Abstract
Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Ahlgren, C., Odén, A. & Lycke, J. High nationwide prevalence of multiple sclerosis in Sweden. Mult. Scler. 17, 901–908 (2011).
Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).
Khayambashi, S. et al. Gender identity and sexual orientation affect health care satisfaction, but not utilization, in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 37, 101440 (2020).
Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).
Nolan, B. J., Zwickl, S., Locke, P., Zajac, J. D. & Cheung, A. S. Early access to testosterone therapy in transgender and gender-diverse adults seeking masculinization: a randomized clinical trial. JAMA Netw. Open 6, e2331919 (2023).
van Leerdam, T. R., Zajac, J. D. & Cheung, A. S. The effect of gender-affirming hormones on gender dysphoria, quality of life, and psychological functioning in transgender individuals: a systematic review. Transgend. Health 8, 6–21 (2023).
Zwickl, S. et al. Health needs of trans and gender diverse adults in Australia: a qualitative analysis of a national community survey. Int. J. Environ. Res. Public Health 16, 5088 (2019).
Bretherton, I. et al. The health and well-being of transgender Australians: a national community survey. LGBT Health 8, 42–49 (2021).
Houssayni, S. & Nilsen, K. Transgender competent provider: identifying transgender health needs, health disparities, and health coverage. Kans. J. Med. 11, 1–18 (2018).
Rosendale, N., Goldman, S., Ortiz, G. M. & Haber, L. A. Acute clinical care for transgender patients: a review. JAMA Intern. Med. 178, 1535–1543 (2018).
Cheung, A. S. et al. Sociodemographic and clinical characteristics of transgender adults in Australia. Transgend. Health 3, 229–238 (2018).
Safer, J. D. Research gaps in medical treatment of transgender/nonbinary people. J. Clin. Invest. 131, e142029 (2021).
Hsu, S. & Bove, R. Hormonal therapies in multiple sclerosis: a review of clinical data. Curr. Neurol. Neurosci. Rep. 24, 1–15 (2024).
Ysrraelit, M. C. & Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 156, 9–22 (2019).
Moulton, V. R. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 9, 2279 (2018).
Brundin, P. M. A. et al. Expression of sex hormone receptor and immune response genes in peripheral blood mononuclear cells during the menstrual cycle. Front. Endocrinol. 12, 721813 (2021).
Psenicka, M. W., Smith, B. C., Tinkey, R. A. & Williams, J. L. Connecting neuroinflammation and neurodegeneration in multiple sclerosis: are oligodendrocyte precursor cells a nexus of disease? Front. Cell Neurosci. 15, 654284 (2021).
Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).
Ribbons, K., Lea, R., Tiedeman, C., Mackenzie, L. & Lechner-Scott, J. Ongoing increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 50-year study. Mult. Scler. 23, 1063–1071 (2017).
Westerlind, H. et al. New data identify an increasing sex ratio of multiple sclerosis in Sweden. Mult. Scler. 20, 1578–1583 (2014).
Trojano, M. et al. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS ONE 7, e48078 (2012).
Chitnis, T. Role of puberty in multiple sclerosis risk and course. Clin. Immunol. 149, 192–200 (2013).
Harroud, A. et al. Effect of age at puberty on risk of multiple sclerosis: a Mendelian randomization study. Neurology 92, e1803–e1810 (2019).
Kalincik, T. et al. Risk of relapse phenotype recurrence in multiple sclerosis. Mult. Scler. 20, 1511–1522 (2014).
Pozzilli, C. et al. Gender gap’ in multiple sclerosis: magnetic resonance imaging evidence. Eur. J. Neurol. 10, 95–97 (2003).
Weatherby, S. J. et al. A pilot study of the relationship between gadolinium-enhancing lesions, gender effect and polymorphisms of antioxidant enzymes in multiple sclerosis. J. Neurol. 247, 467–470 (2000).
Pelfrey, C. M., Cotleur, A. C., Lee, J. C. & Rudick, R. A. Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J. Neuroimmunol. 130, 211–223 (2002).
Moldovan, I. R., Cotleur, A. C., Zamor, N., Butler, R. S. & Pelfrey, C. M. Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J. Neuroimmunol. 193, 161–169 (2008).
Greer, J. M., Csurhes, P. A., Pender, M. P. & McCombe, P. A. Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls. J. Autoimmun. 22, 345–352 (2004).
Glad, S. B., Nyland, H. I., Aarseth, J. H., Riise, T. & Myhr, K. M. Long-term follow-up of benign multiple sclerosis in Hordaland County, Western Norway. Mult. Scler. 15, 942–950 (2009).
Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1039–1043 (2010).
Wolfson, C. & Confavreux, C. A Markov model of the natural history of multiple sclerosis. Neuroepidemiology 4, 227–239 (1985).
Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. Brain 114, 1045–1056 (1991).
Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116, 117–134 (1993).
Bove, R. M. et al. Effect of gender on late-onset multiple sclerosis. Mult. Scler. 18, 1472–1479 (2012).
Tintore, M. & Tur, C. Understanding the role of gender and hormones in multiple sclerosis. Mult. Scler. J. 20, 518–519 (2014).
Millar, J. H. The influence of pregnancy on disseminated sclerosis. Proc. R. Soc. Med. 54, 4–7 (1961).
Achiron, A. et al. Parity and disability progression in relapsing-remitting multiple sclerosis. J. Neurol. 267, 3753–3762 (2020).
Jokubaitis, V. G. et al. Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann. Neurol. 80, 89–100 (2016).
McCombe, P. A. & Greer, J. M. Female reproductive issues in multiple sclerosis. Mult. Scler. J. 19, 392–402 (2013).
Robinson, G. A. et al. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. Lancet Rheumatol. 4, e710–e724 (2022).
Brunton, P. J. & Russell, J. A. Endocrine induced changes in brain function during pregnancy. Brain Res. 1364, 198–215 (2010).
Cole, J. H. et al. Longitudinal assessment of multiple sclerosis with the brain-age paradigm. Ann. Neurol. 88, 93–105 (2020).
Campagna, M. P. et al. Conceiving complexity: biological mechanisms underpinning the lasting effect of pregnancy on multiple sclerosis outcomes. Autoimmun. Rev. 22, 103388 (2023).
Yeh, W. Z. et al. Natalizumab, fingolimod and dimethyl fumarate use and pregnancy-related relapse and disability in women with multiple sclerosis. Neurology 96, e2989–e3002 (2021).
Gavoille, A. et al. Investigating the long-term effect of pregnancy on the course of multiple sclerosis using causal inference. Neurology 100, e1296–e1308 (2023).
Hansberg-Pastor, V., González-Arenas, A., Piña-Medina, A. G. & Camacho-Arroyo, I. Sex hormones regulate cytoskeletal proteins involved in brain plasticity. Front. Psychiatry 6, 165 (2015).
Barth, C., Villringer, A. & Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 9, 37 (2015).
Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).
Marschallinger, R. et al. Geostatistical analysis of white matter lesions in multiple sclerosis identifies gender differences in lesion evolution. Front. Mol. Neurosci. 11, 460 (2018).
Fazekas, F. et al. Gender differences in MRI studies on multiple sclerosis. J. Neurol. Sci. 286, 28–30 (2009).
Voskuhl, R. R. et al. Sex differences in brain atrophy in multiple sclerosis. Biol. Sex. Differ. 11, 49 (2020).
Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).
Rommer, P. S. et al. Relapsing and progressive MS: the sex-specific perspective. Ther. Adv. Neurol. Disord. 13, 1756286420956495 (2020).
Savettieri, G. et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J. Neurol. 251, 1208–1214 (2004).
Luetic, G. G. et al. Clinical and demographic characteristics of male MS patients included in the national registry — RelevarEM. Does sex or phenotype make the difference in the association with poor prognosis? Mult. Scler. Relat. Disord. 58, 103401 (2022).
Wilkins, A. Cerebellar dysfunction in multiple sclerosis. Front. Neurol. 8, 312 (2017).
Tomassini, V. et al. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J. Neurol. Neurosurg. Psychiatry 76, 272–275 (2005).
Spence, R. D. & Voskuhl, R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol. 33, 105–115 (2012).
Thakolwiboon, S. et al. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. Front. Aging 4, 1234572 (2023).
Caruso, C., Accardi, G., Virruso, C. & Candore, G. Sex, gender and immunosenescence: a key to understand the different lifespan between men and women? Immun. Ageing 10, 20 (2013).
Kalincik, T. et al. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain 136, 3609–3617 (2013).
Cheung, A. S., Wynne, K., Erasmus, J., Murray, S. & Zajac, J. D. Position statement on the hormonal management of adult transgender and gender diverse individuals. Med. J. Aust. 211, 127–133 (2019).
Bove, R. et al. Oral contraceptives and MS disease activity in a contemporary real-world cohort. Mult. Scler. J. 24, 227–230 (2018).
Otero-Romero, S. et al. Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Mult. Scler. J. 28, 950–957 (2022).
Chen, C. S. et al. Comparison of MS inflammatory activity in women using continuous versus cyclic combined oral contraceptives. Mult. Scler. Relat. Disord. 41, 101970 (2020).
Pozzilli, C. et al. Oral contraceptives combined with interferon β in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e120 (2015).
Seifert, H. A. et al. Estrogen protects both sexes against EAE by promoting common regulatory cell subtypes independent of endogenous estrogen. Metab. Brain Dis. 32, 1747–1754 (2017).
Sicotte, N. L. et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol. 52, 421–428 (2002).
Voskuhl, R. R. et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 35–46 (2016).
Voskuhl, R. et al. Decreased neurofilament light chain levels in estriol-treated multiple sclerosis. Ann. Clin. Transl. Neurol. 9, 1316–1320 (2022).
Soldan, S. S., Alvarez Retuerto, A. I., Sicotte, N. L. & Voskuhl, R. R. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J. Immunol. 171, 6267–6274 (2003).
MacKenzie-Graham, A. et al. Estriol-mediated neuroprotection in multiple sclerosis localized by voxel-based morphometry. Brain Behav. 8, e01086 (2018).
Støer, N. C. et al. Menopausal hormone therapy and breast cancer risk: a population-based cohort study of 1.3 million women in Norway. Br. J. Cancer 131, 126–137 (2024).
Gold, S. M. & Voskuhl, R. R. Estrogen and testosterone therapies in multiple sclerosis. Prog. Brain Res. 175, 239–251 (2009).
Takahashi, K. et al. Safety and efficacy of oestriol for symptoms of natural or surgically induced menopause. Hum. Reprod. 15, 1028–1036 (2000).
Bridge, F., Butzkueven, H., Van der Walt, A. & Jokubaitis, V. G. The impact of menopause on multiple sclerosis. Autoimmun. Rev. 22, 103363 (2023).
Guo, H. et al. The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr. Neuropharmacol. 18, 485–500 (2020).
Lord, C., Buss, C., Lupien, S. J. & Pruessner, J. C. Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neurobiol. Aging 29, 95–101 (2008).
Coughlan, G. T. et al. Association of age at menopause and hormone therapy use with tau and β-amyloid positron emission tomography. JAMA Neurol. 80, 462–473 (2023).
Bove, R. et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82, 222–229 (2014).
Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).
Espeland, M. A. et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern. Med. 173, 1429–1436 (2013).
Gleason, C. E. et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-Cognitive and Affective Study. PLoS Med. 12, e1001833 (2015).
Davison, S. L. et al. Continuous-combined oral estradiol/drospirenone has no detrimental effect on cognitive performance and improves estrogen deficiency symptoms in early postmenopausal women: a randomized placebo-controlled trial. Menopause 20, 1020–1026 (2013).
Hodis, H. N. et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N. Engl. J. Med. 374, 1221–1231 (2016).
Bove, R. et al. Hormone therapy use and physical quality of life in postmenopausal women with multiple sclerosis. Neurology 87, 1457–1463 (2016).
Bove, R. et al. Patients report worse MS symptoms after menopause: findings from an online cohort. Mult. Scler. Relat. Disord. 4, 18–24 (2015).
Kopp, T. I., Lidegaard, Ø. & Magyari, M. Hormone therapy and disease activity in Danish women with multiple sclerosis: a population-based cohort study. Eur. J. Neurol. 29, 1753–1762 (2022).
Bove, R. et al. A hormonal therapy for menopausal women with MS: a phase Ib/IIa randomized controlled trial. Mult. Scler. Relat. Disord. 61, 103747 (2022).
Juutinen, L., Ahinko, K., Tinkanen, H., Rosti-Otajärvi, E. & Sumelahti, M.-L. Menopausal symptoms and hormone therapy in women with multiple sclerosis: a baseline-controlled study. Mult. Scler. Relat. Disord. 67, 104098 (2022).
DonCarlos, L. L., Azcoitia, I. & Garcia-Segura, L. M. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 34, S113–S122 (2009).
Khan, M. M., Wakade, C., de Sevilla, L. & Brann, D. W. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J. Steroid Biochem. Mol. Biol. 146, 38–47 (2015).
Arevalo, M. A., Santos-Galindo, M., Lagunas, N., Azcoitia, I. & Garcia-Segura, L. M. Selective estrogen receptor modulators as brain therapeutic agents. J. Mol. Endocrinol. 46, R1–R9 (2011).
Newhouse, P. et al. Tamoxifen improves cholinergically modulated cognitive performance in postmenopausal women. Neuropsychopharmacology 38, 2632–2643 (2013).
Liao, K.-F., Lin, C.-L. & Lai, S.-W. Nationwide case-control study examining the association between tamoxifen use and Alzheimer’s disease in aged women with breast cancer in Taiwan. Front. Pharmacol. 8, 295503 (2017).
Underwood, E. et al. Cognitive sequelae of endocrine therapy in women treated for breast cancer: a meta-analysis. Breast Cancer Res. Treat. 168, 299–310 (2018).
Branigan, G. L., Soto, M., Neumayer, L., Rodgers, K. & Brinton, R. D. Association between hormone-modulating breast cancer therapies and incidence of neurodegenerative outcomes for women with breast cancer. JAMA Netw. Open 3, e201541 (2020).
Rankin, K. A. et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors. J. Neurosci. 39, 2184–2194 (2019).
Gonzalez, G. A. et al. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system. Sci. Rep. 6, 31599 (2016).
Nylander, A. et al. Re-WRAP (remyelination for women at risk of axonal loss and progression): a phase II randomized placebo-controlled delayed-start trial of bazedoxifene for myelin repair in multiple sclerosis. Contemp. Clin. Trials 134, 107333 (2023).
Mendell, A. L. & MacLusky, N. J. Neurosteroid metabolites of gonadal steroid hormones in neuroprotection: implications for sex differences in neurodegenerative disease. Front. Mol. Neurosci. 11, 359 (2018).
Jure, I., De Nicola, A. F. & Labombarda, F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen. Res. 14, 2029–2034 (2019).
Bansil, S., Lee, H. J., Jindal, S., Holtz, C. R. & Cook, S. D. Correlation between sex hormones and magnetic resonance imaging lesions in multiple sclerosis. Acta Neurol. Scand. 99, 91–94 (1999).
Labombarda, F. et al. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp. Neurol. 231, 135–146 (2011).
Costanza, M. & Pedotti, R. Prolactin: friend or foe in central nervous system autoimmune inflammation? Int. J. Mol. Sci. 17, 2026 (2016).
Gregg, C. et al. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci. 27, 1812 (2007).
Duc Nguyen, H. et al. Association between serum prolactin levels and neurodegenerative diseases: systematic review and meta-analysis. Neuroimmunomodulation 29, 85–96 (2022).
Zhornitsky, S., Yong, V. W., Weiss, S. & Metz, L. M. Prolactin in multiple sclerosis. Mult. Scler. 19, 15–23 (2013).
Bissay, V. et al. Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin. Neuropharmacol. 17, 473–476 (1994).
Pakpoor, J. et al. Breastfeeding and multiple sclerosis relapses: a meta-analysis. J. Neurol. 259, 2246–2248 (2012).
Van Der Walt, A., Nguyen, A.-L. & Jokubaitis, V. Family planning, antenatal and post partum care in multiple sclerosis: a review and update. Med. J. Aust. 211, 230–236 (2019).
Son, S. W. et al. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J. Neurochem. 136, 106–117 (2016).
Meydan, S. et al. Effects of testosterone on orchiectomy-induced oxidative damage in the rat hippocampus. J. Chem. Neuroanat. 40, 281–285 (2010).
Ziehn, M. O. et al. Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J. Neurosci. 32, 12312–12324 (2012).
Hussain, R. et al. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136, 132–146 (2013).
Bove, R. et al. Low testosterone is associated with disability in men with multiple sclerosis. Mult. Scler. 20, 1584–1592 (2014).
Hammad, M. A. M. et al. Multiple sclerosis and hypogonadism: is there a relationship? Sex. Med. Rev. 12, 178–182 (2024).
Chitnis, T. The role of testosterone in MS risk and course. Mult. Scler. 24, 36–41 (2018).
Sicotte, N. L. et al. Testosterone treatment in multiple sclerosis: a pilot study. Arch. Neurol. 64, 683–688 (2007).
Kurth, F. et al. Neuroprotective effects of testosterone treatment in men with multiple sclerosis. Neuroimage Clin. 4, 454–460 (2014).
Gold, S. M., Chalifoux, S., Giesser, B. S. & Voskuhl, R. R. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J. Neuroinflamm. 5, 32 (2008).
Metzger-Peter, K. et al. The TOTEM RRMS (Testosterone Treatment on neuroprotection and Myelin Repair in Relapsing Remitting Multiple Sclerosis) trial: study protocol for a randomized, double-blind, placebo-controlled trial. Trials 21, 591 (2020).
Triantafyllou, N. et al. Association of sex hormones and glucose metabolism with the severity of multiple sclerosis. Int. J. Neurosci. 126, 797–804 (2016).
Bove, R. et al. Effect of assisted reproductive technology on multiple sclerosis relapses: case series and meta-analysis. Mult. Scler. 26, 1410–1419 (2020).
Mainguy, M. et al. Assessing the risk of relapse requiring corticosteroids after in vitro fertilization in women with multiple sclerosis. Neurology 99, e1916–e1925 (2022).
Graham, E. L. et al. Inflammatory activity after diverse fertility treatments: a multicenter analysis in the modern multiple sclerosis treatment era. Neurol. Neuroimmunol. Neuroinflamm. 10, e200106 (2023).
Nolan, B. J. & Cheung, A. S. Gender-affirming hormone therapy for transgender and gender-diverse adults in Australia. Intern. Med. J. 54, 1450–1457 (2024).
Coleman, E. et al. Standards of Care for the health of transgender and gender diverse people, version 8. Int. J. Transgend. Health 23 (Suppl. 1), S1–S259 (2022).
Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).
International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).
Piatek, P. et al. Multiple sclerosis CD49d+CD154+ as myelin-specific lymphocytes induced during remyelination. Cells 9, 15 (2020).
Shepherd, R. et al. Gender-affirming hormone therapy induces specific DNA methylation changes in blood. Clin. Epigenet. 14, 24 (2022).
Giltay, E. J. et al. In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. J. Clin. Endocrinol. Metab. 85, 1648–1657 (2000).
Giltay, E. J., Gooren, L. J., Emeis, J. J., Kooistra, T. & Stehouwer, C. D. Oral ethinyl estradiol, but not transdermal 17beta-estradiol, increases plasma C-reactive protein levels in men. Thromb. Haemost. 84, 359–360 (2000).
Landry, A., Docherty, P., Ouellette, S. & Cartier, L. J. Causes and outcomes of markedly elevated C-reactive protein levels. Can. Fam. Physician 63, e316–e323 (2017).
Giltay, E. J. et al. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects. J. Endocrinol. 187, 109–116 (2005).
Nie, J., Li, Y. Y., Zheng, S. G., Tsun, A. & Li, B. FOXP3+ Treg cells and gender bias in autoimmune diseases. Front. Immunol. 6, 493 (2015).
Dejaco, C., Duftner, C., Grubeck-Loebenstein, B. & Schirmer, M. Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117, 289–300 (2006).
Ramos, S., Ingenito, F., Mormandi, E., Nagelberg, A. & Otero, P. High prevalence of altered immunological biomarkers in a transgender population. Autoimmun. Infect. Dis. https://doi.org/10.16966/2470-1025.125 (2020).
White, A. A. et al. Potential immunological effects of gender-affirming hormone therapy in transgender people — an unexplored area of research. Ther. Adv. Endocrinol. Metab. 13, 20420188221139612 (2022).
Schutte, M. H. et al. The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLoS ONE 17, e0261312 (2022).
Gooren, L. J., Kreukels, B., Lapauw, B. & Giltay, E. J. (Patho)physiology of cross-sex hormone administration to transsexual people: the potential impact of male-female genetic differences. Andrologia 47, 5–19 (2015).
Butterworth, M., McClellan, B. & Allansmith, M. Influence of sex in immunoglobulin levels. Nature 214, 1224–1225 (1967).
Stoop, J. W., Zegers, B. J., Sander, P. C. & Ballieux, R. E. Serum immunoglobulin levels in healthy children and adults. Clin. Exp. Immunol. 4, 101–112 (1969).
Pakpoor, J., Wotton, C. J., Schmierer, K., Giovannoni, G. & Goldacre, M. J. Gender identity disorders and multiple sclerosis risk: a national record-linkage study. Mult. Scler. 22, 1759–1762 (2016).
Miles, C., Green, R., Sanders, G. & Hines, M. Estrogen and memory in a transsexual population. Horm. Behav. 34, 199–208 (1998).
Kranz, G. S. et al. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals. Brain Struct. Funct. 223, 321–328 (2018).
Zubiaurre-Elorza, L., Junque, C., Gómez-Gil, E. & Guillamon, A. Effects of cross-sex hormone treatment on cortical thickness in transsexual individuals. J. Sex. Med. 11, 1248–1261 (2014).
Lavorgna, L. et al. Health-care disparities stemming from sexual orientation of Italian patients with multiple sclerosis: a cross-sectional web-based study. Mult. Scler. Relat. Disord. 13, 28–32 (2017).
White Hughto, J. M., Reisner, S. L. & Pachankis, J. E. Transgender stigma and health: a critical review of stigma determinants, mechanisms, and interventions. Soc. Sci. Med. 147, 222–231 (2015).
Conron, K. J., Mimiaga, M. J. & Landers, S. J. A population-based study of sexual orientation identity and gender differences in adult health. Am. J. Public Health 100, 1953–1960 (2010).
Flower, L. et al. Management of transgender patients in critical care. J. Intensive Care Soc. 24, 320–327 (2023).
Anderson, A. et al. Experiences of sexual and gender minority people living with multiple sclerosis in Northern California: an exploratory study. Mult. Scler. Relat. Disord. 55, 103214 (2021).
James, S. et al. The report of the 2015 US Transgender Survey (National Center for Transgender Equality, 2016).
Rosendale, N. et al. American Academy of Neurology members’ preparedness to treat sexual and gender minorities. Neurology 93, 159–166 (2019).
Rosendale, N., Wong, J. O., Flatt, J. D. & Whitaker, E. Sexual and gender minority health in neurology: a scoping review. JAMA Neurol. 78, 747–754 (2021).
Marrie, R. A. et al. Etiology, effects and management of comorbidities in multiple sclerosis: recent advances. Front. Immunol. 14, 1197195 (2023).
Hobart, J. et al. International consensus on quality standards for brain health-focused care in multiple sclerosis. Mult. Scler. 25, 1809–1818 (2019).
Dispenza, F., Harper, L. S. & Harrigan, M. A. Subjective health among LGBT persons living with disabilities: a qualitative content analysis. Rehabil. Psychol. 61, 251–259 (2016).
Huo, S. et al. Brain health outcomes in sexual and gender minority groups. Neurology 103, e209863 (2024).
Yarns, B. C., Abrams, J. M., Meeks, T. W. & Sewell, D. D. The mental health of older LGBT adults. Curr. Psychiatry Rep. 18, 60 (2016).
Minnis, A. M. et al. Differences in chronic disease behavioral indicators by sexual orientation and sex. J. Public Health Manag. Pract. 22, S25–S32 (2016).
Daniel, H. & Butkus, R. Lesbian, gay, bisexual, and transgender health disparities: executive summary of a policy position paper from the American College of Physicians. Ann. Intern. Med. 163, 135–137 (2015).
Dragon, C. N., Guerino, P., Ewald, E. & Laffan, A. M. Transgender Medicare beneficiaries and chronic conditions: exploring fee-for-service claims data. LGBT Health 4, 404–411 (2017).
Warrier, V. et al. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 11, 3959 (2020).
Strang, J. F. et al. Revisiting the link: evidence of the rates of autism in studies of gender diverse individuals. J. Am. Acad. Child Adolesc. Psychiatry 57, 885–887 (2018).
Thrower, E., Bretherton, I., Pang, K. C., Zajac, J. D. & Cheung, A. S. Prevalence of autism spectrum disorder and attention-deficit hyperactivity disorder amongst individuals with gender dysphoria: a systematic review. J. Autism Dev. Disord. 50, 695–706 (2020).
Melamed, E. & Lee, M. W. Multiple sclerosis and cancer: the Ying-Yang effect of disease modifying therapies. Front. Immunol. 10, 2954 (2019).
Sterling, J. & Garcia, M. M. Cancer screening in the transgender population: a review of current guidelines, best practices, and a proposed care model. Transl. Androl. Urol. 9, 2771–2785 (2020).
Leszek, J. et al. The links between cardiovascular diseases and Alzheimer’s disease. Curr. Neuropharmacol. 19, 152–169 (2021).
Mincu, R. I. et al. Cardiovascular dysfunction in multiple sclerosis. Maedica 10, 364–370 (2015).
Rexrode, K. M. et al. The impact of sex and gender on stroke. Circ. Res. 130, 512–528 (2022).
Fernández-Balsells, M. M. et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 95, 2560–2575 (2010).
Ohlander, S. J., Varghese, B. & Pastuszak, A. W. Erythrocytosis following testosterone therapy. Sex. Med. Rev. 6, 77–85 (2018).
Stergiopoulos, K., Brennan, J. J., Mathews, R., Setaro, J. F. & Kort, S. Anabolic steroids, acute myocardial infarction and polycythemia: a case report and review of the literature. Vasc. Health Risk Manag. 4, 1475–1480 (2008).
Giacomelli, G. & Meriggiola, M. C. Bone health in transgender people: a narrative review. Ther. Adv. Endocrinol. Metab. 13, 20420188221099346 (2022).
Cheung, A. S., Nolan, B. J. & Zwickl, S. Transgender health and the impact of aging and menopause. Climacteric 26, 256–262 (2023).
Becker, T., Chin, M. & Bates, N. (eds) Measuring Sex, Gender Identity, and Sexual Orientation (National Academies Press, 2022).
Marrie, R. A. et al. Enhancing diversity of clinical trial populations in multiple sclerosis. Mult. Scler. 29, 1174–1185 (2023).
Hoffmann, J. P., Liu, J. A., Seddu, K. & Klein, S. L. Sex hormone signaling and regulation of immune function. Immunity 56, 2472–2491 (2023).
Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007).
Villa, A., Vegeto, E., Poletti, A. & Maggi, A. Estrogens, neuroinflammation, and neurodegeneration. Endocr. Rev. 37, 372–402 (2016).
Brann, D. W., Dhandapani, K., Wakade, C., Mahesh, V. B. & Khan, M. M. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72, 381–405 (2007).
Lee, E. et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J. Biol. Chem. 287, 26817–26828 (2012).
Crawford, D. K. et al. Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination. Brain 133, 2999–3016 (2010).
Maggioli, E. et al. Estrogen protects the blood–brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav. Immun. 51, 212–222 (2016).
Druckmann, R. & Druckmann, M.-A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 97, 389–396 (2005).
Kolatorova, L., Vitku, J., Suchopar, J., Hill, M. & Parizek, A. Progesterone: a steroid with wide range of effects in physiology as well as human medicine. Int. J. Mol. Sci. 23, 7989 (2022).
Matejuk, A., Hopke, C., Vandenbark, A. A., Hurn, P. D. & Offner, H. Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy. J. Immunol. 174, 2387–2395 (2005).
Dalal, M., Kim, S. & Voskuhl, R. R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 159, 3–6 (1997).
Corrales, J. et al. Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency. J. Endocrinol. 189, 595–604 (2006).
Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).
Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).
Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+ CD25+ Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).
Spritzer, M. D. & Roy, E. A. Testosterone and adult neurogenesis. Biomolecules 10, 225 (2020).
Reddy, D. S. & Jian, K. The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J. Pharmacol. Exp. Ther. 334, 1031–1041 (2010).
Ahlbom, E., Prins, G. S. & Ceccatelli, S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 892, 255–262 (2001).
Sarchielli, E. et al. Neuroprotective effects of testosterone in the hypothalamus of an animal model of metabolic syndrome. Int. J. Mol. Sci. 22, 1589 (2021).
Toro-Urrego, N., Garcia-Segura, L. M., Echeverria, V. & Barreto, G. E. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front. Aging Neurosci. 8, 152 (2016).
Bielecki, B. et al. Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc. Natl Acad. Sci. USA 113, 14829–14834 (2016).
Hellberg, S. et al. Progesterone dampens immune responses in in vitro activated CD4+ T cells and affects genes associated with autoimmune diseases that improve during pregnancy. Front. Immunol. 12, 672168 (2021).
Santana-Sánchez, P., Vaquero-García, R., Legorreta-Haquet, M. V., Chávez-Sánchez, L. & Chávez-Rueda, A. K. Hormones and B-cell development in health and autoimmunity. Front. Immunol. 15, 1385501 (2024).
Altuwaijri, S. et al. Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B cells. Mol. Endocrinol. 23, 444–453 (2009).
Olsen, N. J., Gu, X. & Kovacs, W. J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest. 108, 1697–1704 (2001).
Nilsson, N. & Carlsten, H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell Immunol. 158, 131–139 (1994).
Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. 180, 5746–5753 (2008).
Page, S. T. et al. Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites. Am. J. Physiol. Endocrinol. Metab. 290, E856–E863 (2006).
Gagliano-Jucá, T. et al. Differential effects of testosterone on circulating neutrophils, monocytes, and platelets in men: findings from two trials. Andrology 8, 1324–1331 (2020).
Zhang, Y.-H., He, M., Wang, Y. & Liao, A.-H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol. 8, 120 (2017).
Rettew, J. A., Huet-Hudson, Y. M. & Marriott, I. Testosterone reduces macrophage expression in the mouse of Toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437 (2008).
Chen, W. et al. Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE‐independent mast cell degranulation elicited by neuromuscular blocking agents. Exp. Dermatol. 19, 302–304 (2010).
Vasiadi, M., Kempuraj, D., Boucher, W., Kalogeromitros, D. & Theoharides, T. C. Progesterone inhibits mast cell secretion. Int. J. Immunopathol. Pharmacol. 19, 787–794 (2006).
Guhl, S., Artuc, M., Zuberbier, T. & Babina, M. Testosterone exerts selective anti-inflammatory effects on human skin mast cells in a cell subset dependent manner. Exp. Dermatol. 21, 878–880 (2012).
Laffont, S., Seillet, C. & Guéry, J. C. Estrogen receptor-dependent regulation of dendritic cell development and function. Front. Immunol. 8, 108 (2017).
Khaw, Y. M. et al. Estrogen receptor alpha signaling in dendritic cells modulates autoimmune disease phenotype in mice. EMBO Rep. 24, e54228 (2023).
Butts, C. L. et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend. Med. 5, 434–447 (2008).
Mackern-Oberti, J. P., Jara, E. L., Riedel, C. A. & Kalergis, A. M. Hormonal modulation of dendritic cells differentiation, maturation and function: implications for the initiation and progress of systemic autoimmunity. Arch. Immunol. Ther. Exp. 65, 123–136 (2017).
Yang, P. et al. Progesterone alters the activation and typing of the microglia in the optic nerve crush model. Exp. Eye Res. 212, 108805 (2021).
Aryanpour, R. et al. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int. Immunopharmacol. 51, 131–139 (2017).
Barreto, G., Veiga, S., Azcoitia, I., Garcia-Segura, L. M. & Garcia-Ovejero, D. Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone. Eur. J. Neurosci. 25, 3039–3046 (2007).
O’Connor, J. L. & Nissen, J. C. The pathological activation of microglia is modulated by sexually dimorphic pathways. Int. J. Mol. Sci. 24, 4739 (2023).
Schumacher, M. et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front. Neurosci. 6, 10 (2012).
Giraud, S. N., Caron, C. M., Pham-Dinh, D., Kitabgi, P. & Nicot, A. B. Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes. Proc. Natl Acad. Sci. USA 107, 8416–8421 (2010).
Dueñas, M. et al. Gonadal hormone regulation of insulin-like growth factor-I like immunoreactivity in hypothalamic astroglia of developing and adult rats. Neuroendocrinology 59, 528–538 (1994).
Turniak-Kusy, M. et al. Testosterone inhibits secretion of the pro-inflammatory chemokine CXCL1 from astrocytes. Curr. Issues Mol. Biol. 46, 2105–2118 (2024).
Buendía-González, F. O. & Legorreta-Herrera, M. The similarities and differences between the effects of testosterone and DHEA on the innate and adaptive immune response. Biomolecules 12, 1768 (2022).
Zwahlen, M. & Stute, P. Impact of progesterone on the immune system in women: a systematic literature review. Arch. Gynecol. Obstet. 309, 37–46 (2024).
Sciarra, F., Campolo, F., Franceschini, E., Carlomagno, F. & Venneri, M. A. Gender-specific impact of sex hormones on the immune system. Int. J. Mol. Sci. 24, 6302 (2023).
Lakshmikanth, T. et al. Immune system adaptation during gender-affirming testosterone treatment. Nature 633, 155–164 (2024).
Sellau, J., Groneberg, M. & Lotter, H. Androgen-dependent immune modulation in parasitic infection. Semin. Immunopathol. 41, 213–224 (2019).
Cheung, A. S. et al. Approach to interpreting common laboratory pathology tests in transgender individuals. J. Clin. Endocrinol. Metab. 106, 893–901 (2021).
Lim, H. Y. et al. Global coagulation assays in transgender women on oral and transdermal estradiol therapy. J. Clin. Endocrinol. Metab. 105, e2369–e2377 (2020).
Dolladille, C. et al. Association between disease-modifying therapies prescribed to persons with multiple sclerosis and cancer: a WHO pharmacovigilance database analysis. Neurotherapeutics 18, 1657–1664 (2021).
Papadopoulos, D. et al. Disease-modifying treatments for multiple sclerosis have not affected the incidence of neoplasms in clinical trials over 3 decades: a meta-analysis with meta-regression. J. Neurol. 269, 3226–3237 (2022).
Ghajarzadeh, M., Mohammadi, A. & Sahraian, M. A. Risk of cancer in multiple sclerosis (MS): a systematic review and meta-analysis. Autoimmun. Rev. 19, 102650 (2020).
McFarlane, T., Zajac, J. D. & Cheung, A. S. Gender-affirming hormone therapy and the risk of sex hormone-dependent tumours in transgender individuals — a systematic review. Clin. Endocrinol. 89, 700–711 (2018).
Bretherton, I. et al. Bone microarchitecture in transgender adults: a cross-sectional study. J. Bone Min. Res. 37, 643–648 (2022).
Wiepjes, C. M. et al. Bone safety during the first ten years of gender-affirming hormonal treatment in transwomen and transmen. J. Bone Min. Res. 34, 447–454 (2019).
Author information
Authors and Affiliations
Contributions
C.N. researched data for the article. All authors contributed substantially to discussion of the content. C.N., A.S.C. and V.G.J. wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
A.S.C. has received product from Besins Healthcare for investigator-initiated clinical studies using oestradiol and progesterone. No monetary support from Besins Healthcare has been received for any studies, and Besins Healthcare have had no input into study design, data analysis or writing of any manuscripts.
Peer review
Peer review information
Nature Reviews Neurology thanks Cole Harrington, Jorge Correale, Melinda Magyari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nesbitt, C., Van Der Walt, A., Butzkueven, H. et al. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol 21, 48–62 (2025). https://doi.org/10.1038/s41582-024-01042-x
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41582-024-01042-x
This article is cited by
-
Sex and gender-related differences in neurological diseases: current challenges and recommendations for clinical practice
Neurological Sciences (2026)
-
Early identification of individuals at risk for multiple sclerosis by quantification of EBNA-1381-452-specific antibody titers
Nature Communications (2025)
-
A Cross-Sectional Study of Delayed Diagnosis Associated with Gender and Racial Identity in Multiple Sclerosis
Journal of Racial and Ethnic Health Disparities (2025)


