Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Autoimmune encephalitis-associated epilepsy

Abstract

Autoimmune encephalitis (AE), defined by clinical criteria and its frequent association with neural autoantibodies, often manifests with seizures, which usually stop with immunotherapy. However, a subset of encephalitic conditions present with recurrent seizures that are resistant to immunotherapy. Three primary neurological constellations that fall within this subset are discussed in this Perspective: temporal lobe epilepsy with antibodies against glutamic acid decarboxylase, epilepsy in the context of high-risk paraneoplastic antibodies, and epilepsy following adequately treated surface antibody-mediated AE. These entities all share a common mechanism of structural injury and potentially epileptogenic focal neural loss, often induced by cytotoxic T cells. Recently, we have proposed conceptualizing these conditions under the term autoimmune encephalitis-associated epilepsy (AEAE). Here, we discuss the new concept of AEAE as an emerging field of study. We consider the clinical characteristics of patients who should be investigated for AEAE and highlight the need for judicious use of traditional epilepsy therapeutics alongside immunotherapeutic considerations that are of uncertain and incomplete efficacy for this group of disorders. Last, we discuss future efforts needed to diagnose individuals before structural epileptogenesis has superseded inflammation and to develop improved therapeutics that target the specific immunological or functional disturbances in this entity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of seizures in AEAE.
Fig. 2: Example of GAD-TLE disease course.
Fig. 3: Pathology of early and late stages of GAD-TLE.
Fig. 4: Pathology of Ma2 antibody-positive paraneoplastic encephalitis.
Fig. 5: Pathological features of anti-LGI1 encephalitis.

Similar content being viewed by others

References

  1. Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470–472 (2005).

    Article  PubMed  Google Scholar 

  2. Eeg-Olofsson, O., Prchal, J. F. & Andermann, F. Abnormalities of T-lymphocyte subsets in epileptic patients. Acta Neurol. Scand. 72, 140–144 (1985).

    Article  PubMed  Google Scholar 

  3. Aarli, J. A. & Fontana, A. Immunological aspects of epilepsy. Epilepsia 21, 451–457 (1980).

    Article  PubMed  Google Scholar 

  4. Karpiak, S. E. Jr., Bowen, F. P. & Rapport, M. M. Epileptiform activity induced by antiserum to synaptic membrane. Brain Res. 59, 303–310 (1973).

    Article  PubMed  Google Scholar 

  5. Mihailović, L. T. & Cupić, D. Epileptiform activity evoked by intracerebral injection of anti-brain antibodies. Brain Res. 32, 97–124 (1971).

    Article  PubMed  Google Scholar 

  6. Yeshokumar, A. K. et al. Seizures in autoimmune encephalitis – a systematic review and quantitative synthesis. Epilepsia 62, 397–407 (2021).

    Article  PubMed  Google Scholar 

  7. Steriade, C. et al. Discerning the role of autoimmunity and autoantibodies in epilepsy: a review. JAMA Neurol. 78, 1383–1390 (2021).

    Article  PubMed  Google Scholar 

  8. Beghi, E. et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia 51, 671–675 (2010).

    Article  PubMed  Google Scholar 

  9. Dalmau, J. & Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med. 378, 840–851 (2018).

    Article  PubMed  Google Scholar 

  10. Steriade, C. et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 61, 1341–1351 (2020).

    Article  PubMed  Google Scholar 

  11. Rada, A. & Bien, C. G. What is autoimmune encephalitis-associated epilepsy? Proposal of a practical definition. Epilepsia 64, 2249–2255 (2023).

    Article  PubMed  Google Scholar 

  12. Budhram, A. & Burneo, J. G. Acute symptomatic seizures, epilepsy, and autoimmune encephalitis: clarifying terminology in neural antibody‐associated disease. Epilepsia 64, 306–310 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Geis, C., Planagumà, J., Carreño, M., Graus, F. & Dalmau, J. Autoimmune seizures and epilepsy. J. Clin. Invest. 129, 926–940 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).

    Article  PubMed  Google Scholar 

  15. Hauser, W. A., Rich, S. S., Lee, J. R., Annegers, J. F. & Anderson, V. E. Risk of recurrent seizures after two unprovoked seizures. N. Engl. J. Med. 338, 429–434 (1998).

    Article  PubMed  Google Scholar 

  16. Albert, M. L., Austin, L. M. & Darnell, R. B. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann. Neurol. 47, 9–17 (2000).

    Article  PubMed  Google Scholar 

  17. Albert, M. L. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat. Med. 4, 1321–1324 (1998).

    Article  PubMed  Google Scholar 

  18. Varadkar, S. et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 13, 195–205 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Budhram, A. et al. Clinical spectrum of high-titre GAD65 antibodies. J. Neurol. Neurosurg. Psychiatry 92, 645–654 (2021).

    Article  PubMed  Google Scholar 

  20. Madlener, M. et al. Glutamic acid decarboxylase antibody-associated neurological syndromes: clinical and antibody characteristics and therapy response. J. Neurol. Sci. 445, 120540 (2023).

    Article  PubMed  Google Scholar 

  21. Muñoz-Lopetegi, A. et al. Neurologic syndromes related to anti-GAD65: clinical and serologic response to treatment. Neurol. Neuroimmunol. Neuroinflamm. 7, e696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bien, C. G. et al. Routine diagnostics for neural antibodies, clinical correlates, treatment and functional outcome. J. Neurol. 267, 2101–2114 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bai, L. et al. Neurological disorders associated with glutamic acid decarboxylase 65 antibodies: clinical spectrum and prognosis of a cohort from China. Front. Neurol. 13, 990553 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tröscher, A. R. et al. Temporal lobe epilepsy with GAD antibodies: neurons killed by T cells not by complement membrane attack complex. Brain 146, 1436–1452 (2023).

    Article  PubMed  Google Scholar 

  25. Ilyas-Feldmann, M., Prüß, H. & Holtkamp, M. Long-term seizure outcome and antiseizure medication use in autoimmune encephalitis. Seizure 86, 138–143 (2021).

    Article  PubMed  Google Scholar 

  26. de Bruijn, M. et al. Antibodies contributing to focal epilepsy signs and symptoms score. Ann. Neurol. 89, 698–710 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fauser, S. et al. Long latency between GAD-antibody detection and development of limbic encephalitis – a case report. BMC Neurol. 15, 177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fan, X. et al. Clinical heterogeneity in acute symptomatic seizures due to autoimmune encephalitis related to GAD65 antibodies. Neuroimmunomodulation 29, 171–176 (2022).

    Article  PubMed  Google Scholar 

  29. Kaaden, T. et al. Seizure semiology in antibody-associated autoimmune encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 9, e200034 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joubert, B. et al. Long-term outcomes in temporal lobe epilepsy with glutamate decarboxylase antibodies. J. Neurol. 267, 2083–2089 (2020).

    Article  PubMed  Google Scholar 

  31. Lin, N. et al. Seizure semiology and predictors of outcomes in Chinese patients with glutamic acid decarboxylase antibody-associated neurological syndrome. BMC Neurol. 23, 149 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chengyu, L. et al. Clinical features and immunotherapy outcomes of anti-glutamic acid decarboxylase 65 antibody-associated neurological disorders. J. Neuroimmunol. 345, 577289 (2020).

    Article  PubMed  Google Scholar 

  33. Pondrelli, F. et al. Pilomotor seizures in autoimmune limbic encephalitis: description of two GAD65 antibodies – related cases and literature review. Seizure 98, 71–78 (2022).

    Article  PubMed  Google Scholar 

  34. Smith, K. M. et al. Musicogenic epilepsy: expanding the spectrum of glutamic acid decarboxylase 65 neurological autoimmunity. Epilepsia 62, e76–e81 (2021).

    Article  PubMed  Google Scholar 

  35. Falip, M. et al. Musicogenic reflex seizures in epilepsy with glutamic acid decarbocylase antibodies. Acta Neurol. Scand. 137, 272–276 (2018).

    Article  PubMed  Google Scholar 

  36. Falip, M. et al. Hippocampus and insula are targets in epileptic patients with glutamic acid decarboxylase antibodies. Front. Neurol. 9, 1143 (2018).

    Article  PubMed  Google Scholar 

  37. Barba, C. et al. Surgical outcome of temporal plus epilepsy is improved by multilobar resection. Epilepsia 63, 769–776 (2022).

    Article  PubMed  Google Scholar 

  38. Wagner, J. et al. Automated volumetry of the mesiotemporal structures in antibody-associated limbic encephalitis. J. Neurol. Neurosurg. Psychiatry 86, 735–742 (2015).

    Article  PubMed  Google Scholar 

  39. Conde-Blanco, E. et al. Volumetric and shape analysis of the hippocampus in temporal lobe epilepsy with GAD65 antibodies compared with non-immune epilepsy. Sci. Rep. 11, 10199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dade, M. et al. Quantitative brain imaging analysis of neurological syndromes associated with anti-GAD antibodies. Neuroimage Clin. 32, 102826 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Frisch, C., Malter, M. P., Elger, C. E. & Helmstaedter, C. Neuropsychological course of voltage-gated potassium channel and glutamic acid decarboxylase antibody related limbic encephalitis. Eur. J. Neurol. 20, 1297–1304 (2013).

    Article  PubMed  Google Scholar 

  42. Belbezier, A. et al. Multiplex family with GAD65-Abs neurologic syndromes. Neurol. Neuroimmunol. Neuroinflamm. 5, e416 (2018).

    Article  PubMed  Google Scholar 

  43. Strippel, C. et al. A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies. Brain 146, 977–990 (2023).

    Article  PubMed  Google Scholar 

  44. Thaler, F. S. et al. Possible link of genetic variants to autoimmunity in GAD-antibody-associated neurological disorders. J. Neurol. Sci. 413, 116860 (2020).

    Article  PubMed  Google Scholar 

  45. Tröscher, A. R. et al. T cell numbers correlate with neuronal loss rather than with seizure activity in medial temporal lobe epilepsy. Epilepsia 62, 1343–1353 (2021).

    Article  PubMed  Google Scholar 

  46. Bauer, J. et al. Innate and adaptive immunity in human epilepsies. Epilepsia 58, 57–68 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Roll, W. et al. [18F]DPA-714-PET-MRI reveals pronounced innate immunity in human anti-LGI1 and anti-CASPR2 limbic encephalitis. J. Neurol. 271, 3653–3659 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gallus, M. et al. Translational imaging of TSPO reveals pronounced innate inflammation in human and murine CD8 T cell-mediated limbic encephalitis. Sci. Adv. 9, eabq7595 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parker, S. E., Bellingham, M. C. & Woodruff, T. M. Complement drives circuit modulation in the adult brain. Prog. Neurobiol. 214, 102282 (2022).

    Article  PubMed  Google Scholar 

  50. Chuquisana, O. et al. Complement activation contributes to GAD antibody-associated encephalitis. Acta Neuropathol. 144, 381–383 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thaler, F. S. et al. Abundant glutamic acid decarboxylase (GAD)-reactive B cells in GAD-antibody-associated neurological disorders. Ann. Neurol. 85, 448–454 (2019).

    Article  PubMed  Google Scholar 

  52. Graus, F. & Dalmau, J. Paraneoplastic neurological syndromes. Curr. Opin. Neurol. 25, 795–801 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bien, C. G. et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135, 1622–1638 (2012).

    Article  PubMed  Google Scholar 

  54. Rada, A. et al. Seizures associated with antibodies against cell surface antigens are acute symptomatic and not indicative of epilepsy: insights from long-term data. J. Neurol. 268, 1059–1069 (2021).

    Article  PubMed  Google Scholar 

  55. Mäkelä, K. M., Hietaharju, A., Brander, A. & Peltola, J. Clinical management of epilepsy with glutamic acid decarboxylase antibody positivity: the interplay between immunotherapy and anti-epileptic drugs. Front. Neurol. 9, 579 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Di Giacomo, R. et al. Predictive value of high titer of GAD65 antibodies in a case of limbic encephalitis. J. Neuroimmunol. 337, 577063 (2019).

    Article  PubMed  Google Scholar 

  57. Hansen, N. et al. Seizure control and cognitive improvement via immunotherapy in late onset epilepsy patients with paraneoplastic versus GAD65 autoantibody-associated limbic encephalitis. Epilepsy Behav. 65, 18–24 (2016).

    Article  PubMed  Google Scholar 

  58. Toledano, M. et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology 82, 1578–1586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Blumcke, I. et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N. Engl. J. Med. 377, 1648–1656 (2017).

    Article  PubMed  Google Scholar 

  60. Serrano-Castro, P. J. et al. Cenobamate and clobazam combination as personalized medicine in autoimmune-associated epilepsy with anti-Gad65 antibodies. Neurol. Neuroimmunol. Neuroinflamm. 10, e200151 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abbatemarco, J. R. et al. Autoimmune neurology: the need for comprehensive care. Neurol. Neuroimmunol. Neuroinflamm. 8, e1033 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Carreño, M. et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res. 129, 101–105 (2017).

    Article  PubMed  Google Scholar 

  63. Hansen, N. et al. Pre- and long-term postoperative courses of hippocampus-associated memory impairment in epilepsy patients with antibody-associated limbic encephalitis and selective amygdalohippocampectomy. Epilepsy Behav. 79, 93–99 (2018).

    Article  PubMed  Google Scholar 

  64. Zhao-Fleming, H. H., Guo, Y., Britton, J. W., Dubey, D. & Smith, K. M. Outcomes of surgical resection and vagus nerve stimulation in patients with medically refractory epilepsy and glutamic acid decarboxylase 65 antibody positivity. Epilepsia 65, e182–e189 (2024).

    Article  PubMed  Google Scholar 

  65. Gillinder, L. et al. Refractory epilepsy secondary to anti-GAD encephalitis treated with DBS post SEEG evaluation: a novel case report based on stimulation findings. Epileptic Disord. 20, 451–456 (2018).

    Article  PubMed  Google Scholar 

  66. Chen, B. et al. Brain responsive neurostimulation device safety and effectiveness in patients with drug-resistant autoimmune-associated epilepsy. Epilepsy Res. 184, 106974 (2022).

    Article  PubMed  Google Scholar 

  67. Feyissa, A. M. et al. Brain-responsive neurostimulation treatment in patients with GAD65 antibody-associated autoimmune mesial temporal lobe epilepsy. Epilepsia Open 5, 307–313 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Smith, K. M. et al. Seizure characteristics and outcomes in patients with neurological conditions related to high-risk paraneoplastic antibodies. Epilepsia 64, 2385–2398 (2023).

    Article  PubMed  Google Scholar 

  69. Baumgartner, T. et al. Seizure underreporting in LGI1 and CASPR2 antibody encephalitis. Epilepsia 63, e100–e105 (2022).

    Article  PubMed  Google Scholar 

  70. Muñiz-Castrillo, S. & Honnorat, J. Genetic predisposition to autoimmune encephalitis and paraneoplastic neurological syndromes. Curr. Opin. Neurol. 37, 329–337 (2024).

    Article  PubMed  Google Scholar 

  71. Dalmau, J. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 127, 1831–1844 (2004).

    Article  PubMed  Google Scholar 

  72. Bernal, F. et al. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol. 103, 509–515 (2002).

    Article  PubMed  Google Scholar 

  73. Blumenthal, D. T. et al. Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis. Neurology 67, 146–149 (2006).

    Article  PubMed  Google Scholar 

  74. Dalmau, J. et al. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain 122, 27–39 (1999).

    Article  PubMed  Google Scholar 

  75. Wanschitz, J., Hainfellner, J. A., Kristoferitsch, W., Drlicek, M. & Budka, H. Ganglionitis in paraneoplastic subacute sensory neuronopathy: a morphologic study. Neurology 49, 1156–1159 (1997).

    Article  PubMed  Google Scholar 

  76. Barnett, M. et al. Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody. J. Neurol. Neurosurg. Psychiatry 70, 222–225 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jean, W. C., Dalmau, J., Ho, A. & Posner, J. B. Analysis of the IgG subclass distribution and inflammatory infiltrates in patients with anti-Hu-associated paraneoplastic encephalomyelitis. Neurology 44, 140–147 (1994).

    Article  PubMed  Google Scholar 

  78. Storstein, A., Krossnes, B. K. & Vedeler, C. A. Morphological and immunohistochemical characterization of paraneoplastic cerebellar degeneration associated with Yo antibodies. Acta Neurol. Scand. 120, 64–67 (2009).

    Article  PubMed  Google Scholar 

  79. Peterson, K., Rosenblum, M. K., Kotanides, H. & Posner, J. B. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 42, 1931–1937 (1992).

    Article  PubMed  Google Scholar 

  80. Madondo, M. T., Quinn, M. & Plebanski, M. Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treat. Rev. 42, 3–9 (2016).

    Article  PubMed  Google Scholar 

  81. Abboud, H. et al. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. J. Neurol. Neurosurg. Psychiatry 92, 757–768 (2021).

    Article  PubMed  Google Scholar 

  82. Graus, F. et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 124, 1138–1148 (2001).

    Article  PubMed  Google Scholar 

  83. Kerstens, J. & Titulaer, M. J. Overview of treatment strategies in paraneoplastic neurological syndromes. Handb. Clin. Neurol. 200, 97–112 (2024).

    Article  PubMed  Google Scholar 

  84. de Bruijn, M. et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 92, e2185–e2196 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shen, C. H. et al. Seizures and risk of epilepsy in anti-NMDAR, anti-LGI1, and anti-GABABR encephalitis. Ann. Clin. Transl. Neurol. 7, 1392–1399 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Smith, K. M., Dubey, D., Liebo, G. B., Flanagan, E. P. & Britton, J. W. Clinical course and features of seizures associated with LGI1-antibody encephalitis. Neurology 97, e1141–e1149 (2021).

    Article  PubMed  Google Scholar 

  87. Guery, D. et al. Long-term evolution and prognostic factors of epilepsy in limbic encephalitis with LGI1 antibodies. J. Neurol. 269, 5061–5069 (2022).

    Article  PubMed  Google Scholar 

  88. Liu, X. et al. Long-term seizure outcomes in patients with autoimmune encephalitis: a prospective observational registry study update. Epilepsia 63, 1812–1821 (2022).

    Article  PubMed  Google Scholar 

  89. Löscher, W., Hirsch, L. J. & Schmidt, D. The enigma of the latent period in the development of symptomatic acquired epilepsy – traditional view versus new concepts. Epilepsy Behav. 52, 78–92 (2015).

    Article  PubMed  Google Scholar 

  90. Wieser, H. G. ILAE Commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45, 695–714 (2004).

    Article  PubMed  Google Scholar 

  91. Zhang, W., Wang, X., Shao, N., Ma, R. & Meng, H. Seizure characteristics, treatment, and outcome in autoimmune synaptic encephalitis: a long-term study. Epilepsy Behav. 94, 198–203 (2019).

    Article  PubMed  Google Scholar 

  92. Yao, L. et al. Clinical features and long-term outcomes of seizures associated with autoimmune encephalitis: a follow-up study in East China. J. Clin. Neurosci. 68, 73–79 (2019).

    Article  PubMed  Google Scholar 

  93. Steriade, C. et al. Predictors of seizure outcomes of autoimmune encephalitis: a clinical and morphometric quantitative analysis study. Clin. Neurol. Neurosurg. 231, 107854 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Binks, S. et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 141, 2263–2271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Segal, Y. et al. New insights on DR and DQ human leukocyte antigens in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200103 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Peris Sempere, V. et al. Human leukocyte antigen association study reveals DRB1*04:02 effects additional to DRB1*07:01 in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 9, e1140 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Muñiz-Castrillo, S. et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J. Neurol. Neurosurg. Psychiatry 91, 1076–1084 (2020).

    Article  PubMed  Google Scholar 

  98. Liu, X. et al. Genome-wide association study identifies IFIH1 and HLA-DQB1*05:02 loci associated with anti-NMDAR encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 11, e200221 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Peris Sempere, V. et al. HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis. Front. Immunol. 15, 1423149 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Anurat, K. et al. HLA-DRB11502 is associated with anti-N-methyl-D-aspartate receptor encephalitis in Thai children. Pediatr. Neurol. 134, 93–99 (2022).

    Article  PubMed  Google Scholar 

  101. Kuehn, J. C. et al. A 64-year-old patient with a mesiotemporal mass and symptomatic epilepsy. Brain Pathol. 30, 413–414 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Körtvelyessy, P. et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2, e75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Petit-Pedrol, M. et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 141, 3144–3159 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. Patterson, K. R., Dalmau, J. & Lancaster, E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann. Neurol. 83, 40–51 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Boyko, M., Au, K. L. K., Casault, C., de Robles, P. & Pfeffer, G. Systematic review of the clinical spectrum of CASPR2 antibody syndrome. J. Neurol. 267, 1137–1146 (2020).

    Article  PubMed  Google Scholar 

  106. Finke, C. et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol. 74, 50–59 (2017).

    Article  PubMed  Google Scholar 

  107. Miller, T. D. et al. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis. Brain 140, 1212–1219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ariño, H. et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 87, 759–765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gadoth, A. et al. Elevated LGI1-IgG CSF index predicts worse neurological outcome. Ann. Clin. Transl. Neurol. 5, 646–650 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Muñiz-Castrillo, S. et al. Clinical and prognostic value of immunogenetic characteristics in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 8, e974 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Joubert, B. et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol. 73, 1115–1124 (2016).

    Article  PubMed  Google Scholar 

  112. Bien, C. G. et al. LGI1 encephalitis: potentially complement-activating anti-LGI1-IgG subclasses 1/2/3 are associated with the development of hippocampal sclerosis. J. Neurol. 271, 6325–6335 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Thompson, J. et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 141, 348–356 (2018).

    Article  PubMed  Google Scholar 

  114. Filatenkov, A. et al. Persistence of parenchymal and perivascular T-cells in treatment-refractory anti-N-methyl-D-aspartate receptor encephalitis. Neuroreport 28, 890–895 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dalmau, J. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 61, 25–36 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zrzavy, T. et al. Neuropathological variability within a spectrum of NMDAR-encephalitis. Ann. Neurol. 90, 725–737 (2021).

    Article  PubMed  Google Scholar 

  117. Camdessanché, J. P. et al. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur. J. Neurol. 18, 929–931 (2011).

    Article  PubMed  Google Scholar 

  118. Martinez-Hernandez, E. et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 77, 589–593 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tüzün, E. et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 118, 737–743 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hughes, E. G. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30, 5866–5875 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hirano, M. et al. Pathological findings in male patients with anti-N-methyl-d-aspartate receptor encephalitis. J. Neuropathol. Exp. Neurol. 78, 735–741 (2019).

    Article  PubMed  Google Scholar 

  122. Dauvilliers, Y. et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy-cataplexy. JAMA Neurol. 70, 1305–1310 (2013).

    PubMed  Google Scholar 

  123. Finke, C. et al. Structural hippocampal damage following anti-N-methyl-D-aspartate receptor encephalitis. Biol. Psychiatry 79, 727–734 (2016).

    Article  PubMed  Google Scholar 

  124. Xu, J. et al. Progressive cortical and sub-cortical alterations in patients with anti-N-methyl-d-aspartate receptor encephalitis. J. Neurol. 269, 389–398 (2022).

    Article  PubMed  Google Scholar 

  125. Planagumà, J. et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 138, 94–109 (2015).

    Article  PubMed  Google Scholar 

  126. Peng, X. et al. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann. Neurol. 77, 381–398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Petit-Pedrol, M. et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 13, 276–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ohkawa, T. et al. Identification and characterization of GABAA receptor autoantibodies in autoimmune encephalitis. J. Neurosci. 34, 8151–8163 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bracher, A. et al. An expanded parenchymal CD8+ T cell clone in GABAA receptor encephalitis. Ann. Clin. Transl. Neurol. 7, 239–244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Golombeck, K. S. et al. Evidence of a pathogenic role for CD8+ T cells in anti-GABAB receptor limbic encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 3, e232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cui, D., Feng, J., Yang, M., Dong, Y. & Lian, Y. Acute symptomatic seizures and risk of seizure recurrence in patients with anti-NMDAR, anti-LGI1, and anti-GABABR encephalitis. Neurol. Sci. 45, 1609–1617 (2024).

    Article  PubMed  Google Scholar 

  132. Feyissa, A. M., López Chiriboga, A. S. & Britton, J. W. Antiepileptic drug therapy in patients with autoimmune epilepsy. Neurol. Neuroimmunol. Neuroinflamm. 4, e353 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Feyissa, A. M. et al. Antiepileptic drug therapy in autoimmune epilepsy associated with antibodies targeting the leucine-rich glioma-inactivated protein 1. Epilepsia Open 3, 348–356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Abboud, H. et al. Autoimmune encephalitis: proposed recommendations for symptomatic and long-term management. J. Neurol. Neurosurg. Psychiatry 92, 897–907 (2021).

    Article  PubMed  Google Scholar 

  135. Chang, Y. C., Nouri, M. N., Mirsattari, S., Burneo, J. G. & Budhram, A. “Obvious” indications for neural antibody testing in epilepsy or seizures: the ONES checklist. Epilepsia 63, 1658–1670 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jia, Y., Wang, H. F., Zhang, M. Y. & Wang, Y. P. Antibody prevalence and immunotherapy response in Chinese patients with epilepsy and encephalopathy scores for patients with different neuronal surface antibodies. Chin. Med. J. 134, 2985–2991 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ding, S. et al. Validation of predictive models for autoimmune encephalitis-related antibodies to cell-surface proteins expressed in neurons: a retrospective study based in a hospital. Front. Neurol. 12, 601761 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dubey, D. et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J. Neuroimmunol. 323, 62–72 (2018).

    Article  PubMed  Google Scholar 

  139. McGinty, R. N. et al. Clinical features which predict neuronal surface autoantibodies in new-onset focal epilepsy: implications for immunotherapies. J. Neurol. Neurosurg. Psychiatry 92, 291–294 (2021).

    Article  PubMed  Google Scholar 

  140. Morano, A. et al. Distinguishing seizures in autoimmune limbic encephalitis from mesial temporal lobe epilepsy with hippocampal sclerosis: clues of a temporal plus network. J. Neurol. Sci. 467, 123288 (2024).

    Article  PubMed  Google Scholar 

  141. Morano, A. et al. Late-onset seizures and epilepsy: electroclinical features suggestive of autoimmune etiology. Front. Neurol. 13, 924859 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Rocamora, R. et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 23, 670–673 (2014).

    Article  PubMed  Google Scholar 

  143. Barba, C., Barbati, G., Minotti, L., Hoffmann, D. & Kahane, P. Ictal clinical and scalp-EEG findings differentiating temporal lobe epilepsies from temporal ‘plus’ epilepsies. Brain 130, 1957–1967 (2007).

    Article  PubMed  Google Scholar 

  144. Seo, D. W., Lee, H. S., Hong, S. B., Hong, S. C. & Lee, E. K. Pilomotor seizures in frontal lobe epilepsy: case report. Seizure 12, 241–244 (2003).

    Article  PubMed  Google Scholar 

  145. Lesser, R. P., Lüders, H. & Resor, S. Other reports of pilomotor seizures. Neurology 35, 286–287 (1985).

    Article  PubMed  Google Scholar 

  146. Loddenkemper, T. et al. Localising and lateralising value of ictal piloerection. J. Neurol. Neurosurg. Psychiatry 75, 879–883 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Budhram, A., Sharma, M. & Young, G. B. Seizures in anti-Hu-associated extra-limbic encephalitis: characterization of a unique disease manifestation. Epilepsia 63, e172–e177 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Elisak, M. et al. The prevalence of neural antibodies in temporal lobe epilepsy and the clinical characteristics of seropositive patients. Seizure 63, 1–6 (2018).

    Article  PubMed  Google Scholar 

  149. Kambadja, B. et al. When should we test patients with epilepsy for autoimmune antibodies? Results from a French retrospective single center study. J. Neurol. 269, 3109–3118 (2021).

    Article  PubMed  Google Scholar 

  150. Gresa-Arribas, N. et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 13, 167–177 (2014).

    Article  PubMed  Google Scholar 

  151. Maialetti, A. et al. Multimodal pathway for brain tumor-related epilepsy patients: observational study. Acta Neurol. Scand. 141, 450–462 (2020).

    Article  PubMed  Google Scholar 

  152. Slegers, R. J. & Blumcke, I. Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol. Commun. 8, 27 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Soeung, V., Puchalski, R. B. & Noebels, J. L. The complex molecular epileptogenesis landscape of glioblastoma. Cell Rep. Med. 5, 101691 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Graus, F. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 15, 391–404 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Matricardi, S. et al. Epileptic phenotypes in autoimmune encephalitis: from acute symptomatic seizures to autoimmune-associated epilepsy. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2022-329195 (2022).

    Article  PubMed  Google Scholar 

  156. Gadian, J. et al. Neurological and cognitive outcomes after antibody-negative autoimmune encephalitis in children. Dev. Med. Child. Neurol. 64, 649–653 (2022).

    Article  PubMed  Google Scholar 

  157. Bien, C. G. et al. Correction to: Routine diagnostics for neural antibodies, clinical correlates, treatment and functional outcome. J. Neurol. 267, 2115–2116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ariño, H. et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol. 72, 874–881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Barnett (Sydney, Australia), A. Becker (Bonn, Germany) and R. Höftberger (Vienna, Austria) for providing us with brain material and MRI scans from patients with encephalitis. J.B. was financially supported by the Austrian Science Fund (project number P34864-B). C.S. was supported by NINDS (R01NS126156).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Claude Steriade.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Qun Wang, Divyanshu Dubey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steriade, C., Bauer, J. & Bien, C.G. Autoimmune encephalitis-associated epilepsy. Nat Rev Neurol 21, 312–326 (2025). https://doi.org/10.1038/s41582-025-01089-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01089-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing