Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systemic determinants of brain health in ageing

Abstract

Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.

Key points

  • Brain health is a worldwide priority, and dementia is the biggest threat to healthy brain ageing.

  • The brain requires a supportive environment maintained by healthy organ systems to function optimally and to confer resilience to neurodegenerative diseases such as Alzheimer disease and Parkinson disease.

  • Increasing evidence links subclinical dysfunction of the cardiovascular, pulmonary, renal, gastrointestinal, hepatic and endocrine systems with age-related cognitive decline and dementia.

  • Cardiovascular, renal and hepatic dysfunction as well as changes in the gut microbiome have been associated with the presence of Alzheimer disease biomarkers in human research.

  • Pathways that might lead from organ dysfunction to brain dysfunction include systemic endothelial dysfunction, reduced peripheral clearance of wastes (including amyloid-β and tau), systemic inflammation and alterations in the microbiome.

  • Future research needs to explore mechanisms that link peripheral organ dysfunction to risk of age-related neurodegenerative and cerebrovascular diseases and to elucidate whether improving organ function reduces this risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectrum of organ dysfunction and its association with neurodegeneration and cognitive decline.
Fig. 2: Mechanisms linking peripheral organ dysfunction to brain health.

Similar content being viewed by others

References

  1. World Health Organization. Optimizing brain health across the life course: WHO position paper (WHO, 2022).

  2. Bassetti, C. L. A. et al. The European Academy of Neurology Brain Health Strategy: one brain, one life, one approach. Eur. J. Neurol. 29, 2559–2566 (2022).

    Article  PubMed  Google Scholar 

  3. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article  Google Scholar 

  4. Cahill, S. WHO’s global action plan on the public health response to dementia: some challenges and opportunities. Aging Ment. Health 24, 197–199 (2020).

    Article  PubMed  Google Scholar 

  5. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17 (2004).

    Article  PubMed  Google Scholar 

  6. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  7. Mintun, M. A. et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 384, 1691–1704 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ely, E. W., Siegel, M. D. & Inouye, S. K. Delirium in the intensive care unit: an under-recognized syndrome of organ dysfunction. Semin. Respir. Crit. Care Med. 22, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Wolters, F. J. et al. Coronary heart disease, heart failure, and the risk of dementia: a systematic review and meta-analysis. Alzheimers Dement. 14, 1493–1504 (2018).

    Article  PubMed  Google Scholar 

  11. Tang, X. et al. Association of kidney function and brain health: a systematic review and meta-analysis of cohort studies. Ageing Res. Rev. 82, 101762 (2022).

    Article  PubMed  Google Scholar 

  12. Pathan, S. S. et al. Association of lung function with cognitive decline and dementia: the Atherosclerosis Risk in Communities (ARIC) Study. Eur. J. Neurol. 18, 888–898 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Guay-Gagnon, M. et al. Sleep apnea and the risk of dementia: a systematic review and meta-analysis. J. Sleep Res. 31, e13589 (2022).

    Article  PubMed  Google Scholar 

  14. Yuan, S. et al. Digestive system diseases, genetic risk, and incident dementia: a prospective cohort study. Am. J. Prev. Med. 66, 516–525 (2024).

    Article  PubMed  Google Scholar 

  15. Parikh, N. S. et al. Association of liver fibrosis with cognitive test performance and brain imaging parameters in the UK Biobank study. Alzheimers Dement. 19, 1518–1528 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Xue, M. et al. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 55, 100944 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Gorelick, P. B. et al. Defining optimal brain health in adults: a presidential advisory from the American Heart Association/American Stroke Association. Stroke 48, e284–e303 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johansen, M. C. et al. Association between acute myocardial infarction and cognition. JAMA Neurol. 80, 723–731 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xie, W., Zheng, F., Yan, L. & Zhong, B. Cognitive decline before and after incident coronary events. J. Am. Coll. Cardiol. 73, 3041–3050 (2019).

    Article  PubMed  Google Scholar 

  20. Greaves, D. et al. Cognitive outcomes following coronary artery bypass grafting: a systematic review and meta-analysis of 91,829 patients. Int. J. Cardiol. 289, 43–49 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Selnes, O. A. et al. Cognition 6 years after surgical or medical therapy for coronary artery disease. Ann. Neurol. 63, 581–590 (2008).

    Article  PubMed  Google Scholar 

  22. Vishwanath, S. et al. Cognitive decline and risk of dementia in individuals with heart failure: a systematic review and meta-analysis. J. Card. Fail. 28, 1337–1348 (2022).

    Article  PubMed  Google Scholar 

  23. Kamel, H. et al. Atrial cardiopathy and the risk of ischemic stroke in the CHS (Cardiovascular Health Study). Stroke 49, 980–986 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kamel, H. et al. Association between left atrial abnormality on ECG and vascular brain injury on MRI in the Cardiovascular Health Study. Stroke 46, 711–716 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Johansen, M. C. et al. Risk of dementia associated with atrial cardiopathy: the ARIC study. J. Am. Heart Assoc. 11, e025646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansen, M. C. et al. Associations of echocardiography markers and vascular brain lesions: the ARIC Study. J. Am. Heart Assoc. 7, e008992 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshida, Y. et al. Subclinical left ventricular systolic dysfunction and incident stroke in the elderly: long-term findings from cardiovascular abnormalities and brain lesions. Eur. Heart J. Cardiovasc. Imaging 24, 522–531 (2023).

    Article  PubMed  Google Scholar 

  28. Debette, S., Schilling, S., Duperron, M. G., Larsson, S. C. & Markus, H. S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 76, 81–94 (2018).

    Article  PubMed Central  Google Scholar 

  29. Mejia-Renteria, H. et al. Coronary microvascular dysfunction is associated with impaired cognitive function: the Cerebral-Coronary Connection study (C3 study). Eur. Heart J. 44, 113–125 (2023).

    Article  PubMed  Google Scholar 

  30. Levin, A. & Stevens, P. E. Summary of KDIGO 2012 CKD guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 85, 49–61 (2014).

    Article  PubMed  Google Scholar 

  31. GBD Chronic Kidney Disease Collaboration. Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  32. Trocchi, P., Girndt, M., Scheidt-Nave, C., Markau, S. & Stang, A. Impact of the estimation equation for GFR on population-based prevalence estimates of kidney dysfunction. BMC Nephrol. 18, 341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kar, S., Paglialunga, S. & Islam, R. Cystatin C is a more reliable biomarker for determining eGFR to support drug development studies. J. Clin. Pharmacol. 58, 1239–1247 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Scheppach, J. B. et al. Albuminuria and estimated GFR as risk factors for dementia in midlife and older age: findings from the ARIC study. Am. J. Kidney Dis. 76, 775–783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nam, G. E. et al. Chronic renal dysfunction, proteinuria, and risk of Parkinson’s disease in the elderly. Mov. Disord. 34, 1184–1191 (2019).

    Article  PubMed  Google Scholar 

  36. Scheppach, J. B. et al. Association of kidney function measures with signs of neurodegeneration and small vessel disease on brain magnetic resonance imaging: the atherosclerosis risk in communities (ARIC) study. Am. J. Kidney Dis. 81, 261–269.e1 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Sedaghat, S. et al. The association of kidney function with plasma amyloid-β levels and brain amyloid deposition. J. Alzheimers Dis. 92, 229–239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janelidze, S., Barthelemy, N. R., He, Y., Bateman, R. J. & Hansson, O. Mitigating the associations of kidney dysfunction with blood biomarkers of Alzheimer disease by using phosphorylated tau to total tau ratios. JAMA Neurol. 80, 516–522 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lutsey, P. L. et al. Impaired lung function, lung disease, and risk of incident dementia. Am. J. Respir. Crit. Care Med. 199, 1385–1396 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xiao, T. et al. Lung function impairment and the risk of incident dementia: the Rotterdam study. J. Alzheimers Dis. 82, 621–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng, Y. H. et al. Adult asthma increases dementia risk: a nationwide cohort study. J. Epidemiol. Community Health 69, 123–128 (2015).

    Article  PubMed  Google Scholar 

  42. Frenzel, S. et al. Associations of pulmonary function with MRI brain volumes: a coordinated multi-study analysis. J. Alzheimers Dis. 90, 1073–1083 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, B. et al. Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut 70, 85–91 (2021).

    Article  PubMed  Google Scholar 

  44. Gau, S. Y., Lai, J. N., Yip, H. T., Wu, M. C. & Wei, J. C. Higher dementia risk in people with gastroesophageal reflux disease: a real-world evidence. Front. Aging Neurosci. 14, 830729 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen, C. H., Lin, C. L. & Kao, C. H. Irritable bowel syndrome is associated with an increased risk of dementia: a nationwide population-based study. PLoS ONE 11, e0144589 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Adewuyi, E. O., O’Brien, E. K., Nyholt, D. R., Porter, T. & Laws, S. M. A large-scale genome-wide cross-trait analysis reveals shared genetic architecture between Alzheimer’s disease and gastrointestinal tract disorders. Commun. Biol. 5, 691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Seo, D. O. et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science 379, eadd1236 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dodiya, H. B. et al. Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer’s transgenic mice. Sci. Rep. 10, 8183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Warnecke, T., Schafer, K. H., Claus, I., Del Tredici, K. & Jost, W. H. Gastrointestinal involvement in Parkinson’s disease: pathophysiology, diagnosis, and management. NPJ Parkinsons Dis. 8, 31 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu, W. et al. Autonomic symptoms are predictive of dementia with Lewy bodies. Parkinsonism Relat. Disord. 95, 1–4 (2022).

    Article  PubMed  Google Scholar 

  53. Doi, H. et al. Gastrointestinal function in dementia with Lewy bodies: a comparison with Parkinson disease. Clin. Auton. Res. 29, 633–638 (2019).

    Article  PubMed  Google Scholar 

  54. Camacho, M. et al. Early constipation predicts faster dementia onset in Parkinson’s disease. NPJ Parkinsons Dis. 7, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  56. Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116, 1413–1419 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Sanyal, A. J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 16, 377–386 (2019).

    Article  PubMed  Google Scholar 

  58. Harris, R., Harman, D. J., Card, T. R., Aithal, G. P. & Guha, I. N. Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterol. Hepatol. 2, 288–297 (2017).

    Article  PubMed  Google Scholar 

  59. Allwright, M. et al. Ranking the risk factors for Alzheimer’s disease; findings from the UK Biobank study. Aging Brain 3, 100081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiao, T., van Kleef, L. A., Ikram, M. K., de Knegt, R. J. & Ikram, M. A. Association of nonalcoholic fatty liver disease and fibrosis with incident dementia and cognition: the Rotterdam study. Neurology 99, e565–e573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shang, Y. et al. Non-alcoholic fatty liver disease does not increase dementia risk although histology data might improve risk prediction. JHEP Rep. 3, 100218 (2021).

    Article  PubMed  Google Scholar 

  62. Weinstein, G. et al. Nonalcoholic fatty liver disease, liver fibrosis, and structural brain imaging: the Cross-Cohort Collaboration. Eur. J. Neurol. 31, e16048 (2024).

    Article  PubMed  Google Scholar 

  63. Parikh, N. S. et al. Association between liver fibrosis and incident dementia in the UK Biobank study. Eur. J. Neurol. 29, 2622–2630 (2022).

    Article  PubMed  Google Scholar 

  64. Weinstein, G. et al. Non-alcoholic fatty liver disease, liver fibrosis, and regional amyloid-β and tau pathology in middle-aged adults: the Framingham study. J. Alzheimers Dis. 86, 1371–1383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jeong, S. M. et al. Favorable impact of non-alcoholic fatty liver disease on the cerebral white matter hyperintensity in a neurologically healthy population. Eur. J. Neurol. 26, 1471–1478 (2019).

    Article  PubMed  Google Scholar 

  66. Jang, H. et al. Non-alcoholic fatty liver disease and cerebral small vessel disease in Korean cognitively normal individuals. Sci. Rep. 9, 1814 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Petta, S. et al. The presence of white matter lesions is associated with the fibrosis severity of nonalcoholic fatty liver disease. Medicine 95, e3446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yan, M. et al. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal. Transduct. Target. Ther. 8, 443 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hiller-Sturmhofel, S. & Bartke, A. The endocrine system: an overview. Alcohol Health Res. World 22, 153–164 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Biessels, G. J. & Despa, F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat. Rev. Endocrinol. 14, 591–604 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Crane, P. K. et al. Glucose levels and risk of dementia. N. Engl. J. Med. 369, 540–548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moran, C. et al. Glycemic control over multiple decades and dementia risk in people with type 2 diabetes. JAMA Neurol. 80, 597–604 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gottesman, R. F. et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317, 1443–1450 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moran, C. et al. Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85, 1123–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abner, E. L. et al. Diabetes is associated with cerebrovascular but not Alzheimer’s disease neuropathology. Alzheimers Dement. 12, 882–889 (2016).

    Article  PubMed  Google Scholar 

  76. Dos Santos Matioli, M. N. P. et al. Diabetes is not associated with Alzheimer’s disease neuropathology. J. Alzheimers Dis. 60, 1035–1043 (2017).

    Article  PubMed  Google Scholar 

  77. Takenoshita, N. et al. Amyloid and tau positron emission tomography in suggested diabetesrelated dementia. Curr. Alzheimer Res. 15, 1062–1069 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Article  PubMed  Google Scholar 

  79. Davidson, T. L. & Stevenson, R. J. Vulnerability of the hippocampus to insults: links to blood-brain barrier dysfunction. Int. J. Mol. Sci. 25, 1991 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Raz, L. et al. Hypoxia promotes tau hyperphosphorylation with associated neuropathology in vascular dysfunction. Neurobiol. Dis. 126, 124–136 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Bailey, D. M. et al. Hypoxemia increases blood-brain barrier permeability during extreme apnea in humans. J. Cereb. Blood Flow Metab. 42, 1120–1135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wardlaw, J. M., Smith, C. & Dichgans, M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 18, 684–696 (2019).

    Article  PubMed  Google Scholar 

  83. Ding, H. et al. Hypercapnia exacerbates the disruption of the blood-brain barrier by inducing interleukin-1β overproduction in the blood of hypoxemic adult rats. Int. J. Mol. Med. 46, 762–772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, W. et al. Effects of acute systemic hypoxia and hypercapnia on brain damage in a rat model of hypoxia-ischemia. PLoS ONE 11, e0167359 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dodd, J. W., Getov, S. V. & Jones, P. W. Cognitive function in COPD. Eur. Respir. J. 35, 913–922 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Shim, T. S. et al. Cerebral metabolic abnormalities in COPD patients detected by localized proton magnetic resonance spectroscopy. Chest 120, 1506–1513 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Li, H. et al. Abnormal intrinsic functional hubs and connectivity in stable patients with COPD: a resting-state MRI study. Brain Imaging Behav. 14, 573–585 (2020).

    Article  PubMed  Google Scholar 

  88. King, P. T. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin. Transl. Med. 4, 68 (2015).

    Article  PubMed  Google Scholar 

  89. Rajendran, P. et al. The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057–1069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wei, H. et al. Vascular endothelial cells: a fundamental approach for brain waste clearance. Brain 146, 1299–1315 (2023).

    Article  PubMed  Google Scholar 

  93. Iadecola, C. et al. The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/ American Stroke Association. Stroke 54, e251–e271 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Katusic, Z. S., d’Uscio, L. V. & He, T. Emerging roles of endothelial nitric oxide in preservation of cognitive health. Stroke 54, 686–696 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nasiri-Ansari, N. et al. Endothelial cell dysfunction and nonalcoholic fatty liver disease (NAFLD): a concise review. Cells 11, 2511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu, S. et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol. Rev. 73, 924–967 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Roumeliotis, S., Mallamaci, F. & Zoccali, C. Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: a 2020 update. J. Clin. Med. 9, 2359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gallo, G. & Savoia, C. New insights into endothelial dysfunction in cardiometabolic diseases: potential mechanisms and clinical implications. Int. J. Mol. Sci. 25, 2973 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Badji, A., Cohen-Adad, J. & Girouard, H. Relationship between arterial stiffness index, pulse pressure, and magnetic resonance imaging markers of white matter integrity: a UK Biobank study. Front. Aging Neurosci. 14, 856782 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zanoli, L. et al. Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J. Hypertension 38, 1682–1698 (2020).

    Article  CAS  Google Scholar 

  101. Wilkinson, I. B., Franklin, S. S. & Cockcroft, J. R. Nitric oxide and the regulation of large artery stiffness: from physiology to pharmacology. Hypertension 44, 112–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Lacolley, P., Regnault, V. & Laurent, S. Mechanisms of arterial stiffening: from mechanotransduction to epigenetics. Arterioscler. Thromb. Vasc. Biol. 40, 1055–1062 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Arai, K. & Lo, E. H. Wiring and plumbing: oligodendrocyte precursors and angiogenesis in the oligovascular niche. J. Cereb. Blood Flow Metab. 41, 2132–2133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yousef, H. et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25, 988–1000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Toya, T. et al. Impact of peripheral microvascular endothelial dysfunction on white matter hyperintensity. J. Am. Heart Assoc. 10, e021066 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Khatri, M. et al. Chronic kidney disease is associated with white matter hyperintensity volume: the Northern Manhattan Study (NOMAS). Stroke 38, 3121–3126 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Moroni, F. et al. Cardiovascular disease and brain health: focus on white matter hyperintensities. Int. J. Cardiol. Heart Vasc. 19, 63–69 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Dight, J., Zhao, J., Styke, C., Khosrotehrani, K. & Patel, J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 25, 15–33 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Han, Y. & Kim, S. Y. Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp. Mol. Med. 55, 1–12 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686–690 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kresge, H. A. et al. Subclinical compromise in cardiac strain relates to lower cognitive performances in older adults. J. Am. Heart Assoc. 7, e007562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Moore, E. E. & Jefferson, A. L. Impact of cardiovascular hemodynamics on cognitive aging. Atheroscler. Thromb. Vasc. Biol. 41, 1255–1264 (2021).

    Article  CAS  Google Scholar 

  113. van Osch, M. J. P. et al. Human brain clearance imaging: pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood. NMR Biomed. 37, e5159 (2024).

    Article  PubMed  Google Scholar 

  114. Agarwal, N. et al. Current understanding of the anatomy, physiology, and magnetic resonance imaging of neurofluids: update from the 2022 “ISMRM Imaging Neurofluids Study group” workshop in Rome. J. Magn. Reson. Imaging 59, 431–449 (2024).

    Article  PubMed  Google Scholar 

  115. Licastro, E. et al. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun. Biol. 7, 229 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rego, S., Sanchez, G. & Da Mesquita, S. Current views on meningeal lymphatics and immunity in aging and Alzheimer’s disease. Mol. Neurodegener. 18, 55 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moonen, J. E. F. et al. Contributions of amyloid beta and cerebral small vessel disease in clinical decline. Alzheimers Dement. 20, 1868–1880 (2024).

    Article  PubMed  Google Scholar 

  118. Pacholko, A. & Iadecola, C. Hypertension, neurodegeneration, and cognitive decline. Hypertension 81, 991–1007 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Coomans, E. M. et al. Interactions between vascular burden and amyloid-β pathology on trajectories of tau accumulation. Brain 147, 949–960 (2024).

    Article  PubMed  Google Scholar 

  120. Yau, W. W. et al. Tau mediates synergistic influence of vascular risk and Aβ on cognitive decline. Ann. Neurol. 92, 745–755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nho, K. et al. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: relationship to neuroimaging and CSF biomarkers. Alzheimers Dement. 15, 232–244 (2019).

    Article  PubMed  Google Scholar 

  122. Nho, K. et al. Association of altered liver enzymes with alzheimer disease diagnosis, cognition, neuroimaging measures, and cerebrospinal fluid biomarkers. JAMA Netw. Open 2, e197978 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Myers, S. J., Jimenez-Ruiz, A., Sposato, L. A. & Whitehead, S. N. Atrial cardiopathy and cognitive impairment. Front. Aging Neurosci. 14, 914360 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roberts, K. F. et al. Amyloid-β efflux from the central nervous system into the plasma. Ann. Neurol. 76, 837–844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tian, D. Y. et al. Physiological clearance of amyloid-beta by the kidney and its therapeutic potential for Alzheimer’s disease. Mol. Psychiatry 26, 6074–6082 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Xiang, Y. et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol. 130, 487–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, Y. H. et al. Association between serum amyloid-beta and renal functions: implications for roles of kidney in amyloid-beta clearance. Mol. Neurobiol. 52, 115–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, Y.-R. et al. Associations between hepatic functions and plasma amyloid-beta levels — implications for the capacity of liver in peripheral amyloid-beta clearance. Mol. Neurobiol. 54, 2338–2344 (2016).

    Article  PubMed  Google Scholar 

  129. Cheng, Y. et al. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol. 145, 717–731 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, Y., Strickland, M. R., Soranno, A. & Holtzman, D. M. Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron 109, 205–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Nascimento, J. C. R. et al. Impact of apolipoprotein E genetic polymorphisms on liver disease: an essential review. Ann. Hepatol. 19, 24–30 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, C. C. et al. Peripheral apoE4 enhances Alzheimer’s pathology and impairs cognition by compromising cerebrovascular function. Nat. Neurosci. 25, 1020–1033 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ehtezazi, T., Rahman, K., Davies, R. & Leach, A. G. The pathological effects of circulating hydrophobic bile acids in Alzheimer’s disease. J. Alzheimers Dis. Rep. 7, 173–211 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shi, M. et al. CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease. Alzheimers Dement. 12, 1125–1131 (2016).

    Article  PubMed  Google Scholar 

  136. Tarasoff-Conway, J. M. et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, J. et al. Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta Neuropathol. 136, 525–536 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Mielke, M. M. et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat. Med. 28, 1398–1405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Semmler, A. et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J. Neuroinflammation 5, 38 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rankin, L. C. & Artis, D. Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173, 554–567 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Eeden, S. F. & Sin, D. D. Chronic obstructive pulmonary disease: a chronic systemic inflammatory disease. Respiration 75, 224–238 (2008).

    Article  PubMed  Google Scholar 

  143. Benakis, C. et al. The microbiome-gut-brain axis in acute and chronic brain diseases. Curr. Opin. Neurobiol. 61, 1–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Chen, L. et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2018).

    Article  PubMed  Google Scholar 

  145. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Venereau, E., Ceriotti, C. & Bianchi, M. E. DAMPs from cell death to new life. Front. Immunol. 6, 422 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zindel, J. & Kubes, P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu. Rev. Pathol. 15, 493–518 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Oudijk, E. J., Lammers, J. W. & Koenderman, L. Systemic inflammation in chronic obstructive pulmonary disease. Eur. Respir. J. Suppl. 46, 5s–13s (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Brezzo, G., Simpson, J., Ameen-Ali, K. E., Berwick, J. & Martin, C. Acute effects of systemic inflammation upon the neuro-glial-vascular unit and cerebrovascular function. Brain Behav. Immun. Health 5, 100074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Amersfoort, J., Eelen, G. & Carmeliet, P. Immunomodulation by endothelial cells — partnering up with the immune system? Nat. Rev. Immunol. 22, 576–588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A. & Hillman, E. M. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3, e000787 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Smith, B. C., Tinkey, R. A., Shaw, B. C. & Williams, J. L. Targetability of the neurovascular unit in inflammatory diseases of the central nervous system. Immunol. Rev. 311, 39–49 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tarantini, S., Tran, C. H. T., Gordon, G. R., Ungvari, Z. & Csiszar, A. Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp. Gerontol. 94, 52–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Banks, W. A., Kastin, A. J. & Broadwell, R. D. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2, 241–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Sama, M. A. et al. Interleukin-1β-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J. Biol. Chem. 283, 21953–21964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xie, D. et al. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats. Glia 64, 583–602 (2016).

    Article  PubMed  Google Scholar 

  159. Zelenay, S. & Reis e Sousa, C. Adaptive immunity after cell death. Trends Immunol. 34, 329–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Cramer, J. V., Benakis, C. & Liesz, A. T cells in the post-ischemic brain: troopers or paramedics? J. Neuroimmunol. 326, 33–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Kunzli, M. & Masopust, D. CD4+ T cell memory. Nat. Immunol. 24, 903–914 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. van Zeventer, I. A. et al. Prevalence, predictors, and outcomes of clonal hematopoiesis in individuals aged >/=80 years. Blood Adv. 5, 2115–2122 (2021).

    Article  PubMed  Google Scholar 

  164. Avagyan, S. & Zon, L. I. Clonal hematopoiesis and inflammation — the perpetual cycle. Trends Cell Biol. 33, 695–707 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 29, 1662–1670 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Santisteban, M. M. et al. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat. Neurosci. 27, 63–77 (2024).

    Article  CAS  PubMed  Google Scholar 

  167. Uekawa, K. et al. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol. Neurodegener. 18, 73 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Schonhoff, A. M. et al. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat. Commun. 14, 3754 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mildenberger, W., Stifter, S. A. & Greter, M. Diversity and function of brain-associated macrophages. Curr. Opin. Immunol. 76, 102181 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. De Maeyer, R. P. H. & Chambers, E. S. The impact of ageing on monocytes and macrophages. Immunol. Lett. 230, 1–10 (2021).

    Article  PubMed  Google Scholar 

  171. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–9 (2014).

    Article  PubMed  Google Scholar 

  172. Huber, J. D., Campos, C. R., Mark, K. S. & Davis, T. P. Alterations in blood-brain barrier ICAM-1 expression and brain microglial activation after λ-carrageenan-induced inflammatory pain. Am. J. Physiol. Heart Circ. Physiol. 290, H732–H740 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Purchiaroni, F. et al. The role of intestinal microbiota and the immune system. Eur. Rev. Med. Pharmacol. Sci. 17, 323–333 (2013).

    CAS  PubMed  Google Scholar 

  174. Lynch, S. V., Ng, S. C., Shanahan, F. & Tilg, H. Translating the gut microbiome: ready for the clinic? Nat. Rev. Gastroenterol. Hepatol. 16, 656–661 (2019).

    Article  PubMed  Google Scholar 

  175. Violi, F., Castellani, V., Menichelli, D., Pignatelli, P. & Pastori, D. Gut barrier dysfunction and endotoxemia in heart failure: a dangerous connubium? Am. Heart J. 264, 40–48 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Hufnagl, K., Pali-Scholl, I., Roth-Walter, F. & Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 42, 75–93 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wieland, A., Frank, D. N., Harnke, B. & Bambha, K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Alimentary Pharmacol. Ther. 42, 1051–1063 (2015).

    Article  CAS  Google Scholar 

  178. Sharma, S. & Tripathi, P. Gut microbiome and type 2 diabetes: where we are and where to go? J. Nutr. Biochem. 63, 101–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Hosang, L. et al. The lung microbiome regulates brain autoimmunity. Nature 603, 138–144 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. Colombo, A. V. et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife 10, e59826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Aho, V. T. E. et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 16, 6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ho, L. et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother. 18, 83–90 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Han, Y. et al. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res. 15, 6213–6230 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tan, A. H., Lim, S. Y. & Lang, A. E. The microbiome-gut-brain axis in Parkinson disease — from basic research to the clinic. Nat. Rev. Neurol. 18, 476–495 (2022).

    Article  PubMed  Google Scholar 

  185. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol. 78, 522–529 (2015).

    Article  PubMed  Google Scholar 

  186. Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kjelvik, G. et al. Public knowledge about dementia risk reduction in Norway. BMC Public Health 22, 2046 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. De Krom, F. J. W. et al. Awareness of dementia risk reduction among current and future healthcare professionals: a survey study. J. Public Health Res. 10, 1961 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Harkness, K. et al. Cognitive function and self-care management in older patients with heart failure. Eur. J. Cardiovasc. Nurs. 13, 277–284 (2014).

    Article  PubMed  Google Scholar 

  190. van Nieuwkerk, A. C. et al. Cognitive impairment in patients with cardiac disease: implications for clinical practice. Stroke 54, 2181–2191 (2023).

    Article  PubMed  Google Scholar 

  191. Wong, M. D., Shapiro, M. F., Boscardin, W. J. & Ettner, S. L. Contribution of major diseases to disparities in mortality. N. Engl. J. Med. 347, 1585–1592 (2002).

    Article  PubMed  Google Scholar 

  192. Barthelemy, N. R. et al. Highly accurate blood test for Alzheimer’s disease is similar or superior to clinical cerebrospinal fluid tests. Nat. Med. 30, 1085–1095 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Okuzumi, A. et al. Propagative α-synuclein seeds as serum biomarkers for synucleinopathies. Nat. Med. 29, 1448–1455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wolters, F. J. et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States: the Alzheimer cohorts consortium. Neurology 95, e519–e531 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wang, L. et al. Trends in prevalence of diabetes and control of risk factors in diabetes among US adults, 1999-2018. JAMA 326, 1–13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. An, E. et al. Stress-resilience impacts psychological wellbeing as evidenced by brain–gut microbiome interactions. Nat. Ment. Health 2, 935–950 (2024).

    Article  Google Scholar 

  197. Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Whitlock, E. L. et al. Association of coronary artery bypass grafting vs percutaneous coronary intervention with memory decline in older adults undergoing coronary revascularization. JAMA 325, 1955–1964 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Kalantarian, S., Stern, T. A., Mansour, M. & Ruskin, J. N. Cognitive impairment associated with atrial fibrillation: a meta-analysis. Ann. Intern. Med. 158, 338–346 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Johansen, M. C. et al. Risk of dementia associated with atrial cardiopathy: the ARIC study. JAHA 11, e025646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hort, J. et al. EFNS guidelines for the diagnosis and management of Alzheimer’s disease. Eur. J. Neurol. 17, 1236–1248 (2010).

    Article  CAS  PubMed  Google Scholar 

  202. Johansen, M. C. et al. Associations between left ventricular structure, function, and cerebral amyloid: the ARIC-PET study. Stroke 50, 3622–3624 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Sible, I. J., Nation, D. A. & Alzheimer’s Disease Neuroimaging Initiative. Visit-to-visit blood pressure variability and longitudinal tau accumulation in older adults. Hypertension 79, 629–637 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Biessels, G. J., Nobili, F., Teunissen, C. E., Simo, R. & Scheltens, P. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol. 19, 699–710 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Nelson, P. T. et al. Human cerebral neuropathology of type 2 diabetes mellitus. Biochim. Biophys. Acta 1792, 454–469 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Eric E. Smith or Costantino Iadecola.

Ethics declarations

Competing interests

E.E.S. reports unpaid consulting for Alnylam Pharmaceuticals, Eisai and Eli Lilly. G.J.B. consults for Nestlé Health Science. All financial compensation for these services is transferred to his employer, University Medical Center Utrecht. A.L. reports consulting for Roche and Sanofi, and research funding from CSL Behring. N.S.P. is now employed by Alnylam Pharmaceuticals; his contribution to this work occurred while employed at Weill Cornell Medicine and does not reflect the views of his current employer. C.I. serves on the scientific advisory board of Broadview Ventures. V.G. and R.F.G. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, E.E., Biessels, G.J., Gao, V. et al. Systemic determinants of brain health in ageing. Nat Rev Neurol 20, 647–659 (2024). https://doi.org/10.1038/s41582-024-01016-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-024-01016-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing