain atrophy. Neuron 104, 856–868.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lie, I. A. et al. Relationship between white matter lesions and gray matter atrophy in multiple sclerosis: a systematic review. Neurology 98, e1562–e1573 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Comi, G. et al. Measuring evoked responses in multiple sclerosis. Mult. Scler. 5, 263–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Leocani, L., Guerrieri, S. & Comi, G. Visual evoked potentials as a biomarker in multiple sclerosis and associated optic neuritis. J. Neuroophthalmol. 38, 350–357 (2018).

    Article  PubMed  Google Scholar 

  148. Leocani, L. et al. Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J. Neurol. Neurosurg. Psychiatry 77, 1030–1035 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kira, J., Tobimatsu, S., Goto, I. & Hasuo, K. Primary progressive versus relapsing remitting multiple sclerosis in Japanese patients: a combined clinical, magnetic resonance imaging and multimodality evoked potential study. J. Neurol. Sci. 117, 179–185 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Stevenson, V. L. et al. Primary and transitional progressive MS: a clinical and MRI cross-sectional study. Neurology 52, 839–845 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Sater, R. A., Rostami, A. M., Galetta, S., Farber, R. E. & Bird, S. J. Serial evoked potential studies and MRI imaging in chronic progressive multiple sclerosis. J. Neurol. Sci. 171, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Schlaeger, R. et al. Electrophysiological markers and predictors of the disease course in primary progressive multiple sclerosis. Mult. Scler. 20, 51–56 (2014).

    Article  PubMed  Google Scholar 

  153. Backner, Y. et al. Vision and vision-related measures in progressive multiple sclerosis. Front. Neurol. 10, 455 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Abalo-Lojo, J. M. et al. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J. Neuroophthalmol. 34, 23–28 (2014).

    Article  PubMed  Google Scholar 

  155. Kuhle, J. et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 54, 1655–1661 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Barro, C. et al. Serum GFAP and NfL levels differentiate subsequent progression and disease activity in patients with progressive multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200052 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Teunissen, C. E. et al. Body fluid biomarkers for multiple sclerosis — the long road to clinical application. Nat. Rev. Neurol. 11, 585–596 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Romme Christensen, J. et al. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis. Mult. Scler. 19, 877–884 (2013).

    Article  PubMed  Google Scholar 

  159. Sellebjerg, F. et al. Defining active progressive multiple sclerosis. Mult. Scler. 23, 1727–1735 (2017).

    Article  PubMed  Google Scholar 

  160. Segal, B. M. Stage-specific immune dysregulation in multiple sclerosis. J. Interferon Cytokine Res. 34, 633–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Komori, M. et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann. Neurol. 78, 3–20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lycke, J. & Zetterberg, H. The role of blood and CSF biomarkers in the evaluation of new treatments against multiple sclerosis. Expert Rev. Clin. Immunol. 13, 1143–1153 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Romme Christensen, J. et al. CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage. Mult. Scler. 25, 937–946 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Gil-Perotin, S. et al. Combined cerebrospinal fluid neurofilament light chain protein and chitinase-3 like-1 levels in defining disease course and prognosis in multiple sclerosis. Front. Neurol. 10, 1008 (2019).

  165. Martin, S. J., McGlasson, S., Hunt, D. & Overell, J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case–control studies. J. Neurol. Neurosurg. Psychiatry 90, 1059–1067 (2019).

    Article  PubMed  Google Scholar 

  166. Petzold, A. et al. Elevated CSF neurofilament proteins predict brain atrophy: a 15-year follow-up study. Mult. Scler. 22, 1154–1162 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Romme, C. J. et al. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology 82, 1499–1507 (2014).

    Article  Google Scholar 

  168. Axelsson, M. et al. Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis. Mult. Scler. 20, 43–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Disanto, C. et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 81, 857–870 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Barro, C. et al. Serum neurofilament light as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 141, 2382–2391 (2018).

    Article  PubMed  Google Scholar 

  171. Kapoor, R. et al. Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology 95, 436–444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bar-Or, A. et al. Blood neurofilament light levels predict non-relapsing progression following anti-CD20 therapy in relapsing and primary progressive multiple sclerosis: findings from the ocrelizumab randomised, double-blind phase 3 clinical trials. eBioMedicine 93, 104662 (2023).

    CAS  Google Scholar 

  173. Meier, S. et al. Serum glial fibrillary acidic protein compared with neurofilament light chain as a biomarker for disease progression in multiple sclerosis. JAMA Neurol. 80, 287–297 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jiang, X. et al. Glial fibrillary acidic protein and multiple sclerosis progression independent of acute inflammation. Mult. Scler. 29, 1070–1079 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huss, A. et al. A score based on NfL and glial markers may differentiate between relapsing–remitting and progressive MS course. Front. Neurol. 11, 608 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Abdelhak, A. et al. Serum glial fibrillary acidic protein and disability progression in progressive multiple sclerosis. Ann. Clin. Transl. Neurol. https://doi.org/10.1002/acn3.51969 (2024).

  177. Shi, T. et al. Metabolomic profiles in relapsing–remitting and progressive multiple sclerosis compared to healthy controls: a five-year follow-up study. Metabolomics 19, 44 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Lim, C. K. et al. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 7, 41473 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Stilund, M. et al. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS ONE 9, e98588 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Festa, E. D. et al. Serum levels of CXCL13 are elevated in active multiple sclerosis. Mult. Scler. 15, 1271–1279 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Fissolo, N. et al. Serum levels of CXCL13 are associated with teriflunomide response in patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200050 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sievers, C. et al. Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects. Clin. Immunol. 144, 70–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Campbell, J. A. et al. SF-6D health state utilities for lifestyle, socio-demographic and clinical characteristics of a large international cohort of people with multiple sclerosis. Qual. Life Res. 29, 2509–2527 (2020).

    Article  PubMed  Google Scholar 

  184. Castelnovo, G. et al. Safety, patient-reported well-being, and physician-reported assessment of walking ability in patients with multiple sclerosis for prolonged-release fampridine treatment in routine clinical practice: results of the LIBERATE study. CNS Drugs 35, 1009–1022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Solaro, C. et al. Italian validation of the 12-item multiple sclerosis walking scale. Mult. Scler. Int. 2015, 540828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. He, A. et al. Association between early treatment of multiple sclerosis and patient-reported outcomes: a nationwide observational cohort study. J. Neurol. Neurosurg. Psychiatry 94, 284–289 (2023).

    Article  PubMed  Google Scholar 

  187. Block, V. J. et al. Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. J. Neurol. 264, 316–326 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Hobart, J. et al. Do clinical trials prepare to fail by failing to prepare? An examination of MS trials and recommendations for patient-reported outcome measure selection. Mult. Scler. Relat. Disord. 76, 104788 (2023).

    Article  PubMed  Google Scholar 

  189. Abdelhak, A. et al. Patient-reported outcome parameters and disability worsening in progressive multiple sclerosis. Mult. Scler. Relat. Disord. 81, 105139 (2023).

    Article  PubMed  Google Scholar 

  190. Strijbis, E. et al. The MSIS-29 and SF-36 as outcomes in secondary progressive MS trials. Mult. Scler. J. 28, 1606–1619 (2022).

    Article  CAS  Google Scholar 

  191. Oh, J. et al. Use of smartphone-based remote assessments of multiple sclerosis in Floodlight Open, a global, prospective, open-access study. Sci. Rep. 14, 122 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Maillart, E. et al. MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. Eur. J. Neurol. 27, 429–436 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Green, R., Kalina, J., Ford, R., Pandey, K. & Kister, I. SymptoMScreen: a tool for rapid assessment of symptom severity in MS across multiple domains. Appl. Neuropsychol. Adult 24, 183–189 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Zaratin, P. et al. The agenda of the global patient reported outcomes for multiple sclerosis (PROMS) initiative: progresses and open questions. Mult. Scler. Relat. Disord. 61, 103757 (2022).

    Article  PubMed  Google Scholar 

  195. Conway, D. S. et al. Patient reported outcomes and performance metrics at diagnosis of secondary progressive multiple sclerosis. Mult. Scler. 27, 742–754 (2020).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.C., G.D.C., B.S., H.-P.H., P.S.S., P.V. and L.L. searched data for the article and made substantial contributions to discussions of the content and each wrote a section. All authors edited and reviewed the document before submission.

Corresponding author

Correspondence to Giancarlo Comi.

Ethics declarations

Competing interests

G.C. has received consulting and speaking fees from Bristol Myers, Janssen, Novartis, Rewind, Roche, Sanofi and Squibb. G.D.C. has received funding for research, travel and/or speaker honoraria from Biogen, Celgene, Merck, Novartis, Roche and Teva. B.S. has received research support from Merck, Novartis and Roche and honoraria for lectures from Biogen, Janssen, Novartis, Merck and Sanofi. H.-P.H. received honoraria for serving on steering committees from Roche, Sanofi and TG Therapeutics, for serving on data monitoring committees from Merck KG and Novartis and on the scientific advisory board of Aurinia. P.S.S. has received personal compensation for serving on scientific advisory boards, steering committees or independent data monitoring boards for Biogen, Celgene, Forward Pharma GlaxoSmithKline, Genzyme, MedDay Pharmaceuticals, Merck, Novartis and TEVA and has received speaker honoraria from Biogen, Genzyme Merck, Novartis and Teva. His department has received research support from Biogen, Merck, Novartis, Roche, RoFAR, Sanofi-Aventis/Genzyme and TEVA. P.V. has received honorarium for contribution to meetings from AB Science, Ad Scientiam, Biogen, BMS-Celgene, Imcyse, Janssen, Merck, Novartis, Roche, Sanofi-Genzyme and Teva and research support from Merck, Novartis and Sanofi-Genzyme. L.L. has received research support from Almirall, Biogen, Merck and Novartis and consultancy or speaker fees from Almirall, Biogen, Bristol-Myers Squibb, Janssen-Cilag, Merck, Novartis and Roche.

Peer review

Peer review information

Nature Reviews Neurology thanks Bianca Weinstock-Guttman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comi, G., Dalla Costa, G., Stankoff, B. et al. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 20, 573–586 (2024). https://doi.org/10.1038/s41582-024-01006-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-024-01006-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing