Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The Digitized Memory Clinic

Abstract

Several major challenges, including an ageing population and declining workforce and the implementation of recent breakthrough therapies for Alzheimer disease, are prompting a necessary rethink of how people with neurodegenerative dementias are diagnosed and medically managed. Digital health technologies could play a pivotal part in this transformation, with new advances enabling the collection of millions of data points from a single individual. Possible applications include unobtrusive monitoring that aids early detection of disease and artificial intelligence-based health advice. To translate these advances to meaningful benefits for people living with a disease, technologies must be implemented within a system that retains the physician expert as a central figure in decision-making. This Perspective presents a new framework, termed the Digitized Memory Clinic, for the diagnostic pathway of neurodegenerative dementias that incorporates digital health technologies with currently available assessment tools, such as fluid and imaging biomarkers, in an interplay with the physician. The Digitized Memory Clinic will manage people across the entire disease spectrum, from the detection of risk factors for cognitive decline and the earliest symptoms to dementia, and will replace the present paradigm of a pure ‘brick-and-mortar’ memory clinic. Important ethical, legal and societal barriers associated with the implementation of digital health technologies in memory clinics need to be addressed. The envisioned Digitized Memory Clinic aims to improve diagnostics and enable precise disease-tracking prognostication for individuals with memory disorders and to open new possibilities, such as precision medicine for prevention and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Abundant digital health technologies exist that could be incorporated in the Digitized Memory Clinic.
Fig. 2: The Digitized Memory Clinic.

Similar content being viewed by others

References

  1. Grazia, A. et al. Feasibility of a standard cognitive assessment in European academic memory clinics. Alzheimers Dement. 19, 2276–2286 (2023).

    Article  PubMed  Google Scholar 

  2. Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article  Google Scholar 

  3. Morgan, D. G. et al. Improving access to dementia care: development and evaluation of a rural and remote memory clinic. Aging Ment. Health 13, 17–30 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schott, B. H. et al. Establishment of a teaching hospital-based dementia consultation service for rurally-based regional district general hospitals. Front. Public Health 10, 849161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brück, C. C., et al. Projected prevalence and incidence of dementia accounting for secular trends and birth cohort effects: a population-based microsimulation study. Eur. J. Epidemiol., 8, 807–814 (2022).

    Article  Google Scholar 

  6. Böheim, R., Horvath, T., Leoni, T. & Spielauer, M. The impact of health and education on labor force participation in aging societies: projections for the United States and Germany from dynamic microsimulations. Popul. Res. Policy Rev. 42, 39 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Masanneck, L., Gieseler, P., Gordon, W. J., Meuth, S. G. & Stern, A. D. Evidence from ClinicalTrials.gov on the growth of Digital Health Technologies in neurology trials. NPJ Digit. Med. 6, 1–5 (2023).

    Article  Google Scholar 

  8. Hansson, O., Blennow, K., Zetterberg, H. & Dage, J. Blood biomarkers for Alzheimer’s disease in clinical practice and trials. Nat. Aging 3, 506–519 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 6, 512–527 (2023).

    Article  Google Scholar 

  10. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  11. Jönsson, L. et al. The affordability of lecanemab, an amyloid-targeting therapy for Alzheimer’s disease: an EADC-EC viewpoint. Lancet Reg. Health Eur. 29, 100657 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, C. Z., Borycki, E. M. & Kushniruk, A. W. Connecting the world of healthcare virtually: a scoping review on virtual care delivery. Healthcare 9, 1325 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Waldemar, G. Data-driven care for patients with neurodegenerative disorders. Nat. Rev. Neurol. 19, 447–448 (2023).

    Article  PubMed  Google Scholar 

  14. Young, A. L. et al. Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat. Rev. Neurosci. 25, 111–130 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Baumgart, D. C. An intriguing vision for transatlantic collaborative health data use and artificial intelligence development. NPJ Digit. Med. 7, 19 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stroud, C., Onnela, J. P. & Manji, H. Harnessing digital technology to predict, diagnose, monitor, and develop treatments for brain disorders. NPJ Digit. Med. 2, 3–6 (2019).

    Article  Google Scholar 

  17. Teymourian, H. et al. Closing the loop for patients with Parkinson disease: where are we? Nat. Rev. Neurol. 18, 497–507 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Johnson, E. L. & Miller, E. Remote patient monitoring in diabetes: how to acquire, manage, and use all of the data. Diabetes Spectr. 35, 43–56 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chan, J. Y. C., Yau, S. T. Y., Kwok, T. C. Y. & Tsoi, K. K. F. Diagnostic performance of digital cognitive tests for the identification of MCI and dementia: a systematic review. Ageing Res. Rev. 72, 101506 (2021).

    Article  PubMed  Google Scholar 

  20. Huntley, J. et al. Online assessment of risk factors for dementia and cognitive function in healthy adults. Int. J. Geriatr. Psychiatry 33, e286–e293 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Vrijsen, J. et al. Uptake and effectiveness of a tailor-made online lifestyle programme targeting modifiable risk factors for dementia among middle-aged descendants of people with recently diagnosed dementia: study protocol of a cluster randomised controlled trial (Demin study).BMJ Open. 10, e039439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bruun, M. et al. Impact of a clinical decision support tool on prediction of progression in early-stage dementia: a prospective validation study. Alzheimers Res. Ther. 11, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Gils, A. M. et al. Use of a digital tool to support the diagnostic process in memory clinics—a usability study. Alzheimers Res. Ther. 16, 75 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cullen, A. et al. Wearable and portable GPS solutions for monitoring mobility in dementia: a systematic review. Sensors 22, 3336 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gramkow, M. H. et al. Diagnostic performance of light reflex pupillometry in Alzheimer’s disease. Alzheimers Dement. 16, e12628 (2024).

    Google Scholar 

  26. Grammatikopoulou, M. et al. Assessing the cognitive decline of people in the spectrum of AD by monitoring their activities of daily living in an IoT-enabled smart home environment: a cross-sectional pilot study. Front. Aging Neurosci. 16, 1375131 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Giannios, G. et al. A semantic framework to detect problems in activities of daily living monitored through smart home sensors. Sensors 24, 1107 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rhodius‐Meester, H. F. M. et al. cCOG: a web‐based cognitive test tool for detecting neurodegenerative disorders. Alzheimers Dement. 12, e12083 (2020).

    Google Scholar 

  29. Sheehan, B. Assessment scales in dementia. Ther. Adv. Neurol. Disord. 5, 349–358 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rubin, R. Consumers can now buy a blood test to evaluate their Alzheimer disease risk, but should they? JAMA 330, 1214–1216 (2023).

    Article  PubMed  Google Scholar 

  31. Frisoni, G. B. et al. Dementia prevention in memory clinics: recommendations from the European task force for brain health services. Lancet Reg. Health Eur. 26, 100576 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tu, T. et al. Towards conversational diagnostic AI. Preprint at arXiv http://arxiv.org/abs/2401.05654 (2024).

  33. Romano, M. F., Shih, L. C., Paschalidis, I. C., Au, R. & Kolachalama, V. B. Large language models in neurology research and future practice. Neurology 101, 1058–1067 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Walker, T. et al. Developing an intelligent virtual agent to stratify people with cognitive complaints: a comparison of human–patient and intelligent virtual agent–patient interaction. Dementia 19, 1173–1188 (2020).

    Article  PubMed  Google Scholar 

  35. Zakim, D. et al. Computerized history-taking improves data quality for clinical decision-making—comparison of EHR and computer-acquired history data in patients with chest pain. PLoS ONE 16, 1–13 (2021).

    Article  Google Scholar 

  36. Liu, D. et al. Measuring depression severity based on facial expression and body movement using deep convolutional neural network. Front. Psychiatry 13, 1–13 (2022).

    Article  Google Scholar 

  37. Fristed, E. et al. A remote speech-based AI system to screen for early Alzheimer’s disease via smartphones. Alzheimers Dement. 14, 1–12 (2022).

    Google Scholar 

  38. Hajjar, I. et al. Development of digital voice biomarkers and associations with cognition, cerebrospinal biomarkers, and neural representation in early Alzheimer’s disease. Alzheimers Dement. 15, 1–12 (2023).

    Google Scholar 

  39. Wang, X., Garg, S., Tran, S. N., Bai, Q. & Alty, J. Hand tremor detection in videos with cluttered background using neural network based approaches. Health Inf. Sci. Syst. 9, 1–14 (2021).

    Article  Google Scholar 

  40. Lin, B. et al. Estimation of vital signs from facial videos via video magnification and deep learning. iScience 26, 107845 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. König, A. et al. Validation of an automatic video monitoring system for the detection of instrumental activities of daily living in dementia patients. J. Alzheimers Dis. 44, 675–685 (2015).

    Article  PubMed  Google Scholar 

  42. Asiri, H. M., Asiri, A. M., Alruwaili, H. F. & Almazan, J. A scoping review of different monitoring-technology devices in caring for older adults with cognitive impairment. Front. Public. Health 11, 1144636 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Firouraghi, N. et al. The role of geographic information system and global positioning system in dementia care and research: a scoping review. Int. J. Health Geogr. 21, 8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lysen, T. S., Luik, A. I., Ikram, M. K., Tiemeier, H. & Ikram, M. A. Actigraphy-estimated sleep and 24-hour activity rhythms and the risk of dementia. Alzheimers Dement. 16, 1259–1267 (2020).

    Article  PubMed  Google Scholar 

  45. Nielsen, T. R. Cognitive assessment in culturally, linguistically, and educationally diverse older populations in Europe. Am. J. Alzheimers Dis. Other Demen. 37, 1–8 (2022).

    Article  Google Scholar 

  46. Celi, L. A. et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review. PLOS Digit. Health 1, e0000022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abràmoff, M. D. et al. Considerations for addressing bias in artificial intelligence for health equity. NPJ Digit. Med. 6, 1–7 (2023).

    Article  Google Scholar 

  48. Buckley, R. F. et al. Computerized cognitive testing for use in clinical trials: a comparison of the NIH toolbox and cogstate C3 batteries. J. Prev. Alzheimers Dis. 4, 3–11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Columna Axon. New solution ensures better cross-sector collaboration with real-time record data. Systematic https://systematic.com/en-gb/industries/healthcare/news/news/hc-new-solution-ensures-better-cross-sector-collaboration-with-real-time-record-data/ (2023).

  50. RAND. Primary care providers may be key to avoiding bottlenecks in Alzheimer’s disease treatment. RAND https://www.rand.org/news/press/2024/01/30.html (2024).

  51. Abel, G. et al. Current experience and future potential of facilitating access to digital NHS primary care services in England: the Di-Facto mixed-methods study. Health Soc. Care Deliv. Res. 12, 1–197 (2024).

    Article  PubMed  Google Scholar 

  52. Yang, X. et al. A large language model for electronic health records. NPJ Digit. Med. 5, 194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Frederiksen, K. S. et al. A European Academy of Neurology guideline on medical management issues in dementia. Eur. J. Neurol. 27, 1805–1820 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Daye, D. et al. Implementation of clinical artificial intelligence in radiology: who decides and how? Radiology 305, 555–563 (2022).

    Article  PubMed  Google Scholar 

  55. Klooster, N. et al. Sensitive measures of cognition in mild cognitive impairment. J. Alzheimers Dis. 82, 1123–1136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Muurling, M. et al. Augmented reality versus standard tests to assess cognition and function in early Alzheimer’s disease. NPJ Digit. Med. 6, 234 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mitra, U. & Rehman, S. U. ML-powered handwriting analysis for early detection of Alzheimer’s disease. IEEE Access. 12, 69031–69050 (2024).

    Article  Google Scholar 

  58. Chen, Y. et al. Prediction models for conversion from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis. Front. Aging Neurosci. 14, 840386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barthélemy, N. R. et al. Highly accurate blood test for Alzheimer’s disease is similar or superior to clinical cerebrospinal fluid tests. Nat. Med. 30, 1085–1095 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Damsgaard, L. et al. Mapping morbidity 10 years prior to a diagnosis of young onset Alzheimer’s disease. Alzheimers Dement. 20, 2373–2383 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Oh, I. Y. et al. Extraction of clinical phenotypes for Alzheimer’s disease dementia from clinical notes using natural language processing. JAMIA Open. 6, 1–9 (2023).

    Article  Google Scholar 

  62. Lee, M. et al. Smart-home concept for remote monitoring of instrumental activities of daily living (IADL) in older adults with cognitive impairment: a proof of concept and feasibility study. Sensors 22, 6745 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rodríguez-Ruiz, A. et al. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290, 305–314 (2019).

    Article  PubMed  Google Scholar 

  64. Doudesis, D. et al. Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations. Nat. Med. 29, 1201–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Varghese, C., Harrison, E. M., O’Grady, G. & Topol, E. J. Artificial intelligence in surgery. Nat. Med. 30, 1257–1268 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Aasvang, E. K. & Meyhoff, C. S. The future of postoperative vital sign monitoring in general wards: improving patient safety through continuous artificial intelligence-enabled alert formation and reduction. Curr. Opin. Anaesthesiol. 36, 683–690 (2023).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mathias Holsey Gramkow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Wiesje van der Flier, Bianca Brijnath, Tiia Ngandu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ChatGPT: https://openai.com/chatgpt/

Coalition for Health AI (CHAI): https://chai.org/

European Health Data Space: https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space_en

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gramkow, M.H., Waldemar, G. & Frederiksen, K.S. The Digitized Memory Clinic. Nat Rev Neurol 20, 738–746 (2024). https://doi.org/10.1038/s41582-024-01033-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-024-01033-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing