Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploring the role of sex hormones and gender diversity in multiple sclerosis

Abstract

Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sex hormone receptors and the immune system.
Fig. 2: The neuroprotective role of sex hormone receptors in MS.
Fig. 3: Gender-affirming therapy.

Similar content being viewed by others

References

  1. Ahlgren, C., Odén, A. & Lycke, J. High nationwide prevalence of multiple sclerosis in Sweden. Mult. Scler. 17, 901–908 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Khayambashi, S. et al. Gender identity and sexual orientation affect health care satisfaction, but not utilization, in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 37, 101440 (2020).

    Article  PubMed  Google Scholar 

  4. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nolan, B. J., Zwickl, S., Locke, P., Zajac, J. D. & Cheung, A. S. Early access to testosterone therapy in transgender and gender-diverse adults seeking masculinization: a randomized clinical trial. JAMA Netw. Open 6, e2331919 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Leerdam, T. R., Zajac, J. D. & Cheung, A. S. The effect of gender-affirming hormones on gender dysphoria, quality of life, and psychological functioning in transgender individuals: a systematic review. Transgend. Health 8, 6–21 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zwickl, S. et al. Health needs of trans and gender diverse adults in Australia: a qualitative analysis of a national community survey. Int. J. Environ. Res. Public Health 16, 5088 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bretherton, I. et al. The health and well-being of transgender Australians: a national community survey. LGBT Health 8, 42–49 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Houssayni, S. & Nilsen, K. Transgender competent provider: identifying transgender health needs, health disparities, and health coverage. Kans. J. Med. 11, 1–18 (2018).

    PubMed  Google Scholar 

  10. Rosendale, N., Goldman, S., Ortiz, G. M. & Haber, L. A. Acute clinical care for transgender patients: a review. JAMA Intern. Med. 178, 1535–1543 (2018).

    Article  PubMed  Google Scholar 

  11. Cheung, A. S. et al. Sociodemographic and clinical characteristics of transgender adults in Australia. Transgend. Health 3, 229–238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Safer, J. D. Research gaps in medical treatment of transgender/nonbinary people. J. Clin. Invest. 131, e142029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsu, S. & Bove, R. Hormonal therapies in multiple sclerosis: a review of clinical data. Curr. Neurol. Neurosci. Rep. 24, 1–15 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Ysrraelit, M. C. & Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 156, 9–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Moulton, V. R. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 9, 2279 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brundin, P. M. A. et al. Expression of sex hormone receptor and immune response genes in peripheral blood mononuclear cells during the menstrual cycle. Front. Endocrinol. 12, 721813 (2021).

    Article  Google Scholar 

  17. Psenicka, M. W., Smith, B. C., Tinkey, R. A. & Williams, J. L. Connecting neuroinflammation and neurodegeneration in multiple sclerosis: are oligodendrocyte precursor cells a nexus of disease? Front. Cell Neurosci. 15, 654284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Ribbons, K., Lea, R., Tiedeman, C., Mackenzie, L. & Lechner-Scott, J. Ongoing increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 50-year study. Mult. Scler. 23, 1063–1071 (2017).

    Article  PubMed  Google Scholar 

  20. Westerlind, H. et al. New data identify an increasing sex ratio of multiple sclerosis in Sweden. Mult. Scler. 20, 1578–1583 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trojano, M. et al. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS ONE 7, e48078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chitnis, T. Role of puberty in multiple sclerosis risk and course. Clin. Immunol. 149, 192–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Harroud, A. et al. Effect of age at puberty on risk of multiple sclerosis: a Mendelian randomization study. Neurology 92, e1803–e1810 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kalincik, T. et al. Risk of relapse phenotype recurrence in multiple sclerosis. Mult. Scler. 20, 1511–1522 (2014).

    Article  PubMed  Google Scholar 

  25. Pozzilli, C. et al. Gender gap’ in multiple sclerosis: magnetic resonance imaging evidence. Eur. J. Neurol. 10, 95–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Weatherby, S. J. et al. A pilot study of the relationship between gadolinium-enhancing lesions, gender effect and polymorphisms of antioxidant enzymes in multiple sclerosis. J. Neurol. 247, 467–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Pelfrey, C. M., Cotleur, A. C., Lee, J. C. & Rudick, R. A. Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J. Neuroimmunol. 130, 211–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Moldovan, I. R., Cotleur, A. C., Zamor, N., Butler, R. S. & Pelfrey, C. M. Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J. Neuroimmunol. 193, 161–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Greer, J. M., Csurhes, P. A., Pender, M. P. & McCombe, P. A. Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls. J. Autoimmun. 22, 345–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Glad, S. B., Nyland, H. I., Aarseth, J. H., Riise, T. & Myhr, K. M. Long-term follow-up of benign multiple sclerosis in Hordaland County, Western Norway. Mult. Scler. 15, 942–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1039–1043 (2010).

    Article  PubMed  Google Scholar 

  32. Wolfson, C. & Confavreux, C. A Markov model of the natural history of multiple sclerosis. Neuroepidemiology 4, 227–239 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. Brain 114, 1045–1056 (1991).

    Article  PubMed  Google Scholar 

  34. Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116, 117–134 (1993).

    Article  PubMed  Google Scholar 

  35. Bove, R. M. et al. Effect of gender on late-onset multiple sclerosis. Mult. Scler. 18, 1472–1479 (2012).

    Article  PubMed  Google Scholar 

  36. Tintore, M. & Tur, C. Understanding the role of gender and hormones in multiple sclerosis. Mult. Scler. J. 20, 518–519 (2014).

    Article  Google Scholar 

  37. Millar, J. H. The influence of pregnancy on disseminated sclerosis. Proc. R. Soc. Med. 54, 4–7 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Achiron, A. et al. Parity and disability progression in relapsing-remitting multiple sclerosis. J. Neurol. 267, 3753–3762 (2020).

    Article  PubMed  Google Scholar 

  39. Jokubaitis, V. G. et al. Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann. Neurol. 80, 89–100 (2016).

    Article  PubMed  Google Scholar 

  40. McCombe, P. A. & Greer, J. M. Female reproductive issues in multiple sclerosis. Mult. Scler. J. 19, 392–402 (2013).

    Article  CAS  Google Scholar 

  41. Robinson, G. A. et al. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. Lancet Rheumatol. 4, e710–e724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunton, P. J. & Russell, J. A. Endocrine induced changes in brain function during pregnancy. Brain Res. 1364, 198–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Cole, J. H. et al. Longitudinal assessment of multiple sclerosis with the brain-age paradigm. Ann. Neurol. 88, 93–105 (2020).

    Article  PubMed  Google Scholar 

  44. Campagna, M. P. et al. Conceiving complexity: biological mechanisms underpinning the lasting effect of pregnancy on multiple sclerosis outcomes. Autoimmun. Rev. 22, 103388 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Yeh, W. Z. et al. Natalizumab, fingolimod and dimethyl fumarate use and pregnancy-related relapse and disability in women with multiple sclerosis. Neurology 96, e2989–e3002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gavoille, A. et al. Investigating the long-term effect of pregnancy on the course of multiple sclerosis using causal inference. Neurology 100, e1296–e1308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hansberg-Pastor, V., González-Arenas, A., Piña-Medina, A. G. & Camacho-Arroyo, I. Sex hormones regulate cytoskeletal proteins involved in brain plasticity. Front. Psychiatry 6, 165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barth, C., Villringer, A. & Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 9, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Marschallinger, R. et al. Geostatistical analysis of white matter lesions in multiple sclerosis identifies gender differences in lesion evolution. Front. Mol. Neurosci. 11, 460 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fazekas, F. et al. Gender differences in MRI studies on multiple sclerosis. J. Neurol. Sci. 286, 28–30 (2009).

    Article  PubMed  Google Scholar 

  52. Voskuhl, R. R. et al. Sex differences in brain atrophy in multiple sclerosis. Biol. Sex. Differ. 11, 49 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rommer, P. S. et al. Relapsing and progressive MS: the sex-specific perspective. Ther. Adv. Neurol. Disord. 13, 1756286420956495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Savettieri, G. et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J. Neurol. 251, 1208–1214 (2004).

    Article  PubMed  Google Scholar 

  56. Luetic, G. G. et al. Clinical and demographic characteristics of male MS patients included in the national registry — RelevarEM. Does sex or phenotype make the difference in the association with poor prognosis? Mult. Scler. Relat. Disord. 58, 103401 (2022).

    Article  PubMed  Google Scholar 

  57. Wilkins, A. Cerebellar dysfunction in multiple sclerosis. Front. Neurol. 8, 312 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tomassini, V. et al. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J. Neurol. Neurosurg. Psychiatry 76, 272–275 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spence, R. D. & Voskuhl, R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol. 33, 105–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Thakolwiboon, S. et al. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. Front. Aging 4, 1234572 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Caruso, C., Accardi, G., Virruso, C. & Candore, G. Sex, gender and immunosenescence: a key to understand the different lifespan between men and women? Immun. Ageing 10, 20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kalincik, T. et al. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain 136, 3609–3617 (2013).

    Article  PubMed  Google Scholar 

  63. Cheung, A. S., Wynne, K., Erasmus, J., Murray, S. & Zajac, J. D. Position statement on the hormonal management of adult transgender and gender diverse individuals. Med. J. Aust. 211, 127–133 (2019).

    Article  PubMed  Google Scholar 

  64. Bove, R. et al. Oral contraceptives and MS disease activity in a contemporary real-world cohort. Mult. Scler. J. 24, 227–230 (2018).

    Article  Google Scholar 

  65. Otero-Romero, S. et al. Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Mult. Scler. J. 28, 950–957 (2022).

    Article  CAS  Google Scholar 

  66. Chen, C. S. et al. Comparison of MS inflammatory activity in women using continuous versus cyclic combined oral contraceptives. Mult. Scler. Relat. Disord. 41, 101970 (2020).

    Article  PubMed  Google Scholar 

  67. Pozzilli, C. et al. Oral contraceptives combined with interferon β in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e120 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Seifert, H. A. et al. Estrogen protects both sexes against EAE by promoting common regulatory cell subtypes independent of endogenous estrogen. Metab. Brain Dis. 32, 1747–1754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sicotte, N. L. et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol. 52, 421–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Voskuhl, R. R. et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 35–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Voskuhl, R. et al. Decreased neurofilament light chain levels in estriol-treated multiple sclerosis. Ann. Clin. Transl. Neurol. 9, 1316–1320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Soldan, S. S., Alvarez Retuerto, A. I., Sicotte, N. L. & Voskuhl, R. R. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J. Immunol. 171, 6267–6274 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. MacKenzie-Graham, A. et al. Estriol-mediated neuroprotection in multiple sclerosis localized by voxel-based morphometry. Brain Behav. 8, e01086 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Støer, N. C. et al. Menopausal hormone therapy and breast cancer risk: a population-based cohort study of 1.3 million women in Norway. Br. J. Cancer 131, 126–137 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gold, S. M. & Voskuhl, R. R. Estrogen and testosterone therapies in multiple sclerosis. Prog. Brain Res. 175, 239–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi, K. et al. Safety and efficacy of oestriol for symptoms of natural or surgically induced menopause. Hum. Reprod. 15, 1028–1036 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Bridge, F., Butzkueven, H., Van der Walt, A. & Jokubaitis, V. G. The impact of menopause on multiple sclerosis. Autoimmun. Rev. 22, 103363 (2023).

    Article  PubMed  Google Scholar 

  78. Guo, H. et al. The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr. Neuropharmacol. 18, 485–500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lord, C., Buss, C., Lupien, S. J. & Pruessner, J. C. Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neurobiol. Aging 29, 95–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Coughlan, G. T. et al. Association of age at menopause and hormone therapy use with tau and β-amyloid positron emission tomography. JAMA Neurol. 80, 462–473 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bove, R. et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82, 222–229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Espeland, M. A. et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern. Med. 173, 1429–1436 (2013).

    Article  PubMed  Google Scholar 

  84. Gleason, C. E. et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-Cognitive and Affective Study. PLoS Med. 12, e1001833 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Davison, S. L. et al. Continuous-combined oral estradiol/drospirenone has no detrimental effect on cognitive performance and improves estrogen deficiency symptoms in early postmenopausal women: a randomized placebo-controlled trial. Menopause 20, 1020–1026 (2013).

    Article  PubMed  Google Scholar 

  86. Hodis, H. N. et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N. Engl. J. Med. 374, 1221–1231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bove, R. et al. Hormone therapy use and physical quality of life in postmenopausal women with multiple sclerosis. Neurology 87, 1457–1463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bove, R. et al. Patients report worse MS symptoms after menopause: findings from an online cohort. Mult. Scler. Relat. Disord. 4, 18–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Kopp, T. I., Lidegaard, Ø. & Magyari, M. Hormone therapy and disease activity in Danish women with multiple sclerosis: a population-based cohort study. Eur. J. Neurol. 29, 1753–1762 (2022).

    Article  PubMed  Google Scholar 

  90. Bove, R. et al. A hormonal therapy for menopausal women with MS: a phase Ib/IIa randomized controlled trial. Mult. Scler. Relat. Disord. 61, 103747 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Juutinen, L., Ahinko, K., Tinkanen, H., Rosti-Otajärvi, E. & Sumelahti, M.-L. Menopausal symptoms and hormone therapy in women with multiple sclerosis: a baseline-controlled study. Mult. Scler. Relat. Disord. 67, 104098 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. DonCarlos, L. L., Azcoitia, I. & Garcia-Segura, L. M. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 34, S113–S122 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Khan, M. M., Wakade, C., de Sevilla, L. & Brann, D. W. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J. Steroid Biochem. Mol. Biol. 146, 38–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Arevalo, M. A., Santos-Galindo, M., Lagunas, N., Azcoitia, I. & Garcia-Segura, L. M. Selective estrogen receptor modulators as brain therapeutic agents. J. Mol. Endocrinol. 46, R1–R9 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Newhouse, P. et al. Tamoxifen improves cholinergically modulated cognitive performance in postmenopausal women. Neuropsychopharmacology 38, 2632–2643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liao, K.-F., Lin, C.-L. & Lai, S.-W. Nationwide case-control study examining the association between tamoxifen use and Alzheimer’s disease in aged women with breast cancer in Taiwan. Front. Pharmacol. 8, 295503 (2017).

    Article  Google Scholar 

  97. Underwood, E. et al. Cognitive sequelae of endocrine therapy in women treated for breast cancer: a meta-analysis. Breast Cancer Res. Treat. 168, 299–310 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Branigan, G. L., Soto, M., Neumayer, L., Rodgers, K. & Brinton, R. D. Association between hormone-modulating breast cancer therapies and incidence of neurodegenerative outcomes for women with breast cancer. JAMA Netw. Open 3, e201541 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rankin, K. A. et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors. J. Neurosci. 39, 2184–2194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gonzalez, G. A. et al. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system. Sci. Rep. 6, 31599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nylander, A. et al. Re-WRAP (remyelination for women at risk of axonal loss and progression): a phase II randomized placebo-controlled delayed-start trial of bazedoxifene for myelin repair in multiple sclerosis. Contemp. Clin. Trials 134, 107333 (2023).

    Article  PubMed  Google Scholar 

  102. Mendell, A. L. & MacLusky, N. J. Neurosteroid metabolites of gonadal steroid hormones in neuroprotection: implications for sex differences in neurodegenerative disease. Front. Mol. Neurosci. 11, 359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jure, I., De Nicola, A. F. & Labombarda, F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen. Res. 14, 2029–2034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bansil, S., Lee, H. J., Jindal, S., Holtz, C. R. & Cook, S. D. Correlation between sex hormones and magnetic resonance imaging lesions in multiple sclerosis. Acta Neurol. Scand. 99, 91–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Labombarda, F. et al. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp. Neurol. 231, 135–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Costanza, M. & Pedotti, R. Prolactin: friend or foe in central nervous system autoimmune inflammation? Int. J. Mol. Sci. 17, 2026 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gregg, C. et al. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci. 27, 1812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Duc Nguyen, H. et al. Association between serum prolactin levels and neurodegenerative diseases: systematic review and meta-analysis. Neuroimmunomodulation 29, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Zhornitsky, S., Yong, V. W., Weiss, S. & Metz, L. M. Prolactin in multiple sclerosis. Mult. Scler. 19, 15–23 (2013).

    Article  PubMed  Google Scholar 

  110. Bissay, V. et al. Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin. Neuropharmacol. 17, 473–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Pakpoor, J. et al. Breastfeeding and multiple sclerosis relapses: a meta-analysis. J. Neurol. 259, 2246–2248 (2012).

    Article  PubMed  Google Scholar 

  112. Van Der Walt, A., Nguyen, A.-L. & Jokubaitis, V. Family planning, antenatal and post partum care in multiple sclerosis: a review and update. Med. J. Aust. 211, 230–236 (2019).

    Article  PubMed  Google Scholar 

  113. Son, S. W. et al. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J. Neurochem. 136, 106–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Meydan, S. et al. Effects of testosterone on orchiectomy-induced oxidative damage in the rat hippocampus. J. Chem. Neuroanat. 40, 281–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Ziehn, M. O. et al. Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J. Neurosci. 32, 12312–12324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hussain, R. et al. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136, 132–146 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bove, R. et al. Low testosterone is associated with disability in men with multiple sclerosis. Mult. Scler. 20, 1584–1592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hammad, M. A. M. et al. Multiple sclerosis and hypogonadism: is there a relationship? Sex. Med. Rev. 12, 178–182 (2024).

    Article  PubMed  Google Scholar 

  119. Chitnis, T. The role of testosterone in MS risk and course. Mult. Scler. 24, 36–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Sicotte, N. L. et al. Testosterone treatment in multiple sclerosis: a pilot study. Arch. Neurol. 64, 683–688 (2007).

    Article  PubMed  Google Scholar 

  121. Kurth, F. et al. Neuroprotective effects of testosterone treatment in men with multiple sclerosis. Neuroimage Clin. 4, 454–460 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gold, S. M., Chalifoux, S., Giesser, B. S. & Voskuhl, R. R. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J. Neuroinflamm. 5, 32 (2008).

    Article  Google Scholar 

  123. Metzger-Peter, K. et al. The TOTEM RRMS (Testosterone Treatment on neuroprotection and Myelin Repair in Relapsing Remitting Multiple Sclerosis) trial: study protocol for a randomized, double-blind, placebo-controlled trial. Trials 21, 591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Triantafyllou, N. et al. Association of sex hormones and glucose metabolism with the severity of multiple sclerosis. Int. J. Neurosci. 126, 797–804 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Bove, R. et al. Effect of assisted reproductive technology on multiple sclerosis relapses: case series and meta-analysis. Mult. Scler. 26, 1410–1419 (2020).

    Article  PubMed  Google Scholar 

  126. Mainguy, M. et al. Assessing the risk of relapse requiring corticosteroids after in vitro fertilization in women with multiple sclerosis. Neurology 99, e1916–e1925 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Graham, E. L. et al. Inflammatory activity after diverse fertility treatments: a multicenter analysis in the modern multiple sclerosis treatment era. Neurol. Neuroimmunol. Neuroinflamm. 10, e200106 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Nolan, B. J. & Cheung, A. S. Gender-affirming hormone therapy for transgender and gender-diverse adults in Australia. Intern. Med. J. 54, 1450–1457 (2024).

    Article  CAS  PubMed  Google Scholar 

  129. Coleman, E. et al. Standards of Care for the health of transgender and gender diverse people, version 8. Int. J. Transgend. Health 23 (Suppl. 1), S1–S259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

    Article  PubMed Central  Google Scholar 

  132. Piatek, P. et al. Multiple sclerosis CD49d+CD154+ as myelin-specific lymphocytes induced during remyelination. Cells 9, 15 (2020).

    Article  CAS  Google Scholar 

  133. Shepherd, R. et al. Gender-affirming hormone therapy induces specific DNA methylation changes in blood. Clin. Epigenet. 14, 24 (2022).

    Article  CAS  Google Scholar 

  134. Giltay, E. J. et al. In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. J. Clin. Endocrinol. Metab. 85, 1648–1657 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Giltay, E. J., Gooren, L. J., Emeis, J. J., Kooistra, T. & Stehouwer, C. D. Oral ethinyl estradiol, but not transdermal 17beta-estradiol, increases plasma C-reactive protein levels in men. Thromb. Haemost. 84, 359–360 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Landry, A., Docherty, P., Ouellette, S. & Cartier, L. J. Causes and outcomes of markedly elevated C-reactive protein levels. Can. Fam. Physician 63, e316–e323 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Giltay, E. J. et al. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects. J. Endocrinol. 187, 109–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Nie, J., Li, Y. Y., Zheng, S. G., Tsun, A. & Li, B. FOXP3+ Treg cells and gender bias in autoimmune diseases. Front. Immunol. 6, 493 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dejaco, C., Duftner, C., Grubeck-Loebenstein, B. & Schirmer, M. Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117, 289–300 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ramos, S., Ingenito, F., Mormandi, E., Nagelberg, A. & Otero, P. High prevalence of altered immunological biomarkers in a transgender population. Autoimmun. Infect. Dis. https://doi.org/10.16966/2470-1025.125 (2020).

  141. White, A. A. et al. Potential immunological effects of gender-affirming hormone therapy in transgender people — an unexplored area of research. Ther. Adv. Endocrinol. Metab. 13, 20420188221139612 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schutte, M. H. et al. The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLoS ONE 17, e0261312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gooren, L. J., Kreukels, B., Lapauw, B. & Giltay, E. J. (Patho)physiology of cross-sex hormone administration to transsexual people: the potential impact of male-female genetic differences. Andrologia 47, 5–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Butterworth, M., McClellan, B. & Allansmith, M. Influence of sex in immunoglobulin levels. Nature 214, 1224–1225 (1967).

    Article  CAS  PubMed  Google Scholar 

  145. Stoop, J. W., Zegers, B. J., Sander, P. C. & Ballieux, R. E. Serum immunoglobulin levels in healthy children and adults. Clin. Exp. Immunol. 4, 101–112 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pakpoor, J., Wotton, C. J., Schmierer, K., Giovannoni, G. & Goldacre, M. J. Gender identity disorders and multiple sclerosis risk: a national record-linkage study. Mult. Scler. 22, 1759–1762 (2016).

    Article  PubMed  Google Scholar 

  147. Miles, C., Green, R., Sanders, G. & Hines, M. Estrogen and memory in a transsexual population. Horm. Behav. 34, 199–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Kranz, G. S. et al. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals. Brain Struct. Funct. 223, 321–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Zubiaurre-Elorza, L., Junque, C., Gómez-Gil, E. & Guillamon, A. Effects of cross-sex hormone treatment on cortical thickness in transsexual individuals. J. Sex. Med. 11, 1248–1261 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Lavorgna, L. et al. Health-care disparities stemming from sexual orientation of Italian patients with multiple sclerosis: a cross-sectional web-based study. Mult. Scler. Relat. Disord. 13, 28–32 (2017).

    Article  PubMed  Google Scholar 

  151. White Hughto, J. M., Reisner, S. L. & Pachankis, J. E. Transgender stigma and health: a critical review of stigma determinants, mechanisms, and interventions. Soc. Sci. Med. 147, 222–231 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Conron, K. J., Mimiaga, M. J. & Landers, S. J. A population-based study of sexual orientation identity and gender differences in adult health. Am. J. Public Health 100, 1953–1960 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Flower, L. et al. Management of transgender patients in critical care. J. Intensive Care Soc. 24, 320–327 (2023).

    Article  PubMed  Google Scholar 

  154. Anderson, A. et al. Experiences of sexual and gender minority people living with multiple sclerosis in Northern California: an exploratory study. Mult. Scler. Relat. Disord. 55, 103214 (2021).

    Article  PubMed  Google Scholar 

  155. James, S. et al. The report of the 2015 US Transgender Survey (National Center for Transgender Equality, 2016).

  156. Rosendale, N. et al. American Academy of Neurology members’ preparedness to treat sexual and gender minorities. Neurology 93, 159–166 (2019).

    Article  PubMed  Google Scholar 

  157. Rosendale, N., Wong, J. O., Flatt, J. D. & Whitaker, E. Sexual and gender minority health in neurology: a scoping review. JAMA Neurol. 78, 747–754 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Marrie, R. A. et al. Etiology, effects and management of comorbidities in multiple sclerosis: recent advances. Front. Immunol. 14, 1197195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hobart, J. et al. International consensus on quality standards for brain health-focused care in multiple sclerosis. Mult. Scler. 25, 1809–1818 (2019).

    Article  PubMed  Google Scholar 

  160. Dispenza, F., Harper, L. S. & Harrigan, M. A. Subjective health among LGBT persons living with disabilities: a qualitative content analysis. Rehabil. Psychol. 61, 251–259 (2016).

    Article  PubMed  Google Scholar 

  161. Huo, S. et al. Brain health outcomes in sexual and gender minority groups. Neurology 103, e209863 (2024).

    Article  PubMed  Google Scholar 

  162. Yarns, B. C., Abrams, J. M., Meeks, T. W. & Sewell, D. D. The mental health of older LGBT adults. Curr. Psychiatry Rep. 18, 60 (2016).

    Article  PubMed  Google Scholar 

  163. Minnis, A. M. et al. Differences in chronic disease behavioral indicators by sexual orientation and sex. J. Public Health Manag. Pract. 22, S25–S32 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Daniel, H. & Butkus, R. Lesbian, gay, bisexual, and transgender health disparities: executive summary of a policy position paper from the American College of Physicians. Ann. Intern. Med. 163, 135–137 (2015).

    Article  PubMed  Google Scholar 

  165. Dragon, C. N., Guerino, P., Ewald, E. & Laffan, A. M. Transgender Medicare beneficiaries and chronic conditions: exploring fee-for-service claims data. LGBT Health 4, 404–411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Warrier, V. et al. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 11, 3959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Strang, J. F. et al. Revisiting the link: evidence of the rates of autism in studies of gender diverse individuals. J. Am. Acad. Child Adolesc. Psychiatry 57, 885–887 (2018).

    Article  PubMed  Google Scholar 

  168. Thrower, E., Bretherton, I., Pang, K. C., Zajac, J. D. & Cheung, A. S. Prevalence of autism spectrum disorder and attention-deficit hyperactivity disorder amongst individuals with gender dysphoria: a systematic review. J. Autism Dev. Disord. 50, 695–706 (2020).

    Article  PubMed  Google Scholar 

  169. Melamed, E. & Lee, M. W. Multiple sclerosis and cancer: the Ying-Yang effect of disease modifying therapies. Front. Immunol. 10, 2954 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Sterling, J. & Garcia, M. M. Cancer screening in the transgender population: a review of current guidelines, best practices, and a proposed care model. Transl. Androl. Urol. 9, 2771–2785 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Leszek, J. et al. The links between cardiovascular diseases and Alzheimer’s disease. Curr. Neuropharmacol. 19, 152–169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mincu, R. I. et al. Cardiovascular dysfunction in multiple sclerosis. Maedica 10, 364–370 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Rexrode, K. M. et al. The impact of sex and gender on stroke. Circ. Res. 130, 512–528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fernández-Balsells, M. M. et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 95, 2560–2575 (2010).

    Article  PubMed  Google Scholar 

  175. Ohlander, S. J., Varghese, B. & Pastuszak, A. W. Erythrocytosis following testosterone therapy. Sex. Med. Rev. 6, 77–85 (2018).

    Article  PubMed  Google Scholar 

  176. Stergiopoulos, K., Brennan, J. J., Mathews, R., Setaro, J. F. & Kort, S. Anabolic steroids, acute myocardial infarction and polycythemia: a case report and review of the literature. Vasc. Health Risk Manag. 4, 1475–1480 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Giacomelli, G. & Meriggiola, M. C. Bone health in transgender people: a narrative review. Ther. Adv. Endocrinol. Metab. 13, 20420188221099346 (2022).

  178. Cheung, A. S., Nolan, B. J. & Zwickl, S. Transgender health and the impact of aging and menopause. Climacteric 26, 256–262 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Becker, T., Chin, M. & Bates, N. (eds) Measuring Sex, Gender Identity, and Sexual Orientation (National Academies Press, 2022).

  180. Marrie, R. A. et al. Enhancing diversity of clinical trial populations in multiple sclerosis. Mult. Scler. 29, 1174–1185 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hoffmann, J. P., Liu, J. A., Seddu, K. & Klein, S. L. Sex hormone signaling and regulation of immune function. Immunity 56, 2472–2491 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Villa, A., Vegeto, E., Poletti, A. & Maggi, A. Estrogens, neuroinflammation, and neurodegeneration. Endocr. Rev. 37, 372–402 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brann, D. W., Dhandapani, K., Wakade, C., Mahesh, V. B. & Khan, M. M. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72, 381–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee, E. et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J. Biol. Chem. 287, 26817–26828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Crawford, D. K. et al. Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination. Brain 133, 2999–3016 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Maggioli, E. et al. Estrogen protects the blood–brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav. Immun. 51, 212–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Druckmann, R. & Druckmann, M.-A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 97, 389–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Kolatorova, L., Vitku, J., Suchopar, J., Hill, M. & Parizek, A. Progesterone: a steroid with wide range of effects in physiology as well as human medicine. Int. J. Mol. Sci. 23, 7989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Matejuk, A., Hopke, C., Vandenbark, A. A., Hurn, P. D. & Offner, H. Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy. J. Immunol. 174, 2387–2395 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Dalal, M., Kim, S. & Voskuhl, R. R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 159, 3–6 (1997).

    Article  CAS  PubMed  Google Scholar 

  192. Corrales, J. et al. Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency. J. Endocrinol. 189, 595–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).

    Article  CAS  PubMed  Google Scholar 

  195. Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+ CD25+ Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Spritzer, M. D. & Roy, E. A. Testosterone and adult neurogenesis. Biomolecules 10, 225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Reddy, D. S. & Jian, K. The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J. Pharmacol. Exp. Ther. 334, 1031–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ahlbom, E., Prins, G. S. & Ceccatelli, S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 892, 255–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. Sarchielli, E. et al. Neuroprotective effects of testosterone in the hypothalamus of an animal model of metabolic syndrome. Int. J. Mol. Sci. 22, 1589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Toro-Urrego, N., Garcia-Segura, L. M., Echeverria, V. & Barreto, G. E. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front. Aging Neurosci. 8, 152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Bielecki, B. et al. Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc. Natl Acad. Sci. USA 113, 14829–14834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hellberg, S. et al. Progesterone dampens immune responses in in vitro activated CD4+ T cells and affects genes associated with autoimmune diseases that improve during pregnancy. Front. Immunol. 12, 672168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Santana-Sánchez, P., Vaquero-García, R., Legorreta-Haquet, M. V., Chávez-Sánchez, L. & Chávez-Rueda, A. K. Hormones and B-cell development in health and autoimmunity. Front. Immunol. 15, 1385501 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Altuwaijri, S. et al. Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B cells. Mol. Endocrinol. 23, 444–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Olsen, N. J., Gu, X. & Kovacs, W. J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest. 108, 1697–1704 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Nilsson, N. & Carlsten, H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell Immunol. 158, 131–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  207. Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. 180, 5746–5753 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Page, S. T. et al. Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites. Am. J. Physiol. Endocrinol. Metab. 290, E856–E863 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Gagliano-Jucá, T. et al. Differential effects of testosterone on circulating neutrophils, monocytes, and platelets in men: findings from two trials. Andrology 8, 1324–1331 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Zhang, Y.-H., He, M., Wang, Y. & Liao, A.-H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol. 8, 120 (2017).

    PubMed  PubMed Central  Google Scholar 

  211. Rettew, J. A., Huet-Hudson, Y. M. & Marriott, I. Testosterone reduces macrophage expression in the mouse of Toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Chen, W. et al. Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE‐independent mast cell degranulation elicited by neuromuscular blocking agents. Exp. Dermatol. 19, 302–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Vasiadi, M., Kempuraj, D., Boucher, W., Kalogeromitros, D. & Theoharides, T. C. Progesterone inhibits mast cell secretion. Int. J. Immunopathol. Pharmacol. 19, 787–794 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Guhl, S., Artuc, M., Zuberbier, T. & Babina, M. Testosterone exerts selective anti-inflammatory effects on human skin mast cells in a cell subset dependent manner. Exp. Dermatol. 21, 878–880 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Laffont, S., Seillet, C. & Guéry, J. C. Estrogen receptor-dependent regulation of dendritic cell development and function. Front. Immunol. 8, 108 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Khaw, Y. M. et al. Estrogen receptor alpha signaling in dendritic cells modulates autoimmune disease phenotype in mice. EMBO Rep. 24, e54228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Butts, C. L. et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend. Med. 5, 434–447 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Mackern-Oberti, J. P., Jara, E. L., Riedel, C. A. & Kalergis, A. M. Hormonal modulation of dendritic cells differentiation, maturation and function: implications for the initiation and progress of systemic autoimmunity. Arch. Immunol. Ther. Exp. 65, 123–136 (2017).

    Article  CAS  Google Scholar 

  219. Yang, P. et al. Progesterone alters the activation and typing of the microglia in the optic nerve crush model. Exp. Eye Res. 212, 108805 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Aryanpour, R. et al. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int. Immunopharmacol. 51, 131–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Barreto, G., Veiga, S., Azcoitia, I., Garcia-Segura, L. M. & Garcia-Ovejero, D. Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone. Eur. J. Neurosci. 25, 3039–3046 (2007).

    Article  PubMed  Google Scholar 

  222. O’Connor, J. L. & Nissen, J. C. The pathological activation of microglia is modulated by sexually dimorphic pathways. Int. J. Mol. Sci. 24, 4739 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Schumacher, M. et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front. Neurosci. 6, 10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Giraud, S. N., Caron, C. M., Pham-Dinh, D., Kitabgi, P. & Nicot, A. B. Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes. Proc. Natl Acad. Sci. USA 107, 8416–8421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Dueñas, M. et al. Gonadal hormone regulation of insulin-like growth factor-I like immunoreactivity in hypothalamic astroglia of developing and adult rats. Neuroendocrinology 59, 528–538 (1994).

    Article  PubMed  Google Scholar 

  226. Turniak-Kusy, M. et al. Testosterone inhibits secretion of the pro-inflammatory chemokine CXCL1 from astrocytes. Curr. Issues Mol. Biol. 46, 2105–2118 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Buendía-González, F. O. & Legorreta-Herrera, M. The similarities and differences between the effects of testosterone and DHEA on the innate and adaptive immune response. Biomolecules 12, 1768 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Zwahlen, M. & Stute, P. Impact of progesterone on the immune system in women: a systematic literature review. Arch. Gynecol. Obstet. 309, 37–46 (2024).

    Article  CAS  PubMed  Google Scholar 

  229. Sciarra, F., Campolo, F., Franceschini, E., Carlomagno, F. & Venneri, M. A. Gender-specific impact of sex hormones on the immune system. Int. J. Mol. Sci. 24, 6302 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lakshmikanth, T. et al. Immune system adaptation during gender-affirming testosterone treatment. Nature 633, 155–164 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sellau, J., Groneberg, M. & Lotter, H. Androgen-dependent immune modulation in parasitic infection. Semin. Immunopathol. 41, 213–224 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Cheung, A. S. et al. Approach to interpreting common laboratory pathology tests in transgender individuals. J. Clin. Endocrinol. Metab. 106, 893–901 (2021).

    Article  PubMed  Google Scholar 

  233. Lim, H. Y. et al. Global coagulation assays in transgender women on oral and transdermal estradiol therapy. J. Clin. Endocrinol. Metab. 105, e2369–e2377 (2020).

    Article  Google Scholar 

  234. Dolladille, C. et al. Association between disease-modifying therapies prescribed to persons with multiple sclerosis and cancer: a WHO pharmacovigilance database analysis. Neurotherapeutics 18, 1657–1664 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Papadopoulos, D. et al. Disease-modifying treatments for multiple sclerosis have not affected the incidence of neoplasms in clinical trials over 3 decades: a meta-analysis with meta-regression. J. Neurol. 269, 3226–3237 (2022).

    Article  PubMed  Google Scholar 

  236. Ghajarzadeh, M., Mohammadi, A. & Sahraian, M. A. Risk of cancer in multiple sclerosis (MS): a systematic review and meta-analysis. Autoimmun. Rev. 19, 102650 (2020).

    Article  PubMed  Google Scholar 

  237. McFarlane, T., Zajac, J. D. & Cheung, A. S. Gender-affirming hormone therapy and the risk of sex hormone-dependent tumours in transgender individuals — a systematic review. Clin. Endocrinol. 89, 700–711 (2018).

    Article  CAS  Google Scholar 

  238. Bretherton, I. et al. Bone microarchitecture in transgender adults: a cross-sectional study. J. Bone Min. Res. 37, 643–648 (2022).

    Article  CAS  Google Scholar 

  239. Wiepjes, C. M. et al. Bone safety during the first ten years of gender-affirming hormonal treatment in transwomen and transmen. J. Bone Min. Res. 34, 447–454 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.N. researched data for the article. All authors contributed substantially to discussion of the content. C.N., A.S.C. and V.G.J. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Cassie Nesbitt or Vilija G. Jokubaitis.

Ethics declarations

Competing interests

A.S.C. has received product from Besins Healthcare for investigator-initiated clinical studies using oestradiol and progesterone. No monetary support from Besins Healthcare has been received for any studies, and Besins Healthcare have had no input into study design, data analysis or writing of any manuscripts.

Peer review

Peer review information

Nature Reviews Neurology thanks Cole Harrington, Jorge Correale, Melinda Magyari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesbitt, C., Van Der Walt, A., Butzkueven, H. et al. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol 21, 48–62 (2025). https://doi.org/10.1038/s41582-024-01042-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-024-01042-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing