Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A global perspective on research advances and future challenges in Friedreich ataxia

Abstract

Friedreich ataxia (FRDA) is a rare multisystem, life-limiting disease and is the most common early-onset inherited ataxia in populations of European, Arab and Indian descent. In recent years, substantial progress has been made in dissecting the pathogenesis and natural history of FRDA, and several clinical trials have been initiated. A particularly notable recent achievement was the approval of the nuclear factor erythroid 2-related factor 2 activator omaveloxolone as the first disease-specific therapy for FRDA. In light of these developments, we review milestones in FRDA translational and clinical research over the past 10 years, as well as the various therapeutic strategies currently in the pipeline. We also consider the lessons that have been learned from failed trials and other setbacks. We conclude by presenting a global roadmap for future research, as outlined by the recently established Friedreich’s Ataxia Global Clinical Consortium, which covers North and South America, Europe, India, Australia and New Zealand.

Key points

  • Basic and clinical research in Friedreich ataxia (FRDA) has advanced at a fast pace, with milestones being achieved in elucidating the function of frataxin and characterizing the natural history of the disease.

  • The NRF2 activator omaveloxolone was approved as the first specific therapy for FRDA by the FDA in 2023 and the European Commission in 2024.

  • Gene therapies, agents that modulate frataxin gene expression and direct frataxin replacement strategies have also entered clinical trials.

  • The recently formed Friedreich’s Ataxia Global Clinical Consortium (FA GCC) has launched the first global natural history study to harmonize and promote clinical research in FRDA worldwide.

  • The need for more sensitive outcome measures at different stages of the disease and the characterization of cardiac evolution are among the open questions to be addressed by the global consortium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural history of Friedreich ataxia.
Fig. 2: Friedreich ataxia pathogenesis and targeted therapeutic approaches.
Fig. 3: Current drug development pipeline in Friedreich ataxia.
Fig. 4: The Friedreich’s Ataxia Global Clinical Consortium.

Similar content being viewed by others

References

  1. Labuda, M. et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 54, 2322–2324 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Vankan, P. Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J. Neurochem. 126, 11–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Koeppen, A. H. Nikolaus Friedreich and degenerative atrophy of the dorsal columns of the spinal cord. J. Neurochem. 126, 4–10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Depienne, C. & Mandel, J. L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maio, N. & Rouault, T. A. Mammalian iron sulfur cluster biogenesis and human diseases. IUBMB Life 74, 705 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boesch, S. & Indelicato, E. Approval of omaveloxolone for Friedreich ataxia. Nat. Rev. Neurol. 20, 313–314 (2024).

    Article  PubMed  Google Scholar 

  7. Campuzano, V. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Savellev, A., Everett, C., Sharpe, T., Webster, Z. & Festenstein, R. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422, 909–913 (2003).

    Article  Google Scholar 

  9. Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat. Chem. Biol. 2, 551–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Rodden, L. N. et al. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum. Mol. Genet. 29, 3818–3829 (2020).

    Article  CAS  Google Scholar 

  11. Campuzano, V. et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6, 1771–1780 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Galea, C. A. et al. Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann. Neurol. 79, 485–495 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, M. M., Rummey, C. & Lynch, D. R. Phenotypic variation of FXN compound heterozygotes in a Friedreich ataxia cohort. Ann. Clin. Transl. Neurol. 11, 1110–1121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Candayan, A. et al. The first biallelic missense mutation in the FXN gene in a consanguineous Turkish family with Charcot-Marie-Tooth-like phenotype. Neurogenetics 21, 73–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Cossée, M. et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet. 9, 1219–1226 (2000).

    Article  PubMed  Google Scholar 

  16. Rummey, C. et al. Natural history of Friedreich ataxia: heterogeneity of neurologic progression and consequences for clinical trial design. Neurology 99, E1499–E1510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Indelicato, E. et al. Onset features and time to diagnosis in Friedreich’s ataxia. Orphanet J. Rare Dis. 15, 198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parkinson, M. H., Boesch, S., Nachbauer, W., Mariotti, C. & Giunti, P. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J. Neurochem. 126, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Fahey, M. C. et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131, 1035–1045 (2008).

    Article  PubMed  Google Scholar 

  20. Spicker, S. et al. Fixation instability and oculomotor abnormalities in Friedreich’s ataxia. J. Neurol. 242, 517–521 (1995).

    Article  Google Scholar 

  21. Patel, M. et al. Body mass index and height in the Friedreich Ataxia Clinical Outcome Measures Study. Neurol. Genet. 7, e638 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Simon, A. L. et al. Scoliosis in patients with Friedreich ataxia: results of a consecutive prospective series. Spine Deform. 7, 812–821 (2019).

    Article  PubMed  Google Scholar 

  23. Helliwell, T. R. et al. The pathology of the lower leg muscles in pure forefoot pes cavus. Acta Neuropathol. 89, 552–559 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Tamaroff, J. et al. Friedreich’s ataxia related diabetes: epidemiology and management practices. Diabetes Res. Clin. Pract. 186, 109828 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fichera, M. et al. Comorbidities in Friedreich ataxia: incidence and manifestations from early to advanced disease stages. Neurol. Sci. 43, 6831–6838 (2022).

    Article  PubMed  Google Scholar 

  26. Cnop, M., Mulder, H. & Igoillo-Esteve, M. Diabetes in Friedreich ataxia. J. Neurochem. 126, 94–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Dürr, A. et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    Article  PubMed  Google Scholar 

  28. Reetz, K. et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 14, 174–182 (2015).

    Article  PubMed  Google Scholar 

  29. Patel, M. et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann. Clin. Transl. Neurol. 3, 684–694 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reetz, K. et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurol. 15, 1346–1354 (2016).

    Article  PubMed  Google Scholar 

  31. Rummey, C., Farmer, J. M. & Lynch, D. R. Predictors of loss of ambulation in Friedreich’s ataxia. EClinicalMedicine 18, 100213 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sharma, R. et al. Friedreich ataxia in carriers of unstable borderline GAA triplet-repeat alleles. Ann. Neurol. 56, 898–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ragno, M. et al. Broadened Friedreich’s ataxia phenotype after gene cloning: minimal GAA expansion causes late-onset spastic ataxia. Neurology 49, 1617–1620 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Indelicato, E. et al. Predictors of survival in Friedreich’s ataxia: a prospective cohort study. Mov. Disord. 39, 510–518 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Epplen, C. et al. Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) gene. Hum. Genet. 99, 834–836 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Tai, G., Yiu, E. M., Corben, L. A. & Delatycki, M. B. A longitudinal study of the Friedreich ataxia impact scale. J. Neurol. Sci. 352, 53–57 (2015).

    Article  PubMed  Google Scholar 

  37. Brandsma, R. et al. A clinical diagnostic algorithm for early onset cerebellar ataxia. Eur. J. Paediatr. Neurol. 23, 692–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Van de Warrenburg, B. P. C. et al. EFNS/ENS consensus on the diagnosis and management of chronic ataxias in adulthood. Eur. J. Neurol. 21, 552–562 (2014).

    Article  PubMed  Google Scholar 

  39. Fleszar, Z. et al. Short-read genome sequencing allows ‘en route’ diagnosis of patients with atypical Friedreich ataxia. J. Neurol. 270, 4112–4117 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Uppili, B. et al. Sequencing through hyperexpanded Friedreich’s ataxia-GAA repeats by nanopore technology: implications in genotype-phenotype correlation. Brain Commun. 5, fcad020 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bidichandani, S. I., Ashizawa, T. & Patel, P. I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet. 62, 111–121 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohshima, K., Montermini, L., Wells, R. D. & Pandolfo, M. Inhibitory effects of expanded GAA·TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem. 273, 14588–14595 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sakamoto, N. et al. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol. Cell 3, 465–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Soragni, E. et al. Epigenetic therapy for Friedreich ataxia. Ann. Neurol. 76, 489–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cavadini, P., Adamec, J., Taroni, F., Gakh, O. & Isaya, G. Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates. J. Biol. Chem. 275, 41469–41475 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Schmucker, S. et al. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS ONE 6, e16199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pastore, A. & Puccio, H. Frataxin: a protein in search for a function. J. Neurochem. 126, 43–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Yoon, T. & Cowan, J. A. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J. Am. Chem. Soc. 125, 6078–6084 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Adamec, J. et al. Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am. J. Hum. Genet. 67, 549–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rotig, A. et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17, 215–217 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Rouault, T. A. & Tong, W. H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24, 398–407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fox, N. G. et al. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat. Commun. 10, 2210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schulz, V. et al. Mechanism and structural dynamics of sulfur transfer during de novo [2Fe-2S] cluster assembly on ISCU2. Nat. Commun. 15, 3269 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gervason, S. et al. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat. Commun. 10, 3566 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Uzarska, M. A. et al. During FeS cluster biogenesis, ferredoxin and frataxin use overlapping binding sites on yeast cysteine desulfurase Nfs1. J. Biol. Chem. 298, 101570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steinhilper, R. et al. Two-stage binding of mitochondrial ferredoxin-2 to the core iron-sulfur cluster assembly complex. Nat. Commun. 15, 10559 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Belbellaa, B., Reutenauer, L., Messaddeq, N., Monassier, L. & Puccio, H. High levels of frataxin overexpression lead to mitochondrial and cardiac toxicity in mouse models. Mol. Ther. Methods Clin. Dev. 19, 120–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huichalaf, C. et al. In vivo overexpression of frataxin causes toxicity mediated by iron-sulfur cluster deficiency. Mol. Ther. Methods Clin. Dev. 24, 367–378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ast, T. et al. Hypoxia rescues frataxin loss by restoring iron sulfur cluster biogenesis. Cell 177, 1507–1521.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Puccio, H. et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27, 181–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. González-Cabo, P. & Palau, F. Mitochondrial pathophysiology in Friedreich’s ataxia. J. Neurochem. 126, 53–64 (2013).

    Article  PubMed  Google Scholar 

  63. Lodi, R. et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc. Natl Acad. Sci. USA 96, 11492–11495 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Indelicato, E. et al. Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich’s ataxia. Front. Neurosci. 17, 1289027 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Indelicato, E. et al. Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia. Hum. Mol. Genet. 32, 2241–2250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gurgel-Giannetti, J. et al. A novel complex neurological phenotype due to a homozygous mutation in FDX2. Brain 141, 2289–2298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Crooks, D. R. et al. Tissue specificity of a human mitochondrial disease: differentiation-enhanced mis-splicing of the Fe-S scaffold gene ISCU renders patient cells more sensitive to oxidative stress in ISCU myopathy. J. Biol. Chem. 287, 40119–40130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  69. Lynch, D. R., Deutsch, E. C., Wilson, R. B. & Tennekoon, G. Unanswered questions in Friedreich ataxia. J. Child. Neurol. 27, 1223–1229 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. De Biase, I. et al. Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann. Neurol. 61, 55–60 (2007).

    Article  PubMed  Google Scholar 

  71. Long, A. et al. Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One 12, e0189990 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Koeppen, A. H., Becker, A. B., Qian, J., Gelman, B. B. & Mazurkiewicz, J. E. Friedreich ataxia: developmental failure of the dorsal root entry zone. J. Neuropathol. Exp. Neurol. 76, 969–977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koeppen, A. H. & Mazurkiewicz, J. E. Friedreich ataxia: neuropathology revised. J. Neuropathol. Exp. Neurol. 72, 78–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Koeppen, A. H., Ramirez, R. L., Becker, A. B. & Mazurkiewicz, J. E. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol. Commun. 4, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Harding, I. H. et al. Brain structure and degeneration staging in Friedreich ataxia: magnetic resonance imaging volumetrics from the ENIGMA-Ataxia working group. Ann. Neurol. 90, 570–583 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Martínez, A. C. & Anciones, B. Central motor conduction to upper and lower limbs after magnetic stimulation of the brain and peripheral nerve abnormalities in 20 patients with Friedreich’s ataxia. Acta Neurol. Scand. 85, 323–326 (1992).

    Article  Google Scholar 

  77. Caruso, G. et al. Friedreich’s ataxia: electrophysiological and histological findings. Acta Neurol. Scand. 67, 26–40 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Rezende, T. J. R. et al. Progressive spinal cord degeneration in Friedreich’s ataxia: results from ENIGMA-Ataxia. Mov. Disord. 38, 45–56 (2023).

    Article  PubMed  Google Scholar 

  79. Joers, J. M. et al. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun. 4, fcac246 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rezende, T. J. R. et al. Developmental and neurodegenerative damage in Friedreich’s ataxia. Eur. J. Neurol. 26, 483–489 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Ward, P. G. D. et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in Friedreich ataxia. Mov. Disord. 34, 335–343 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Adanyeguh, I. M. et al. Brain MRI detects early-stage alterations and disease progression in Friedreich ataxia. Brain Commun. 5, fcad19 (2023).

    Article  Google Scholar 

  83. Tsou, A. Y. et al. Mortality in Friedreich ataxia. J. Neurol. Sci. 307, 46–49 (2011).

    Article  PubMed  Google Scholar 

  84. Koeppen, A. H. et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE 10, e0116396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Eigentler, A., Boesch, S., Schneider, R., Dechant, G. & Nat, R. Induced pluripotent stem cells from Friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. Stem Cell Dev. 22, 3271–3282 (2013).

    Article  CAS  Google Scholar 

  86. Dionisi, C. et al. Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. Brain Commun. 5, fcad007 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lai, J. I. et al. Transcriptional profiling of isogenic Friedreich ataxia neurons and effect of an HDAC inhibitor on disease signatures. J. Biol. Chem. 294, 1846–1859 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Boesch, S. & Indelicato, E. Experimental drugs for Friedrich’s ataxia: progress and setbacks in clinical trials. Expert. Opin. Invest. Drugs 32, 967–969 (2023).

    Article  CAS  Google Scholar 

  89. Perdomini, M., Hick, A., Puccio, H. & Pook, M. A. Animal and cellular models of Friedreich ataxia. J. Neurochem. 126, 65–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3, e1958 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Piguet, F. et al. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol. Ther. 26, 1940–1952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perdomini, M. et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat. Med. 20, 542–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Salami, C. O. et al. Stress-induced mouse model of the cardiac manifestations of Friedreich’s ataxia corrected by AAV-mediated gene therapy. Hum. Gene Ther. 31, 819–827 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Sivakumar, A. & Cherqui, S. Advantages and limitations of gene therapy and gene editing for Friedreich’s ataxia. Front. Genome Ed. 4, 903139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li, Y. et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich’s ataxia. Mol. Ther. 23, 1055–1065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, J. et al. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich’s ataxia cardiomyocytes. Stem Cell Res. 40, 101529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mishra, P. et al. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich’s ataxia iPSC-derived neurons. Front. Pharmacol. 15, 1323491 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mazzara, P. G. et al. Frataxin gene editing rescues Friedreich’s ataxia pathology in dorsal root ganglia organoid-derived sensory neurons. Nat. Commun. 11, 4178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rocca, C. J. et al. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci. Transl. Med. 9, eaaj2347 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Reetz, K. et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 4-year cohort study. Lancet. Neurol. 20, 362–372 (2021).

    Article  PubMed  Google Scholar 

  101. Subramony, S. H. et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 64, 1261–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Schmitz-Hübsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 (2006).

    Article  PubMed  Google Scholar 

  103. Rummey, C. et al. Psychometric properties of the Friedreich ataxia rating scale. Neurol. Genet. 5, 371 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lynch, D. R. et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann. Neurol. 89, 212–225 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Lynch, D. R. et al. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann. Clin. Transl. Neurol. 11, 4–16 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Center for Drug Evaluation and Research. Clinical review(s). Application number: 216718Orig1s000. CDER https://www.accessdata.fda.gov/drugsatfda_docs/nda/2023/216718Orig1s000MedR.pdf (2023).

  107. Gunther, K. & Lynch, D. R. Pharmacotherapeutic strategies for Friedreich ataxia: a review of the available data. Expert. Opin. Pharmacother. 25, 529–539 (2024).

    Article  CAS  PubMed  Google Scholar 

  108. Abeysekara, L. L. et al. A novel feature from instrumented utensils for clinical assessment of Friedreich ataxia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2023, 1–4 (2023).

    PubMed  Google Scholar 

  109. Corben, L. A. et al. Developing an instrumented measure of upper limb function in Friedreich ataxia. Cerebellum 20, 430–438 (2021).

    Article  PubMed  Google Scholar 

  110. Kadirvelu, B. et al. A wearable motion capture suit and machine learning predict disease progression in Friedreich’s ataxia. Nat. Med. 29, 86–94 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Németh, A. H. et al. Using smartphone sensors for ataxia trials: consensus guidance by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. Cerebellum 23, 912–923 (2024).

    Article  PubMed  Google Scholar 

  112. Center for Drug Evaluation and Research. Patient-focused drug development: collecting comprehensive and representative input. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-collecting-comprehensive-and-representative-input (2020).

  113. Tai, G., Corben, L. A., Yiu, E. M. & Delatycki, M. B. A longitudinal study of the SF-36 version 2 in Friedreich ataxia. Acta Neurol. Scand. 136, 41–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Seabury, J. et al. Friedreich’s ataxia-health index: development and validation of a novel disease-specific patient-reported outcome measure. Neurol. Clin. Pract. 13, e200180 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Seabury, J. et al. Friedreich Ataxia Caregiver-Reported Health Index: development of a novel, disease-specific caregiver-reported outcome measure. Neurol. Clin. Pract. 14, e200303 (2024).

    Article  PubMed  Google Scholar 

  116. Payne, R. M. Cardiovascular research in Friedreich ataxia: unmet needs and opportunities. JACC Basic. Transl. Sci. 7, 1267–1283 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Weidemann, F. et al. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation 125, 1626–1634 (2012).

    Article  PubMed  Google Scholar 

  118. Takazaki, K. A. G. et al. Pre-clinical left ventricular myocardial remodeling in patients with Friedreich’s ataxia: a cardiac MRI study. PLoS ONE 16, e0246633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hutchens, J. A., Johnson, T. R. & Payne, R. M. Myocardial perfusion reserve in children with Friedreich ataxia. Pediatr. Cardiol. 42, 1834–1840 (1234).

    Article  Google Scholar 

  120. Pousset, F. et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 72, 1334–1341 (2015).

    Article  PubMed  Google Scholar 

  121. Hewer, R. L. Study of fatal cases of Friedreich’s ataxia. Br. Med. J. 3, 649 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mejia, E. et al. Ectopic burden via Holter monitors in Friedreich’s ataxia. Pediatr. Neurol. 117, 29 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Weidemann, F. et al. The cardiomyopathy in Friedreich’s ataxia – new biomarker for staging cardiac involvement. Int. J. Cardiol. 194, 50–57 (2015).

    Article  PubMed  Google Scholar 

  124. Indelicato, E. & Bösch, S. Emerging therapeutics for the treatment of Friedreich’s ataxia. Expert Opin. Orphan Drugs 6, 57–67 (2018).

    Article  CAS  Google Scholar 

  125. Libri, V. et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet 384, 504–513 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Boesch, S. & Indelicato, E. Erythropoietin and Friedreich ataxia: time for a reappraisal? Front. Neurosci. 13, 386 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gottesfeld, J. M. Molecular mechanisms and therapeutics for the GAA·TTC expansion disease Friedreich ataxia. Neurotherapeutics 16, 1032–1049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Trantham, S. J. et al. Perspectives of the Friedreich ataxia community on gene therapy clinical trials. Mol. Ther. Methods Clin. Dev. 32, 101179 (2024).

    Article  CAS  PubMed  Google Scholar 

  129. Design Therapeutics. Design Therapeutics reports initial results from phase 1 multiple-ascending dose study of DT-216 for the treatment of Friedreich ataxia. Design Therapeutics https://investors.designtx.com/news-releases/news-release-details/design-therapeutics-reports-initial-results-phase-1-multiple (2023).

  130. Clayton, R. et al. Safety, pharmacokinetics, and pharmacodynamics of nomlabofusp (CTI‐1601) in Friedreich’s ataxia. Ann. Clin. Transl. Neurol. 11, 540 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Larimar Therapeutics. Larimar Therapeutics: corporate deck (June 2024). Larimar Therapeutics https://investors.larimartx.com/static-files/6aaf56f2-3c60-4164-a7ea-865cdb0ae356 (2024).

  132. Reisman, S. A. et al. Pharmacokinetics and pharmacodynamics of the novel NrF2 activator omaveloxolone in primates. Drug. Des. Devel. Ther. 13, 1259–1270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Paupe, V. et al. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS ONE 4, e4253 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Abeti, R., Baccaro, A., Esteras, N. & Giunti, P. Novel Nrf2-inducer prevents mitochondrial defects and oxidative stress in Friedreich’s ataxia models. Front. Cell. Neurosci. 12, 188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lynch, D. R. et al. Efficacy of omaveloxolone in Friedreich’s ataxia: delayed-start analysis of the MOXIe extension. Mov. Disord. 38, 313–320 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Pane, C. et al. Rationale and protocol of a double-blind, randomized, placebo-controlled trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich ataxia (DMF-FA-201). Front. Neurosci. 17, 1260977 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692 (2011).

    Article  PubMed  Google Scholar 

  138. Hayashi, G. et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum. Mol. Genet. 26, 2864–2873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jasoliya, M. et al. Dimethyl fumarate dosing in humans increases frataxin expression: a potential therapy for Friedreich’s ataxia. PLoS ONE 14, e0217776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. La Rosa, P., Petrillo, S., Fiorenza, M. T., Bertini, E. S. & Piemonte, F. Ferroptosis in Friedreich’s ataxia: a metal-induced neurodegenerative disease. Biomolecules 10, 1551 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641.e26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Friedreich’s Ataxia Research Alliance. Drug development pipeline. FARA https://www.curefa.org/drug-development/ (2024).

  143. Parkinson, M. H., Schulz, J. B. & Giunti, P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J. Neurochem. 126, 125–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Boddaert, N. et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110, 401–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Pandolfo, M. et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann. Neurol. 76, 509–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Martelli, A. et al. Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency. Cell Metab. 21, 311–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Grander, M. et al. Genetic determined iron starvation signature in Friedreich’s ataxia. Mov. Disord. 39, 1088–1098 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Harding, I. H. et al. Localized changes in dentate nucleus shape and magnetic susceptibility in Friedreich ataxia. Mov. Disord. 39, 1109–1118 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Patel, M. et al. Open-label pilot study of oral methylprednisolone for the treatment of patients with Friedreich ataxia. Muscle Nerve 60, 571–575 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Yiu, E. M. et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J. Neurol. 262, 1344–1353 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Lynch, D. R. et al. Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich ataxia. Ann. Clin. Transl. Neurol. 6, 546–553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lynch, D. R. et al. Double blind trial of a deuterated form of linoleic acid (RT001) in Friedreich ataxia. J. Neurol. 270, 1615–1623 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Metz, G. et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database. Brain 136, 259 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Pandolfo, M. et al. Efficacy and safety of leriglitazone in patients with Friedreich ataxia: a phase 2 double-blind, randomized controlled trial (FRAMES). Neurol. Genet. 8, e200034 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Marmolino, D. et al. PGC-1α down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS ONE 5, e10025 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rodríguez-Pascau, L. et al. PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich ataxia. Neurobiol. Dis. 148, 105162 (2021).

    Article  PubMed  Google Scholar 

  157. Chevis, C. F. et al. Spinal cord atrophy correlates with disability in Friedreich’s ataxia. Cerebellum 12, 43–47 (2013).

    Article  PubMed  Google Scholar 

  158. Dogan, I. et al. Structural characteristics of the central nervous system in Friedreich ataxia: an in vivo spinal cord and brain MRI study. J. Neurol. Neurosurg. Psychiatry 90, 615–617 (2019).

    Article  PubMed  Google Scholar 

  159. Georgiou-Karistianis, N. et al. A natural history study to track brain and spinal cord changes in individuals with Friedreich’s ataxia: TRACK-FA study protocol. PLoS ONE 17, e0269649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lynch, D. R., Perlman, S. L. & Meier, T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch. Neurol. 67, 941–947 (2010).

    Article  PubMed  Google Scholar 

  161. Rummey, C., Perlman, S., Subramony, S. H., Farmer, J. & Lynch, D. R. Evaluating mFARS in pediatric Friedreich’s ataxia: insights from the FACHILD study. Ann. Clin. Transl. Neurol. 11, 1290–1300 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roche, B. et al. Test-retest reliability of an instrumented electronic walkway system (GAITRite) for the measurement of spatio-temporal gait parameters in young patients with Friedreich’s ataxia. Gait Posture 66, 45–50 (2018).

    Article  PubMed  Google Scholar 

  163. Park, S. Y. et al. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? Am. J. Physiol. Hear. Circ. Physiol. 307, H346 (2014).

    Article  CAS  Google Scholar 

  164. Vorgerd, M. et al. Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. Neuromuscul. Disord. 10, 430–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Nachbauer, W. et al. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS ONE 8, e69229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sival, D. A. et al. In children with Friedreich ataxia, muscle and ataxia parameters are associated. Dev. Med. Child. Neurol. 53, 529–534 (2011).

    Article  PubMed  Google Scholar 

  167. Nachbauer, W. et al. Skeletal muscle involvement in Friedreich ataxia and potential effects of recombinant human erythropoietin administration on muscle regeneration and neovascularization. J. Neuropathol. Exp. Neurol. 71, 708–715 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.I. and S.B. are members of the European Reference Network for Rare Neurological Diseases (ERN-RND) (project ID 739510).

Author information

Authors and Affiliations

Authors

Contributions

E.I. researched data for the article. E.I., J.F., S.P., M.R. and S.B. contributed substantially to discussion of the content. E.I., M.B.D. and M.C.F. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sylvia Boesch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks G. De Michèle, J. Santos, A. Koeppen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indelicato, E., Delatycki, M.B., Farmer, J. et al. A global perspective on research advances and future challenges in Friedreich ataxia. Nat Rev Neurol 21, 204–215 (2025). https://doi.org/10.1038/s41582-025-01065-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01065-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing