Abstract
Autoimmune encephalitis (AE), defined by clinical criteria and its frequent association with neural autoantibodies, often manifests with seizures, which usually stop with immunotherapy. However, a subset of encephalitic conditions present with recurrent seizures that are resistant to immunotherapy. Three primary neurological constellations that fall within this subset are discussed in this Perspective: temporal lobe epilepsy with antibodies against glutamic acid decarboxylase, epilepsy in the context of high-risk paraneoplastic antibodies, and epilepsy following adequately treated surface antibody-mediated AE. These entities all share a common mechanism of structural injury and potentially epileptogenic focal neural loss, often induced by cytotoxic T cells. Recently, we have proposed conceptualizing these conditions under the term autoimmune encephalitis-associated epilepsy (AEAE). Here, we discuss the new concept of AEAE as an emerging field of study. We consider the clinical characteristics of patients who should be investigated for AEAE and highlight the need for judicious use of traditional epilepsy therapeutics alongside immunotherapeutic considerations that are of uncertain and incomplete efficacy for this group of disorders. Last, we discuss future efforts needed to diagnose individuals before structural epileptogenesis has superseded inflammation and to develop improved therapeutics that target the specific immunological or functional disturbances in this entity.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470–472 (2005).
Eeg-Olofsson, O., Prchal, J. F. & Andermann, F. Abnormalities of T-lymphocyte subsets in epileptic patients. Acta Neurol. Scand. 72, 140–144 (1985).
Aarli, J. A. & Fontana, A. Immunological aspects of epilepsy. Epilepsia 21, 451–457 (1980).
Karpiak, S. E. Jr., Bowen, F. P. & Rapport, M. M. Epileptiform activity induced by antiserum to synaptic membrane. Brain Res. 59, 303–310 (1973).
Mihailović, L. T. & Cupić, D. Epileptiform activity evoked by intracerebral injection of anti-brain antibodies. Brain Res. 32, 97–124 (1971).
Yeshokumar, A. K. et al. Seizures in autoimmune encephalitis – a systematic review and quantitative synthesis. Epilepsia 62, 397–407 (2021).
Steriade, C. et al. Discerning the role of autoimmunity and autoantibodies in epilepsy: a review. JAMA Neurol. 78, 1383–1390 (2021).
Beghi, E. et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia 51, 671–675 (2010).
Dalmau, J. & Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med. 378, 840–851 (2018).
Steriade, C. et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 61, 1341–1351 (2020).
Rada, A. & Bien, C. G. What is autoimmune encephalitis-associated epilepsy? Proposal of a practical definition. Epilepsia 64, 2249–2255 (2023).
Budhram, A. & Burneo, J. G. Acute symptomatic seizures, epilepsy, and autoimmune encephalitis: clarifying terminology in neural antibody‐associated disease. Epilepsia 64, 306–310 (2022).
Geis, C., Planagumà, J., Carreño, M., Graus, F. & Dalmau, J. Autoimmune seizures and epilepsy. J. Clin. Invest. 129, 926–940 (2019).
Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).
Hauser, W. A., Rich, S. S., Lee, J. R., Annegers, J. F. & Anderson, V. E. Risk of recurrent seizures after two unprovoked seizures. N. Engl. J. Med. 338, 429–434 (1998).
Albert, M. L., Austin, L. M. & Darnell, R. B. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann. Neurol. 47, 9–17 (2000).
Albert, M. L. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat. Med. 4, 1321–1324 (1998).
Varadkar, S. et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 13, 195–205 (2014).
Budhram, A. et al. Clinical spectrum of high-titre GAD65 antibodies. J. Neurol. Neurosurg. Psychiatry 92, 645–654 (2021).
Madlener, M. et al. Glutamic acid decarboxylase antibody-associated neurological syndromes: clinical and antibody characteristics and therapy response. J. Neurol. Sci. 445, 120540 (2023).
Muñoz-Lopetegi, A. et al. Neurologic syndromes related to anti-GAD65: clinical and serologic response to treatment. Neurol. Neuroimmunol. Neuroinflamm. 7, e696 (2020).
Bien, C. G. et al. Routine diagnostics for neural antibodies, clinical correlates, treatment and functional outcome. J. Neurol. 267, 2101–2114 (2020).
Bai, L. et al. Neurological disorders associated with glutamic acid decarboxylase 65 antibodies: clinical spectrum and prognosis of a cohort from China. Front. Neurol. 13, 990553 (2022).
Tröscher, A. R. et al. Temporal lobe epilepsy with GAD antibodies: neurons killed by T cells not by complement membrane attack complex. Brain 146, 1436–1452 (2023).
Ilyas-Feldmann, M., Prüß, H. & Holtkamp, M. Long-term seizure outcome and antiseizure medication use in autoimmune encephalitis. Seizure 86, 138–143 (2021).
de Bruijn, M. et al. Antibodies contributing to focal epilepsy signs and symptoms score. Ann. Neurol. 89, 698–710 (2021).
Fauser, S. et al. Long latency between GAD-antibody detection and development of limbic encephalitis – a case report. BMC Neurol. 15, 177 (2015).
Fan, X. et al. Clinical heterogeneity in acute symptomatic seizures due to autoimmune encephalitis related to GAD65 antibodies. Neuroimmunomodulation 29, 171–176 (2022).
Kaaden, T. et al. Seizure semiology in antibody-associated autoimmune encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 9, e200034 (2022).
Joubert, B. et al. Long-term outcomes in temporal lobe epilepsy with glutamate decarboxylase antibodies. J. Neurol. 267, 2083–2089 (2020).
Lin, N. et al. Seizure semiology and predictors of outcomes in Chinese patients with glutamic acid decarboxylase antibody-associated neurological syndrome. BMC Neurol. 23, 149 (2023).
Chengyu, L. et al. Clinical features and immunotherapy outcomes of anti-glutamic acid decarboxylase 65 antibody-associated neurological disorders. J. Neuroimmunol. 345, 577289 (2020).
Pondrelli, F. et al. Pilomotor seizures in autoimmune limbic encephalitis: description of two GAD65 antibodies – related cases and literature review. Seizure 98, 71–78 (2022).
Smith, K. M. et al. Musicogenic epilepsy: expanding the spectrum of glutamic acid decarboxylase 65 neurological autoimmunity. Epilepsia 62, e76–e81 (2021).
Falip, M. et al. Musicogenic reflex seizures in epilepsy with glutamic acid decarbocylase antibodies. Acta Neurol. Scand. 137, 272–276 (2018).
Falip, M. et al. Hippocampus and insula are targets in epileptic patients with glutamic acid decarboxylase antibodies. Front. Neurol. 9, 1143 (2018).
Barba, C. et al. Surgical outcome of temporal plus epilepsy is improved by multilobar resection. Epilepsia 63, 769–776 (2022).
Wagner, J. et al. Automated volumetry of the mesiotemporal structures in antibody-associated limbic encephalitis. J. Neurol. Neurosurg. Psychiatry 86, 735–742 (2015).
Conde-Blanco, E. et al. Volumetric and shape analysis of the hippocampus in temporal lobe epilepsy with GAD65 antibodies compared with non-immune epilepsy. Sci. Rep. 11, 10199 (2021).
Dade, M. et al. Quantitative brain imaging analysis of neurological syndromes associated with anti-GAD antibodies. Neuroimage Clin. 32, 102826 (2021).
Frisch, C., Malter, M. P., Elger, C. E. & Helmstaedter, C. Neuropsychological course of voltage-gated potassium channel and glutamic acid decarboxylase antibody related limbic encephalitis. Eur. J. Neurol. 20, 1297–1304 (2013).
Belbezier, A. et al. Multiplex family with GAD65-Abs neurologic syndromes. Neurol. Neuroimmunol. Neuroinflamm. 5, e416 (2018).
Strippel, C. et al. A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies. Brain 146, 977–990 (2023).
Thaler, F. S. et al. Possible link of genetic variants to autoimmunity in GAD-antibody-associated neurological disorders. J. Neurol. Sci. 413, 116860 (2020).
Tröscher, A. R. et al. T cell numbers correlate with neuronal loss rather than with seizure activity in medial temporal lobe epilepsy. Epilepsia 62, 1343–1353 (2021).
Bauer, J. et al. Innate and adaptive immunity in human epilepsies. Epilepsia 58, 57–68 (2017).
Roll, W. et al. [18F]DPA-714-PET-MRI reveals pronounced innate immunity in human anti-LGI1 and anti-CASPR2 limbic encephalitis. J. Neurol. 271, 3653–3659 (2024).
Gallus, M. et al. Translational imaging of TSPO reveals pronounced innate inflammation in human and murine CD8 T cell-mediated limbic encephalitis. Sci. Adv. 9, eabq7595 (2023).
Parker, S. E., Bellingham, M. C. & Woodruff, T. M. Complement drives circuit modulation in the adult brain. Prog. Neurobiol. 214, 102282 (2022).
Chuquisana, O. et al. Complement activation contributes to GAD antibody-associated encephalitis. Acta Neuropathol. 144, 381–383 (2022).
Thaler, F. S. et al. Abundant glutamic acid decarboxylase (GAD)-reactive B cells in GAD-antibody-associated neurological disorders. Ann. Neurol. 85, 448–454 (2019).
Graus, F. & Dalmau, J. Paraneoplastic neurological syndromes. Curr. Opin. Neurol. 25, 795–801 (2012).
Bien, C. G. et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135, 1622–1638 (2012).
Rada, A. et al. Seizures associated with antibodies against cell surface antigens are acute symptomatic and not indicative of epilepsy: insights from long-term data. J. Neurol. 268, 1059–1069 (2021).
Mäkelä, K. M., Hietaharju, A., Brander, A. & Peltola, J. Clinical management of epilepsy with glutamic acid decarboxylase antibody positivity: the interplay between immunotherapy and anti-epileptic drugs. Front. Neurol. 9, 579 (2018).
Di Giacomo, R. et al. Predictive value of high titer of GAD65 antibodies in a case of limbic encephalitis. J. Neuroimmunol. 337, 577063 (2019).
Hansen, N. et al. Seizure control and cognitive improvement via immunotherapy in late onset epilepsy patients with paraneoplastic versus GAD65 autoantibody-associated limbic encephalitis. Epilepsy Behav. 65, 18–24 (2016).
Toledano, M. et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology 82, 1578–1586 (2014).
Blumcke, I. et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N. Engl. J. Med. 377, 1648–1656 (2017).
Serrano-Castro, P. J. et al. Cenobamate and clobazam combination as personalized medicine in autoimmune-associated epilepsy with anti-Gad65 antibodies. Neurol. Neuroimmunol. Neuroinflamm. 10, e200151 (2023).
Abbatemarco, J. R. et al. Autoimmune neurology: the need for comprehensive care. Neurol. Neuroimmunol. Neuroinflamm. 8, e1033 (2021).
Carreño, M. et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res. 129, 101–105 (2017).
Hansen, N. et al. Pre- and long-term postoperative courses of hippocampus-associated memory impairment in epilepsy patients with antibody-associated limbic encephalitis and selective amygdalohippocampectomy. Epilepsy Behav. 79, 93–99 (2018).
Zhao-Fleming, H. H., Guo, Y., Britton, J. W., Dubey, D. & Smith, K. M. Outcomes of surgical resection and vagus nerve stimulation in patients with medically refractory epilepsy and glutamic acid decarboxylase 65 antibody positivity. Epilepsia 65, e182–e189 (2024).
Gillinder, L. et al. Refractory epilepsy secondary to anti-GAD encephalitis treated with DBS post SEEG evaluation: a novel case report based on stimulation findings. Epileptic Disord. 20, 451–456 (2018).
Chen, B. et al. Brain responsive neurostimulation device safety and effectiveness in patients with drug-resistant autoimmune-associated epilepsy. Epilepsy Res. 184, 106974 (2022).
Feyissa, A. M. et al. Brain-responsive neurostimulation treatment in patients with GAD65 antibody-associated autoimmune mesial temporal lobe epilepsy. Epilepsia Open 5, 307–313 (2020).
Smith, K. M. et al. Seizure characteristics and outcomes in patients with neurological conditions related to high-risk paraneoplastic antibodies. Epilepsia 64, 2385–2398 (2023).
Baumgartner, T. et al. Seizure underreporting in LGI1 and CASPR2 antibody encephalitis. Epilepsia 63, e100–e105 (2022).
Muñiz-Castrillo, S. & Honnorat, J. Genetic predisposition to autoimmune encephalitis and paraneoplastic neurological syndromes. Curr. Opin. Neurol. 37, 329–337 (2024).
Dalmau, J. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 127, 1831–1844 (2004).
Bernal, F. et al. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol. 103, 509–515 (2002).
Blumenthal, D. T. et al. Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis. Neurology 67, 146–149 (2006).
Dalmau, J. et al. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain 122, 27–39 (1999).
Wanschitz, J., Hainfellner, J. A., Kristoferitsch, W., Drlicek, M. & Budka, H. Ganglionitis in paraneoplastic subacute sensory neuronopathy: a morphologic study. Neurology 49, 1156–1159 (1997).
Barnett, M. et al. Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody. J. Neurol. Neurosurg. Psychiatry 70, 222–225 (2001).
Jean, W. C., Dalmau, J., Ho, A. & Posner, J. B. Analysis of the IgG subclass distribution and inflammatory infiltrates in patients with anti-Hu-associated paraneoplastic encephalomyelitis. Neurology 44, 140–147 (1994).
Storstein, A., Krossnes, B. K. & Vedeler, C. A. Morphological and immunohistochemical characterization of paraneoplastic cerebellar degeneration associated with Yo antibodies. Acta Neurol. Scand. 120, 64–67 (2009).
Peterson, K., Rosenblum, M. K., Kotanides, H. & Posner, J. B. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 42, 1931–1937 (1992).
Madondo, M. T., Quinn, M. & Plebanski, M. Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treat. Rev. 42, 3–9 (2016).
Abboud, H. et al. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. J. Neurol. Neurosurg. Psychiatry 92, 757–768 (2021).
Graus, F. et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 124, 1138–1148 (2001).
Kerstens, J. & Titulaer, M. J. Overview of treatment strategies in paraneoplastic neurological syndromes. Handb. Clin. Neurol. 200, 97–112 (2024).
de Bruijn, M. et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 92, e2185–e2196 (2019).
Shen, C. H. et al. Seizures and risk of epilepsy in anti-NMDAR, anti-LGI1, and anti-GABABR encephalitis. Ann. Clin. Transl. Neurol. 7, 1392–1399 (2020).
Smith, K. M., Dubey, D., Liebo, G. B., Flanagan, E. P. & Britton, J. W. Clinical course and features of seizures associated with LGI1-antibody encephalitis. Neurology 97, e1141–e1149 (2021).
Guery, D. et al. Long-term evolution and prognostic factors of epilepsy in limbic encephalitis with LGI1 antibodies. J. Neurol. 269, 5061–5069 (2022).
Liu, X. et al. Long-term seizure outcomes in patients with autoimmune encephalitis: a prospective observational registry study update. Epilepsia 63, 1812–1821 (2022).
Löscher, W., Hirsch, L. J. & Schmidt, D. The enigma of the latent period in the development of symptomatic acquired epilepsy – traditional view versus new concepts. Epilepsy Behav. 52, 78–92 (2015).
Wieser, H. G. ILAE Commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45, 695–714 (2004).
Zhang, W., Wang, X., Shao, N., Ma, R. & Meng, H. Seizure characteristics, treatment, and outcome in autoimmune synaptic encephalitis: a long-term study. Epilepsy Behav. 94, 198–203 (2019).
Yao, L. et al. Clinical features and long-term outcomes of seizures associated with autoimmune encephalitis: a follow-up study in East China. J. Clin. Neurosci. 68, 73–79 (2019).
Steriade, C. et al. Predictors of seizure outcomes of autoimmune encephalitis: a clinical and morphometric quantitative analysis study. Clin. Neurol. Neurosurg. 231, 107854 (2023).
Binks, S. et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 141, 2263–2271 (2018).
Segal, Y. et al. New insights on DR and DQ human leukocyte antigens in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200103 (2023).
Peris Sempere, V. et al. Human leukocyte antigen association study reveals DRB1*04:02 effects additional to DRB1*07:01 in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 9, e1140 (2022).
Muñiz-Castrillo, S. et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J. Neurol. Neurosurg. Psychiatry 91, 1076–1084 (2020).
Liu, X. et al. Genome-wide association study identifies IFIH1 and HLA-DQB1*05:02 loci associated with anti-NMDAR encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 11, e200221 (2024).
Peris Sempere, V. et al. HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis. Front. Immunol. 15, 1423149 (2024).
Anurat, K. et al. HLA-DRB1∗1502 is associated with anti-N-methyl-D-aspartate receptor encephalitis in Thai children. Pediatr. Neurol. 134, 93–99 (2022).
Kuehn, J. C. et al. A 64-year-old patient with a mesiotemporal mass and symptomatic epilepsy. Brain Pathol. 30, 413–414 (2020).
Körtvelyessy, P. et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2, e75 (2015).
Petit-Pedrol, M. et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 141, 3144–3159 (2018).
Patterson, K. R., Dalmau, J. & Lancaster, E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann. Neurol. 83, 40–51 (2018).
Boyko, M., Au, K. L. K., Casault, C., de Robles, P. & Pfeffer, G. Systematic review of the clinical spectrum of CASPR2 antibody syndrome. J. Neurol. 267, 1137–1146 (2020).
Finke, C. et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol. 74, 50–59 (2017).
Miller, T. D. et al. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis. Brain 140, 1212–1219 (2017).
Ariño, H. et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 87, 759–765 (2016).
Gadoth, A. et al. Elevated LGI1-IgG CSF index predicts worse neurological outcome. Ann. Clin. Transl. Neurol. 5, 646–650 (2018).
Muñiz-Castrillo, S. et al. Clinical and prognostic value of immunogenetic characteristics in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 8, e974 (2021).
Joubert, B. et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol. 73, 1115–1124 (2016).
Bien, C. G. et al. LGI1 encephalitis: potentially complement-activating anti-LGI1-IgG subclasses 1/2/3 are associated with the development of hippocampal sclerosis. J. Neurol. 271, 6325–6335 (2024).
Thompson, J. et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 141, 348–356 (2018).
Filatenkov, A. et al. Persistence of parenchymal and perivascular T-cells in treatment-refractory anti-N-methyl-D-aspartate receptor encephalitis. Neuroreport 28, 890–895 (2017).
Dalmau, J. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 61, 25–36 (2007).
Zrzavy, T. et al. Neuropathological variability within a spectrum of NMDAR-encephalitis. Ann. Neurol. 90, 725–737 (2021).
Camdessanché, J. P. et al. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur. J. Neurol. 18, 929–931 (2011).
Martinez-Hernandez, E. et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 77, 589–593 (2011).
Tüzün, E. et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 118, 737–743 (2009).
Hughes, E. G. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30, 5866–5875 (2010).
Hirano, M. et al. Pathological findings in male patients with anti-N-methyl-d-aspartate receptor encephalitis. J. Neuropathol. Exp. Neurol. 78, 735–741 (2019).
Dauvilliers, Y. et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy-cataplexy. JAMA Neurol. 70, 1305–1310 (2013).
Finke, C. et al. Structural hippocampal damage following anti-N-methyl-D-aspartate receptor encephalitis. Biol. Psychiatry 79, 727–734 (2016).
Xu, J. et al. Progressive cortical and sub-cortical alterations in patients with anti-N-methyl-d-aspartate receptor encephalitis. J. Neurol. 269, 389–398 (2022).
Planagumà, J. et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 138, 94–109 (2015).
Peng, X. et al. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann. Neurol. 77, 381–398 (2015).
Petit-Pedrol, M. et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 13, 276–286 (2014).
Ohkawa, T. et al. Identification and characterization of GABAA receptor autoantibodies in autoimmune encephalitis. J. Neurosci. 34, 8151–8163 (2014).
Bracher, A. et al. An expanded parenchymal CD8+ T cell clone in GABAA receptor encephalitis. Ann. Clin. Transl. Neurol. 7, 239–244 (2020).
Golombeck, K. S. et al. Evidence of a pathogenic role for CD8+ T cells in anti-GABAB receptor limbic encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 3, e232 (2016).
Cui, D., Feng, J., Yang, M., Dong, Y. & Lian, Y. Acute symptomatic seizures and risk of seizure recurrence in patients with anti-NMDAR, anti-LGI1, and anti-GABABR encephalitis. Neurol. Sci. 45, 1609–1617 (2024).
Feyissa, A. M., López Chiriboga, A. S. & Britton, J. W. Antiepileptic drug therapy in patients with autoimmune epilepsy. Neurol. Neuroimmunol. Neuroinflamm. 4, e353 (2017).
Feyissa, A. M. et al. Antiepileptic drug therapy in autoimmune epilepsy associated with antibodies targeting the leucine-rich glioma-inactivated protein 1. Epilepsia Open 3, 348–356 (2018).
Abboud, H. et al. Autoimmune encephalitis: proposed recommendations for symptomatic and long-term management. J. Neurol. Neurosurg. Psychiatry 92, 897–907 (2021).
Chang, Y. C., Nouri, M. N., Mirsattari, S., Burneo, J. G. & Budhram, A. “Obvious” indications for neural antibody testing in epilepsy or seizures: the ONES checklist. Epilepsia 63, 1658–1670 (2022).
Jia, Y., Wang, H. F., Zhang, M. Y. & Wang, Y. P. Antibody prevalence and immunotherapy response in Chinese patients with epilepsy and encephalopathy scores for patients with different neuronal surface antibodies. Chin. Med. J. 134, 2985–2991 (2021).
Ding, S. et al. Validation of predictive models for autoimmune encephalitis-related antibodies to cell-surface proteins expressed in neurons: a retrospective study based in a hospital. Front. Neurol. 12, 601761 (2021).
Dubey, D. et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J. Neuroimmunol. 323, 62–72 (2018).
McGinty, R. N. et al. Clinical features which predict neuronal surface autoantibodies in new-onset focal epilepsy: implications for immunotherapies. J. Neurol. Neurosurg. Psychiatry 92, 291–294 (2021).
Morano, A. et al. Distinguishing seizures in autoimmune limbic encephalitis from mesial temporal lobe epilepsy with hippocampal sclerosis: clues of a temporal plus network. J. Neurol. Sci. 467, 123288 (2024).
Morano, A. et al. Late-onset seizures and epilepsy: electroclinical features suggestive of autoimmune etiology. Front. Neurol. 13, 924859 (2022).
Rocamora, R. et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 23, 670–673 (2014).
Barba, C., Barbati, G., Minotti, L., Hoffmann, D. & Kahane, P. Ictal clinical and scalp-EEG findings differentiating temporal lobe epilepsies from temporal ‘plus’ epilepsies. Brain 130, 1957–1967 (2007).
Seo, D. W., Lee, H. S., Hong, S. B., Hong, S. C. & Lee, E. K. Pilomotor seizures in frontal lobe epilepsy: case report. Seizure 12, 241–244 (2003).
Lesser, R. P., Lüders, H. & Resor, S. Other reports of pilomotor seizures. Neurology 35, 286–287 (1985).
Loddenkemper, T. et al. Localising and lateralising value of ictal piloerection. J. Neurol. Neurosurg. Psychiatry 75, 879–883 (2004).
Budhram, A., Sharma, M. & Young, G. B. Seizures in anti-Hu-associated extra-limbic encephalitis: characterization of a unique disease manifestation. Epilepsia 63, e172–e177 (2022).
Elisak, M. et al. The prevalence of neural antibodies in temporal lobe epilepsy and the clinical characteristics of seropositive patients. Seizure 63, 1–6 (2018).
Kambadja, B. et al. When should we test patients with epilepsy for autoimmune antibodies? Results from a French retrospective single center study. J. Neurol. 269, 3109–3118 (2021).
Gresa-Arribas, N. et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 13, 167–177 (2014).
Maialetti, A. et al. Multimodal pathway for brain tumor-related epilepsy patients: observational study. Acta Neurol. Scand. 141, 450–462 (2020).
Slegers, R. J. & Blumcke, I. Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol. Commun. 8, 27 (2020).
Soeung, V., Puchalski, R. B. & Noebels, J. L. The complex molecular epileptogenesis landscape of glioblastoma. Cell Rep. Med. 5, 101691 (2024).
Graus, F. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 15, 391–404 (2016).
Matricardi, S. et al. Epileptic phenotypes in autoimmune encephalitis: from acute symptomatic seizures to autoimmune-associated epilepsy. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2022-329195 (2022).
Gadian, J. et al. Neurological and cognitive outcomes after antibody-negative autoimmune encephalitis in children. Dev. Med. Child. Neurol. 64, 649–653 (2022).
Bien, C. G. et al. Correction to: Routine diagnostics for neural antibodies, clinical correlates, treatment and functional outcome. J. Neurol. 267, 2115–2116 (2020).
Ariño, H. et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol. 72, 874–881 (2015).
Acknowledgements
We thank M. Barnett (Sydney, Australia), A. Becker (Bonn, Germany) and R. Höftberger (Vienna, Austria) for providing us with brain material and MRI scans from patients with encephalitis. J.B. was financially supported by the Austrian Science Fund (project number P34864-B). C.S. was supported by NINDS (R01NS126156).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neurology thanks Qun Wang, Divyanshu Dubey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Steriade, C., Bauer, J. & Bien, C.G. Autoimmune encephalitis-associated epilepsy. Nat Rev Neurol 21, 312–326 (2025). https://doi.org/10.1038/s41582-025-01089-4
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41582-025-01089-4


