Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pituitary adenylate cyclase-activating polypeptide signalling as a therapeutic target in migraine

Subjects

Abstract

Migraine is a disabling neurological disorder that affects more than one billion people worldwide. The clinical presentation is characterized by recurrent headache attacks, which are often accompanied by photophobia, phonophobia, nausea and vomiting. Although the pathogenesis of migraine remains incompletely understood, mounting evidence suggests that specific signalling molecules are involved in the initiation and modulation of migraine attacks. These signalling molecules include pituitary adenylate cyclase-activating polypeptide (PACAP), a vasoactive peptide that is known to induce migraine attacks when administered by intravenous infusion to people with migraine. Discoveries linking PACAP to migraine pathogenesis have led to the development of drugs that target PACAP signalling, and a phase II trial has provided evidence that a monoclonal antibody against PACAP is effective for migraine prevention. In this Review, we explore the molecular and cellular mechanisms of PACAP signalling, shedding light on its role in the trigeminovascular system and migraine pathogenesis. We then discuss emerging therapeutic strategies that target PACAP signalling for the treatment of migraine and consider the research needed to translate the current knowledge into a treatment for migraine in the clinic.

Key points

  • Pituitary adenylate cyclase-activating polypeptide (PACAP) signalling has been identified as an important pathogenic contributor to migraine, supported by evidence from both animal and human studies.

  • PACAP causes vasodilation and influences immune cell recruitment and activation, which are processes implicated in the pathophysiology of migraine.

  • Intravenous infusion of PACAP can induce migraine attacks in humans, highlighting its direct role in migraine pathogenesis.

  • A monoclonal antibody against PACAP signalling has shown promise in a phase II trial for migraine prevention, indicating potential therapeutic benefits.

  • The complexity of the role that PACAP has in migraine is underscored by its interaction with multiple receptors and the trigeminovascular system; further research is needed to fully understand the therapeutic potential of targeting PACAP signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Splice variants of the PAC1 receptor.
Fig. 2: Intracellular signalling pathways activated by pituitary adenylate cyclase-activating polypeptide.
Fig. 3: Hypothesized cellular effects of pituitary adenylate cyclase-activating polypeptide vary across different cell types in migraine pathogenesis.
Fig. 4: Sites of pituitary adenylate cyclase-activating polypeptide action within the trigeminovascular system.
Fig. 5: The history of pituitary adenylate cyclase-activating polypeptide research.

Similar content being viewed by others

References

  1. Stovner, L. J. et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 954–976 (2018).

    Article  Google Scholar 

  2. Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1211–1259 (2017).

    Article  Google Scholar 

  3. Ashina, M. Migraine. N. Engl. J. Med. 383, 1866–1876 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Ashina, M. et al. Migraine and the trigeminovascular system — 40 years and counting. Lancet Neurol. 18, 795–804 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ashina, M. et al. Migraine: disease characterisation, biomarkers, and precision medicine. Lancet 397, 1496–1504 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Al-Hassany, L. et al. Future targets for migraine treatment beyond CGRP. J. Headache Pain 24, 76 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaudry, D. et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61, 283–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Schytz, H. W. et al. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132, 16–25 (2009).

    Article  PubMed  Google Scholar 

  9. Ghanizada, H. et al. PACAP27 induces migraine-like attacks in migraine patients. Cephalalgia 40, 57–67 (2020).

    Article  PubMed  Google Scholar 

  10. Ghanizada, H. et al. Effect of pituitary adenylate cyclase-activating polypeptide-27 on cerebral hemodynamics in healthy volunteers: a 3T MRI study. Peptides 121, 170134 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Ashina, M. et al. A phase 2, randomized, double-blind, placebo-controlled trial of AMG 301, a pituitary adenylate cyclase-activating polypeptide PAC1 receptor monoclonal antibody for migraine prevention. Cephalalgia 41, 33–44 (2021).

    Article  PubMed  Google Scholar 

  12. Ashina, M., Phul, R., Khodaie, M., Löf, E. & Florea, I. Monoclonal antibody to pituitary adenylate cyclase-activating peptide for migraine prevention. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2314577 (2024).

  13. Harmar, A. J. et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide HHS public access. Pharmacol. Rev. 50, 265–270 (1998).

    CAS  PubMed  Google Scholar 

  14. Harmar, A. J. et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br. J. Pharmacol. 166, 4–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tasma, Z. et al. Characterisation of agonist signalling profiles and agonist-dependent antagonism at PACAP-responsive receptors: implications for drug discovery. Br. J. Pharmacol. 179, 435–453 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Alexander, S. P. H. et al. The concise guide to pharmacology 2021/22: G protein-coupled receptors. Br. J. Pharmacol. 178, S27–S156 (2021).

    CAS  PubMed  Google Scholar 

  17. Lu, J. et al. Targeting VIP and PACAP receptor signaling: new insights into designing drugs for the PACAP subfamily of receptors. Int. J. Mol. Sci. 23, 8069 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dautzenberg, F. M., Mevenkamp, G., Wille, S. & Hauger, R. L. N-terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J. Neuroendocrinol. 11, 941–949 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Bonner, T. I. Should pharmacologists care about alternative splicing? IUPHAR review 4. Br. J. Pharmacol. 171, 1231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kotliar, I. B., Lorenzen, E., Schwenk, J. M., Hay, D. L. & Sakmar, T. P. Elucidating the interactome of G protein-coupled receptors and receptor activity-modifying proteins. Pharmacol. Rev. 75, 1–34 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dickson, L. & Finlayson, K. VPAC and PAC receptors: from ligands to function. Pharmacol. Ther. 121, 294–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Foster, S. R. et al. Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179, 895–908 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emery, A. C. & Eiden, L. E. Signaling through the neuropeptide GPCR PAC1 induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. FASEB J. 26, 3199–3211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ravni, A. et al. A cAMP-dependent, protein kinase A-independent signaling pathway mediating neuritogenesis through Egr1 in PC12 cells. Mol. Pharmacol. 73, 1688–1708 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Stork, P. J. S. & Schmitt, J. M. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12, 258–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Guo, S., Jansen-Olesen, I., Olesen, J. & Christensen, S. L. Role of PACAP in migraine: an alternative to CGRP? Neurobiol. Dis. 176, 105946 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M. & Sexton, P. M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Yarwood, R. E. et al. Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proc. Natl Acad. Sci. USA 114, 12309–12314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Logu, F. et al. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat. Commun. 13, 646 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. May, V., Johnson, G. C., Hammack, S. E., Braas, K. M. & Parsons, R. L. PAC1 receptor internalization and endosomal MEK/ERK activation is essential for PACAP-mediated neuronal excitability. J. Mol. Neurosci. 71, 1536–1542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langer, I. Mechanisms involved in VPAC receptors activation and regulation: lessons from pharmacological and mutagenesis studies. Front. Endocrinol. 3, 129 (2012).

    Article  CAS  Google Scholar 

  32. Alexander, T. I. et al. Novel fluorescently labeled PACAP and VIP highlight differences between peptide internalization and receptor pharmacology. ACS Pharmacol. Transl. Sci. 6, 52–64 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Walker, C. S., Sundrum, T. & Hay, D. L. PACAP receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells. Br. J. Pharmacol. 171, 1521–1533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tasma, Z., Wills, P., Hay, D. L., Walker, C. S. & Christopher Walker, C. S. Agonist bias and agonist-dependent antagonism at corticotrophin releasing factor receptors. Pharmacol. Res. Perspect. 8, e00595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noseda, R. & Burstein, R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154, S44–S53 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann, J., Baca, S. M. & Akerman, S. Neurovascular mechanisms of migraine and cluster headache. J. Cereb. Blood Flow Metab. 39, 573–594 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Akerman, S., Holland, P. R. & Goadsby, P. J. Diencephalic and brainstem mechanisms in migraine. Nat. Rev. Neurosci. 12, 570–584 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Goadsby, P. J. et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97, 553–622 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y. Z., Sjo, B., Moller, K., Håkanson, R. & Sundler, F. Pituitary adenylate cyclase activating peptide produces a marked and long-lasting depression of a C-fibre-evoked flexion reflex. Neuroscience 57, 733–737 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Uddman, R., Tajti, J., Möller, S., Sundler, F. & Edvinsson, L. Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Res. 826, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Moller, K. et al. Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 57, 725–732 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Chan, K. Y. et al. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery. Cephalalgia 31, 181–189 (2011).

    Article  PubMed  Google Scholar 

  45. Hou, M., Uddman, R., Tajti, J. & Edvinsson, L. Nociceptin immunoreactivity and receptor mRNA in the human trigeminal ganglion. Brain Res. 964, 179–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Boni, L., Ploug, K., Olesen, J., Jansen-Olesen, I. & Gupta, S. The in vivo effect of VIP, PACAP-38 and PACAP-27 and mRNA expression of their receptors in rat middle meningeal artery. Cephalalgia 29, 837–847 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Hirabayashi, T., Nakamachi, T. & Shioda, S. Discovery of PACAP and its receptors in the brain. J. Headache Pain 19, 1–8 (2018).

    Article  CAS  Google Scholar 

  48. Akerman, S. & Goadsby, P. J. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: relevance to migraine. Sci. Transl. Med. 7, 308ra157 (2015).

    Article  PubMed  Google Scholar 

  49. Bruch, L. et al. Pituitary adenylate-cyclase-activating peptides relax human coronary arteries by activating K(ATP) and K(Ca) channels in smooth muscle cells. J. Vasc. Res. 34, 11–18 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Nelson, M. T. & Quayle, J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, 799–822 (1995).

    Article  Google Scholar 

  51. Alexander, S. P. H. et al. Class A orphans in GtoPdb v.2023.1. IUPHAR/BPS Guide Pharmacol. https://doi.org/10.2218/GTOPDB/F16/2023.1 (2023).

  52. Pedersen, S. H. et al. PACAP-38 and PACAP(6–38) degranulate rat meningeal mast cells via the orphan MrgB3-receptor. Front. Cell. Neurosci. 13, 1–11 (2019).

    Article  Google Scholar 

  53. Krabbe, A. A. & Olesen, J. Headache provocation by continuous intravenous infusion of histamine. Clinical results and receptor mechanisms. Pain 8, 253–259 (1980).

    Article  PubMed  Google Scholar 

  54. Akerman, S., Williamson, D. J., Kaube, H. & Goadsby, P. J. The role of histamine in dural vessel dilation. Brain Res. 956, 96–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Levy, D., Burstein, R., Kainz, V., Jakubowski, M. & Strassman, A. M. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130, 166–176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhatt, D. K., Gupta, S., Olesen, J. & Jansen-Olesen, I. PACAP-38 infusion causes sustained vasodilation of the middle meningeal artery in the rat: possible involvement of mast cells. Cephalalgia 34, 877–886 (2014).

    Article  PubMed  Google Scholar 

  57. Hoffmann, J. et al. PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache? Pain 161, 1670–1681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuburas, A. et al. PACAP induces light aversion in mice by an inheritable mechanism independent of CGRP. J. Neurosci. 41, 4697–4715 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  59. Zhang, L., Zhou, Y., Yang, L., Wang, Y. & Xiao, Z. PACAP6-38 improves nitroglycerin-induced central sensitization by modulating synaptic plasticity at the trigeminal nucleus caudalis in a male rat model of chronic migraine. J. Headache Pain 24, 66 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuburas, A. & Russo, A. F. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J. Headache Pain 24, 34 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ernstsen, C. et al. The PACAP pathway is independent of CGRP in mouse models of migraine: possible new drug target? Brain 145, 2450–2460 (2022).

    Article  PubMed  Google Scholar 

  62. Tuka, B. et al. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia 33, 1085–1095 (2013).

    Article  PubMed  Google Scholar 

  63. Liu, J., Wang, G., Dan, Y. & Liu, X. CGRP and PACAP-38 play an important role in diagnosing pediatric migraine. J. Headache Pain 23, 1–13 (2022).

    Article  Google Scholar 

  64. Cernuda-Morollón, E. et al. No change in interictal PACAP levels in peripheral blood in women with chronic migraine. Headache 56, 1448–1454 (2016).

    Article  PubMed  Google Scholar 

  65. Birk, S. et al. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul. Pept. 140, 185–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Rasmussen, N. B. et al. The effect of Lu AG09222 on PACAP38- and VIP-induced vasodilation, heart rate increase, and headache in healthy subjects: an interventional, randomized, double-blind, parallel-group, placebo-controlled study. J. Headache Pain 24, 60 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Amin, F. M. et al. Change in brain network connectivity during PACAP38-induced migraine attacks: a resting-state functional MRI study. Neurology 86, 180–187 (2016).

    Article  PubMed  Google Scholar 

  68. Guo, S., Vollesen, A. L. H., Olesen, J. & Ashina, M. Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain 157, 2773–2781 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Katarina Frifelt Wienholtz, N. et al. Early treatment with sumatriptan prevents PACAP38-induced migraine: a randomised clinical trial. Cephalalgia 41, 731–748 (2021).

    Article  Google Scholar 

  70. Vollesen, L. H., Guo, S., Andersen, M. R. & Ashina, M. Effect of the H1-antihistamine clemastine on PACAP38 induced migraine. Cephalalgia 39, 597–607 (2019).

    Article  PubMed  Google Scholar 

  71. Amin, F. M. et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain 137, 779–794 (2014).

    Article  PubMed  Google Scholar 

  72. Rahmann, A. et al. Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28, 226–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Pellesi, L. et al. Effect of vasoactive intestinal polypeptide on development of migraine headaches: a randomized clinical trial. JAMA Netw. Open 4, e2118543 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bourgault, S. et al. Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides 29, 919–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Baun, M., Pedersen, M. H. F., Olesen, J. & Jansen-Olesen, I. Dural mast cell degranulation is a putative mechanism for headache induced by PACAP-38. Cephalalgia 32, 337–345 (2012).

    Article  PubMed  Google Scholar 

  76. Lassen, L. H., Thomsen, L. L. & Olesen, J. Histamine induces migraine via the H1-receptor. Support for the NO hypothesis of migraine. Neuroreport 6, 1475–1479 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Banks, W. A., Kastin, A. J., Komaki, G. & Arimura, A. Passage of pituitary adenylate cyclase activating polypeptide 1–27 and pituitary adenylate cyclase activating polypeptide 1–38 across the blood–brain barrier. J. Pharmacol. Exp. Ther. 267, 690–696 (1993).

    CAS  PubMed  Google Scholar 

  78. Guo, S. et al. Part I: pituitary adenylate cyclase-activating polypeptide-38 induced migraine-like attacks in patients with and without familial aggregation of migraine. Cephalalgia 37, 125–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Reglodi, D., Vaczy, A., Rubio-Beltran, E. & Maassen Van Den Brink, A. Protective effects of PACAP in ischemia. J. Headache Pain 19, 1–9 (2018).

    Article  CAS  Google Scholar 

  80. Toth, D. et al. Protective effects of PACAP in peripheral organs. Front. Endocrinol. 11, 377 (2020).

    Article  Google Scholar 

  81. Toth, D., Reglodi, D., Schwieters, L. & Tamas, A. Role of endocrine PACAP in age-related diseases. Front. Endocrinol. 14, 1118927 (2023).

    Article  Google Scholar 

  82. Langer, I., Jeandriens, J., Couvineau, A., Sanmukh, S. & Latek, D. Signal transduction by VIP and PACAP receptors. Biomedicines 10, 406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reglodi, D. et al. PACAP deficiency as a model of aging. Geroscience 40, 437–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stroth, N., Holighaus, Y., Ait-Ali, D. & Eiden, L. E. PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann. N. Y. Acad. Sci. 1220, 49–59 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, L. et al. Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. eLife 10, 1–77 (2021).

    CAS  Google Scholar 

  86. Holland, P. R., Barloese, M. & Fahrenkrug, J. PACAP in hypothalamic regulation of sleep and circadian rhythm: importance for headache. J. Headache Pain 19, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Uddman, R., Tajti, J., Hou, M., Sundler, F. & Edvinsson, L. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia 22, 112–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Tajti, J., Uddman, R. & Edvinsson, L. Neuropeptide localization in the ‘migraine generator’ region of the human brainstem. Cephalalgia 21, 96–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Sundrum, T. & Walker, C. S. Pituitary adenylate cyclase-activating polypeptide receptors in the trigeminovascular system: implications for migraine. Br. J. Pharmacol. 175, 4109–4120 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Mitsikostas, D. D. et al. The 5-HT1F receptor as the target of ditans in migraine — from bench to bedside. Nat. Rev. Neurol. 19, 489–505 (2023).

    Article  PubMed  Google Scholar 

  91. Pearlman, E. M. et al. Effects of lasmiditan on simulated driving performance: results of two randomized, blinded, crossover studies with placebo and active controls. Hum. Psychopharmacol. 35, e2732 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zuchero, Y. J. Y. et al. Discovery of novel blood–brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron 89, 70–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Charles, A. & Pozo-Rosich, P. Targeting calcitonin gene-related peptide: a new era in migraine therapy. Lancet 394, 1765–1774 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Vollesen, A. L. H. et al. The effect of pituitary adenylate cyclase-activating peptide-38 and vasoactive intestinal peptide in cluster headache. Cephalalgia 40, 1474–1488 (2020).

    Article  PubMed  Google Scholar 

  95. Bertels, Z. et al. PACAP–PAC1 receptor inhibition is effective in opioid induced hyperalgesia and medication overuse headache models. iScience 26, 105950 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Al-Khazali, H. M. et al. Hypersensitivity to PACAP-38 in post-traumatic headache: a randomized clinical trial. Brain 147, 1312–1320 (2024).

    Article  PubMed  Google Scholar 

  97. Miyata, A. et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567–574 (1989).

    Article  CAS  PubMed  Google Scholar 

  98. Miyata, A. et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170, 643–648 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Pisegna, J. R. & Wank, S. A. Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc. Natl Acad. Sci. USA 90, 6345 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lutz, E. M. et al. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett. 334, 3–8 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Usdin, T. B., Bonner, T. I. & Mezey, E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135, 2662–2680 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Zagami, A. S., Edvinsson, L. & Goadsby, P. J. Pituitary adenylate cyclase activating polypeptide and migraine. Ann. Clin. Transl. Neurol. 1, 1036–1040 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Han, X. et al. Interictal plasma pituitary adenylate cyclase-activating polypeptide levels are decreased in migraineurs but remain unchanged in patients with tension-type headache. Clin. Chim. Acta 450, 151–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Pérez-Pereda, S. et al. Serum CGRP, VIP, and PACAP usefulness in migraine: a case–control study in chronic migraine patients in real clinical practice. Mol. Biol. Rep. 47, 7125–7138 (2020).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.A., R.H.C. and M.A. researched data for the article and contributed to writing of the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Messoud Ashina.

Ethics declarations

Competing interests

H.A. has received personal fees from AbbVie, Lundbeck, Pfizer and Teva that are unrelated to this manuscript. D.L.H. has received research support from AbbVie and Pfizer and has acted as an adviser, speaker or consultant for AbbVie, Amgen, Eli Lilly, Merck, Nxera Pharma and Teva. D.L.H. also receives funding from the NIH (RF1 NS113839). The contents of this manuscript do not represent the views of the US Government. At the time of drafting and submitting this manuscript, J.H. was employed as an academic researcher at King’s College London, UK. Since 1st May 2024, he has been employed by H. Lundbeck A/S; since this time, he has approved the manuscript but has made no changes. Prior to his employment at H. Lundbeck A/S, J.H. received honoraria for consulting activities and/or serving on advisory boards and/or as a speaker from AbbVie, Allergan, Autonomic Technologies, Cannovex, Chordate Medical, Eli Lilly, Hormosan Pharma, H. Lundbeck A/S, MD-Horizonte, Novartis, Pfizer, Sanofi and Teva. He has received personal fees for Medico-Legal work and from NEJM Journal Watch, Oxford University Press, Quintessence Publishing, Sage Publishing and Springer Healthcare. He holds stock options from Chordate Medical. He has also received research grants from Bristol Myers Squibb, the National Institute for Health and Care Research (NIHR), the Medical Research Council (MRC), the International Headache Society (IHS) and the Migraine Trust. He serves or has served as Associate Editor for Cephalalgia, Cephalalgia Reports, Frontiers in Pain Research, Journal of Headache and Facial Pain and Journal of Oral & Facial Pain. He has been an elected member of the Board of Trustees as well as the Science and Research Committee of the IHS as well as a Council Member and Treasurer of the British Association for the Study of Headache. A.F.R. has received personal fees from AbbVie, Amgen, Eli Lilly, Lundbeck, Novartis, Paragon and Schedule One Pharmaceuticals unrelated to this manuscript. A.F.R. receives funding from the NIH (R01 NS075599, RF1 NS113839 and R01 NS129573), Veterans Administration (IO1 RX003523) and Pfizer. The contents of the manuscript do not represent the views of the Veterans Administration or the US Government. M.A. has received personal fees from AbbVie, Amgen, Astra Zeneca, Eli Lilly, Escient, GlaxoSmithKline, Lundbeck, Novartis, Pfizer and Teva Pharmaceuticals unrelated to this manuscript. M.A. also serves as an associate editor of Brain and The Journal of Headache and Pain. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks L. Edvinsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashina, H., Christensen, R.H., Hay, D.L. et al. Pituitary adenylate cyclase-activating polypeptide signalling as a therapeutic target in migraine. Nat Rev Neurol 20, 660–670 (2024). https://doi.org/10.1038/s41582-024-01011-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-024-01011-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing