Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimmune, metabolic and oxidative stress pathways in major depressive disorder

Abstract

This Review examines the role of neuroimmune imbalances and their relationship with metabolism and oxidative stress in the development and progression of major depressive disorder (MDD) and suicidal behaviours. We provide a concise overview of the neuroinflammatory environment and indicators of neuronal injury in the central nervous system of individuals with MDD. Furthermore, we explore the evidence for perturbations in both the peripheral and central immune system, T cell activation versus T regulatory cell depletion, intracellular signalling networks including nuclear factor-κB, lipid metabolism and neuroprotection. Last, we examine the mechanisms by which psychological stressors, translocation of Gram-negative bacteria, viral infections such as SARS-CoV-2 and metabolic syndrome can contribute to neuroimmune imbalances and, consequently, the acute phase of MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peripheral neuroimmune–metabolic–oxidative pathways implicated in the acute phase of severe MDD.
Fig. 2: Immunological profiles associated with the acute phase of severe MDD.
Fig. 3: Mechanistic underpinnings of neuroimmune and neuro-oxidative toxicity in the acute phase of severe MDD.
Fig. 4: Contributors to the NIMETOX pathways in the acute phase of severe MDD.

Similar content being viewed by others

References

  1. World Health Organization. Depression. WHO https://www.who.int/news-room/fact-sheets/detail/depression (2023).

  2. Citrome, L. et al. Prevalence, treatment patterns, and stay characteristics associated with hospitalizations for major depressive disorder. J. Affect. Disord. 249, 378–384 (2019).

    Article  PubMed  Google Scholar 

  3. Cosci, F. & Fava, G. A. Staging of mental disorders: systematic review. Psychother. Psychosom. 82, 20–34 (2012).

    Article  PubMed  Google Scholar 

  4. Maes, M. et al. Development of a novel staging model for affective disorders using partial least squares bootstrapping: effects of lipid-associated antioxidant defenses and neuro-oxidative stress. Mol. Neurobiol. 56, 6626–6644 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Maes, M., Kubera, M., Obuchowiczwa, E., Goehler, L. & Brzeszcz, J. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative and nitrosative stress pathways. Neuro Endocrinol. Lett. 32, 7–24 (2011).

    CAS  PubMed  Google Scholar 

  6. Athira, K. V. et al. An overview of the heterogeneity of major depressive disorder: current knowledge and future prospective. Curr. Neuropharmacol. 18, 168–187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berk, M. et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 11, 200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maes, M. Evidence for an immune response in major depression: a review and hypothesis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 19, 11–38 (1995).

    Article  CAS  Google Scholar 

  9. Maes, M. & Carvalho, A. F. The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol. Neurobiol. 55, 8885–8903 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Herbert, T. B. & Cohen, S. Depression and immunity: a meta-analytic review. Psychol. Bull. 113, 472 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Blume, J., Douglas, S. D. & Evans, D. L. Immune suppression and immune activation in depression. Brain Behav. Immun. 25, 221–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Ng, A. et al. IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci. Rep. 8, 12050 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Osimo, E. F. et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 87, 901–909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Islam, M. R. et al. Evaluation of inflammatory cytokines in drug-naïve major depressive disorder: a systematic review and meta-analysis. Int. J. Immunopathol. Pharmacol. 37, 03946320231198828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jayakumar, S. et al. A systematic review and meta-analysis of the evidence on inflammation in depressive illness and symptoms in chronic and end-stage kidney disease. Psychol. Med. 53, 5839–5851 (2023).

    Article  PubMed  Google Scholar 

  16. Zhang, Y. et al. Peripheral cytokine levels across psychiatric disorders: a systematic review and network meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 125, 110740 (2023).

    Article  CAS  Google Scholar 

  17. Köhler, C. A. et al. Peripheral cytokine and chemokine alterations in depression: a meta‐analysis of 82 studies. Acta Psychiat. Scand. 135, 373–387 (2017).

    Article  PubMed  Google Scholar 

  18. Çakici, N. et al. Altered peripheral blood compounds in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Brain Behav. Immun. 88, 547–558 (2020).

    Article  PubMed  Google Scholar 

  19. Wang, M. et al. Genetically predicted circulating levels of cytokines and the risk of depression: a bidirectional Mendelian-randomization study. Front. Genet. 14, 1242614 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mariani, N., Cattane, N., Pariante, C. & Cattaneo, A. Gene expression studies in depression development and treatment: an overview of the underlying molecular mechanisms and biological processes to identify biomarkers. Transl. Psychiatry 11, 354 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sørensen, N. V. et al. Immune cell composition in unipolar depression: a comprehensive systematic review and meta-analysis. Mol. Psychiat. 28, 391–401 (2023).

    Article  Google Scholar 

  22. Foley, É. et al. Peripheral blood cellular immunophenotype in depression: a systematic review and meta-analysis. Mol. Psychiatry 28, 1004–1019 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Zhong, X. et al. Peripheral immunity and risk of incident brain disorders: a prospective cohort study of 161,968 participants. Transl. Psychiatry 13, 382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wittenberg, G. M., Greene, J., Vértes, P. E., Drevets, W. C. & Bullmore, E. T. Major depressive disorder is associated with differential expression of innate immune and neutrophil-related gene networks in peripheral blood: a quantitative review of whole-genome transcriptional data from case-control studies. Biol. Psychiatry 88, 625–637 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Maes, M. A review on the acute phase response in major depression. Rev. Neurosci. 4, 407–416 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, K. J., Au, B., Ollis, L. & Schmitz, N. The association between C-reactive protein, interleukin-6 and depression among older adults in the community: a systematic review and meta-analysis. Exp. Gerontol. 102, 109–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Zorrilla, E. P. et al. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav. Immun. 15, 199–226 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Mac Giollabhui, N., Ng, T. H., Ellman, L. M. & Alloy, L. B. The longitudinal associations of inflammatory biomarkers and depression revisited: systematic review, meta-analysis, and meta-regression. Mol. Psychiatry 26, 3302–3314 (2021).

    Article  Google Scholar 

  29. Cavaleri, D. et al. Blood concentrations of neopterin and biopterin in subjects with depression: a systematic review and meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 120, 110633 (2023).

    Article  CAS  Google Scholar 

  30. Mazza, M. G., Tringali, A. G. M., Rossetti, A., Botti, R. E. & Clerici, M. Cross-sectional study of neutrophil–lymphocyte, platelet–lymphocyte and monocyte–lymphocyte ratios in mood disorders. Gen. Hosp. Psychiatry 58, 7–12 (2019).

    Article  PubMed  Google Scholar 

  31. Maes, M., Plaimas, K., Suratanee, A., Noto, C. & Kanchanatawan, B. First episode psychosis and schizophrenia are systemic neuro-immune disorders triggered by a biotic stimulus in individuals with reduced immune regulation and neuroprotection. Cells 10, 2929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Almulla, A. F., Abbas Abo Algon, A., Tunvirachaisakul, C., Al-Hakeim, H. K. & Maes, M. T helper-1 activation via interleukin-16 is a key phenomenon in the acute phase of severe, first-episode major depressive disorder and suicidal behaviors. J. Adv. Res. 64, 171–181 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rachayon, M., Jirakran, K., Sodsai, P., Sughondhabirom, A. & Maes, M. T cell activation and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. Sci. Rep. 14, 11177 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kelley, N., Jeltema, D., Duan, Y. & He, Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20, 3328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taene, A. et al. The association of major depressive disorder with activation of NLRP3 inflammasome, lipid peroxidation, and total antioxidant capacity. J. Mol. Neurosci. 70, 65–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Kouba, B. R., Gil-Mohapel, J. & Rodrigues, A. L. S. NLRP3 inflammasome: from pathophysiology to therapeutic target in major depressive disorder. Int. J. Mol. Sci. 24, 133 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Munshi, S. et al. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Mol Psychiatry 30, 574–586 (2025).

    Article  CAS  PubMed  Google Scholar 

  38. Kéri, S., Szabó, C. & Kelemen, O. Expression of Toll-like receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav. Immun. 40, 235–243 (2014).

    Article  PubMed  Google Scholar 

  39. Elovainio, M. et al. Activated immune–inflammatory pathways are associated with long-standing depressive symptoms: evidence from gene-set enrichment analyses in the Young Finns Study. J. Psychiatr. Res. 71, 120–125 (2015).

    Article  PubMed  Google Scholar 

  40. Cho, J. H., Irwin, M. R., Eisenberger, N. I., Lamkin, D. M. & Cole, S. W. Transcriptomic predictors of inflammation-induced depressed mood. Neuropsychopharmacology 44, 923–929 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maes, M. et al. Adverse childhood experiences predict the phenome of affective disorders and these effects are mediated by staging, neuroimmunotoxic and growth factor profiles. Cells 11, 1564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maes, M. et al. Lower degree of esterification of serum cholesterol in depression: relevance for depression and suicide research. Acta Psychiatr. Scand. 90, 252–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Almulla, A. F. et al. Reverse cholesterol transport and lipid peroxidation biomarkers in major depression and bipolar disorder: a systematic review and meta-analysis. Brain Behav. Immun. 113, 374–388 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Maes, M. et al. Fatty acid composition in major depression: decreased ω3 fractions in cholesteryl esters and increased C20: 4ω6/C20:5ω3 ratio in cholesteryl esters and phospholipids. J. Affect. Disord. 38, 35–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, P. Y., Huang, S. Y. & Su, K. P. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol. Psychiatry 68, 140–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Maes, M., Christophe, A., Bosmans, E., Lin, A. & Neels, H. In humans, serum polyunsaturated fatty acid levels predict the response of proinflammatory cytokines to psychologic stress. Biol. Psychiatry 47, 910–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Maes, M. et al. Lowered ω3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res. 85, 275–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Carpita, B. et al. Plasma redox and inflammatory patterns during major depressive episodes: a cross-sectional investigation in elderly patients with mood disorders. CNS Spectr. 26, 416–426 (2021).

    Article  PubMed  Google Scholar 

  49. Liu, T. et al. A meta-analysis of oxidative stress markers in depression. PLoS ONE 10, e0138904 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goh, X. X., Tang, P. Y. & Tee, S. F. 8-hydroxy-2′-deoxyguanosine and reactive oxygen species as biomarkers of oxidative stress in mental illnesses: a meta-analysis. Psychiatry Investig. 18, 603–618 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Palta, P., Samuel, L. J., Miller, E. R. 3rd & Szanton, S. L. Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom. Med. 76, 12–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Maes, M. et al. Towards a major methodological shift in depression research by assessing continuous scores of recurrence of illness, lifetime and current suicidal behaviors and phenome features. J. Affect. Disord. 350, 728–740 (2024).

    Article  PubMed  Google Scholar 

  53. Maes, M. et al. Are abnormalities in lipid metabolism, together with adverse childhood experiences, the silent causes of immune-linked neurotoxicity in major depression? Neuro Endocrinol. Lett. 45, 393–408 (2024).

    PubMed  Google Scholar 

  54. Lucas, K. & Maes, M. Role of the Toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol. Neurobiol. 48, 190–204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maes, M., Galecki, P., Chang, Y. S. & Berk, M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 676–692 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Gałecki, P. et al. Association between inducible and neuronal nitric oxide synthase polymorphisms and recurrent depressive disorder. J. Affect. Disord. 129, 175–182 (2011).

    Article  PubMed  Google Scholar 

  57. Maes, M. & Meltzer, H. in Psychopharmacology: the Fourth Generation of Progress (eds Bloom, F. E. & Kupfer, D. J.) 921–932 (Raven, 1995).

  58. Coppen, A., Brooksbank, B. W., Eccleston, E., Peet, M. & White, S. G. Tryptophan metabolism in depressive illness. Psychol. Med. 4, 164–173 (1974).

    Article  CAS  PubMed  Google Scholar 

  59. Almulla, A. F. et al. The tryptophan catabolite or kynurenine pathway in major depressive and bipolar disorder: a systematic review and meta-analysis. Brain Behav. Immun. Health 26, 100537 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maes, M., Leonard, B. E., Myint, A. M., Kubera, M. & Verkerk, R. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 35, 702–721 (2011).

    Article  CAS  Google Scholar 

  61. Lapin, I. in 1st Congr. Hungarian Pharmacological Society Symp. Pharmacology of Learning and Retention 149–164 (Hungarian Pharmacological Society, 1973).

  62. Almulla, A. F. et al. The tryptophan catabolite or kynurenine pathway in a major depressive episode with melancholia, psychotic features and suicidal behaviors: a systematic review and meta-analysis. Cells 11, 3112 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wessa, C. et al. Efficacy of inflammation-based stratification for add-on celecoxib or minocycline in major depressive disorder: protocol of the INSTA-MD double-blind placebo-controlled randomised clinical trial. Brain Behav. Immun. Health 41, 100871 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maes, M. et al. The recurrence of illness (ROI) index is a key factor in major depression that indicates increasing immune-linked neurotoxicity and vulnerability to suicidal behaviors. Psychiatry Res. 339, 116085 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Maes, M. et al. Impairments in peripheral blood T effector and T regulatory lymphocytes in bipolar disorder are associated with staging of illness and anti-cytomegalovirus IgG levels. Mol. Neurobiol. 58, 229–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Maes, M. et al. Simple dysmood disorder, a mild subtype of major depression, is not an inflammatory condition: depletion of the compensatory immunoregulatory system. J. Affect. Disord. 375, 75–85 (2025).

    Article  CAS  PubMed  Google Scholar 

  67. Brinholi, F. F. et al. Increased malondialdehyde and nitric oxide formation, lowered total radical trapping capacity coupled with psychological stressors are strongly associated with the phenome of first-episode mild depression in undergraduate students. Neuroscience 554, 52–62 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Maes, M. et al. First-episode mild depression in young adults is a pre-proatherogenic condition even in the absence of subclinical metabolic syndrome: lowered lecithin-cholesterol acyltransferase as a key factor. Neuro Endocrinol. Lett. 45, 475–191 (2024).

    PubMed  Google Scholar 

  69. Maes, M. et al. Major depressive disorder, neuroticism, suicidal behaviors, and depression severity are associated with cytokine networks and their intricate interactions with metabolic syndrome. J. Psychosom. Res. 187, 111951 (2024).

    Article  PubMed  Google Scholar 

  70. Maes, M., Almulla, A. F., Zhou, B., Algon, A. A. A. & Sodsai, P. In major dysmood disorder, physiosomatic, chronic fatigue and fibromyalgia symptoms are driven by immune activation and increased immune-associated neurotoxicity. Sci. Rep. 14, 7344 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maes, M., Scharpé, S., Meltzer, H. Y. & Cosyns, P. Relationships between increased haptoglobin plasma levels and activation of cell-mediated immunity in depression. Biol. Psychiatry 34, 690–701 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Nässberger, L. & Träskman-Bendz, L. Increased soluble interleukin-2 receptor concentrations in suicide attempters. Acta Psychiatr. Scand. 88, 48–52 (1993).

    Article  PubMed  Google Scholar 

  73. Maes, M. et al. Biochemical, metabolic and immune correlates of seasonal variation in violent suicide: a chronoepidemiologic study. Eur. Psychiatry 11, 21–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Vasupanrajit, A., Jirakran, K., Tunvirachaisakul, C., Solmi, M. & Maes, M. Inflammation and nitro-oxidative stress in current suicidal attempts and current suicidal ideation: a systematic review and meta-analysis. Mol. Psychiatry 27, 1350–1361 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Maes, M. et al. Serotonin-immune interactions in major depression: lower serum tryptophan as a marker of an immune-inflammatory response. Eur. Arch. Psychiatry Clin. Neurosci. 247, 154–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Maes, M. et al. Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol. Psychiatry 42, 349–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Maes, M. et al. Increased serum IL-6 and IL-1 receptor antagonist concentration in major depression and treatment resistant depression. Cytokine 9, 853–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Mancuso, E. et al. Biological correlates of treatment resistant depression: a review of peripheral biomarkers. Front. Psychiatry 14, 1291176 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sánchez-Carro, Y. et al. Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning. Prog. Neuropsychopharmacol. Biol. Psychiatry 121, 110674 (2023).

    Article  PubMed  Google Scholar 

  80. Maes, M. et al. In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr. Scand. 127, 344–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Kempuraj, D. et al. Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg. Spine 1, 1003 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mason, H. D. & McGavern, D. B. How the immune system shapes neurodegenerative diseases. Trends Neurosci. 45, 733–748 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gritti, D., Delvecchio, G., Ferro, A., Bressi, C. & Brambilla, P. Neuroinflammation in major depressive disorder: a review of PET imaging studies examining the 18-kDa translocator protein. J. Affect. Disord. 292, 642–651 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Setiawan, E. et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72, 268–275 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li, H., Sagar, A. P. & Kéri, S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J. Affect. Disord. 241, 305–310 (2018).

    Article  PubMed  Google Scholar 

  87. Pandey, G. N. Inflammatory and innate immune markers of neuroprogression in depressed and teenage suicide brain. Mod. Trends Pharmacopsychiatry 31, 79–95 (2017).

    Article  PubMed  Google Scholar 

  88. Shelton, R. C. et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol. Psychiatry 16, 751–762 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, X. et al. PTSD, major depression, and advanced transcriptomic age in brain tissue. Depression Anxiety 39, 824–834 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Rahimian, R., Belliveau, C., Chen, R. & Mechawar, N. Microglial inflammatory-metabolic pathways and their potential therapeutic implication in major depressive disorder. Front. Psychiatry 13, 871997 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Steiner, J. et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res. 42, 151–157 (2008).

    Article  PubMed  Google Scholar 

  92. Yamamoto, M., Sakai, M., Yu, Z., Nakanishi, M. & Yoshii, H. Glial markers of suicidal behavior in the human brain — a systematic review of postmortem studies. Int. J. Mol. Sci. 25, 5750 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Enomoto, S. & Kato, T. A. Stress mediated microglial hyper-activation and psychiatric diseases [in Japanese]. Brain Nerve 73, 795–802 (2021).

    CAS  PubMed  Google Scholar 

  94. Tonelli, L. H. et al. Elevated cytokine expression in the orbitofrontal cortex of victims of suicide. Acta Psychiatr. Scand. 117, 198–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Böttcher, C. et al. Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Transl. Psychiatry 10, 310 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Snijders, G. et al. Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Mol. Psychiatry 26, 3336–3349 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Michel, T. M. et al. Increased xanthine oxidase in the thalamus and putamen in depression. World J. Biol. Psychiatry 11, 314–320 (2010).

    Article  PubMed  Google Scholar 

  98. Gawryluk, J. W., Wang, J. F., Andreazza, A. C., Shao, L. & Young, L. T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 14, 123–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Pandey, G. N., Rizavi, H. S., Bhaumik, R. & Ren, X. Innate immunity in the postmortem brain of depressed and suicide subjects: role of Toll-like receptors. Brain Behav. Immun. 75, 101–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Rajkowska, G. & Stockmeier, C. A. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr. Drug. Targets 14, 1225–1236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yao, J. et al. A review of research on the association between neuron-astrocyte signaling processes and depressive symptoms. Int. J. Mol. Sci. 24, 6985 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Steiner, J. et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflamm. 8, 94 (2011).

    Article  CAS  Google Scholar 

  103. Frick, L. R., Williams, K. & Pittenger, C. Microglial dysregulation in psychiatric disease. Clin. Dev. Immunol. 2013, 608654 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Czéh, B. & Nagy, S. A. Clinical findings documenting cellular and molecular abnormalities of glia in depressive disorders. Front. Mol. Neurosci. 11, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bakunina, N., Pariante, C. M. & Zunszain, P. A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 144, 365–373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Holmes, S. E. et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol. Psychiatry 83, 61–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, T.-Y. et al. The differential levels of inflammatory cytokines and BDNF among bipolar spectrum disorders. Int. J. Neuropsychopharmacol. 19, pyw012 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhao, Y. F., Verkhratsky, A., Tang, Y. & Illes, P. Astrocytes and major depression: the purinergic avenue. Neuropharmacology 220, 109252 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Fang, Y. et al. The role and mechanism of NLRP3 inflammasome-mediated astrocyte activation in dehydrocorydaline against CUMS-induced depression. Front. Pharmacol. 13, 1008249 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hamidi, M., Drevets, W. C. & Price, J. L. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol. Psychiatry 55, 563–569 (2004).

    Article  PubMed  Google Scholar 

  111. Pantazatos, S. P. et al. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity. Mol. Psychiatry 22, 760–773 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Surget, A. et al. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology 34, 1363–1380 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Al-Hakeim, H. K., Twaij, B. A. A., Al-Naqeeb, T. H., Moustafa, S. R. & Maes, M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease. J. Affect. Disord. 347, 220–229 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Al-Hakeim, H. K., Al-Naqeeb, T. H., Almulla, A. F. & Maes, M. The physio-affective phenome of major depression is strongly associated with biomarkers of astroglial and neuronal projection toxicity which in turn are associated with peripheral inflammation, insulin resistance and lowered calcium. J. Affect. Disord. 331, 300–312 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Ridhaa, M. A. S., Al-Hakeim, H. K., Kahlol, M. K., Al-Naqeeb, T. H. & Maes, M. In children with transfusion-dependent thalassemia, inflammation and neuronal damage biomarkers are associated with affective and chronic fatigue symptoms. Preprint at medRxiv https://doi.org/10.1101/2023.11.21.23298798 (2023).

  116. Almulla, A. F., Maes, M., Zhou, B., Al-Hakeim, H. K. & Vojdani, A. Brain-targeted autoimmunity is strongly associated with long COVID and its chronic fatigue syndrome as well as its affective symptoms. J. Adv. Res. https://doi.org/10.1016/j.jare.2024.11.011 (2024).

  117. Woodburn, S. C., Bollinger, J. L. & Wohleb, E. S. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J. Neuroinflamm. 18, 258 (2021).

    Article  Google Scholar 

  118. Fan, H. et al. Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Mol. Neurodegener. 11, 14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Scheepstra, K. et al. Reporting psychiatric disease characteristics in post-mortem- and biological research. Neurosci. Insights 19, 26331055241252632 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Huang, M. H. et al. Elevated tumor necrosis factor-alpha receptor subtype 1 and the association with abnormal brain function in treatment-resistant depression. J. Affect. Disord. 235, 250–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Kang, Y. et al. The effect of inflammation markers on cortical thinning in major depressive disorder: a possible mediator of depression and cortical changes. J. Affect. Disord. 348, 229–237 (2024).

    Article  PubMed  Google Scholar 

  122. Han, K. M. & Ham, B. J. How inflammation affects the brain in depression: a review of functional and structural MRI studies. J. Clin. Neurol. 17, 503–515 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen, M. H. et al. Increased proinflammatory cytokines, executive dysfunction, and reduced gray matter volumes in first-episode bipolar disorder and major depressive disorder. J. Affect. Disord. 274, 825–831 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Al-Hakeim, H. K. et al. Affective and chronic fatigue symptoms are associated with serum neuronal damage markers in Parkinson’s disease. Sci. Rep. 15, 20647 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Banks, W. A., Kastin, A. J. & Broadwell, R. D. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2, 241–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Logsdon, A. F. et al. Inter-alpha inhibitor proteins attenuate lipopolysaccharide-induced blood–brain barrier disruption and downregulate circulating interleukin 6 in mice. J. Cereb. Blood Flow Metab. 40, 1090–1102 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Varatharaj, A. & Galea, I. The blood–brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Huang, X., Hussain, B. & Chang, J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS Neurosci. Ther. 27, 36–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Nyuyki, K. D. & Pittman, Q. J. Toward a better understanding of the central consequences of intestinal inflammation. Ann. NY Acad. Sci. 1351, 149–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Shang, B. et al. Higher blood–brain barrier permeability in patients with major depressive disorder identified by DCE-MRI imaging. Psychiatry Res. Neuroimag. 337, 111761 (2024).

    Article  Google Scholar 

  131. Medina-Rodriguez, E. M. & Beurel, E. Blood brain barrier and inflammation in depression. Neurobiol. Dis. 175, 105926 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wu, S., Yin, Y. & Du, L. Blood–brain barrier dysfunction in the pathogenesis of major depressive disorder. Cell Mol. Neurobiol. 42, 2571–2591 (2022).

    Article  PubMed  Google Scholar 

  133. Najjar, S., Pearlman, D. M., Devinsky, O., Najjar, A. & Zagzag, D. Neurovascular unit dysfunction with blood–brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J. Neuroinflamm. 10, 142 (2013).

    Article  Google Scholar 

  134. Yang, J. et al. New insight into neurological degeneration: inflammatory cytokines and blood–brain barrier. Front. Mol. Neurosci. 15, 1013933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ots, H. D., Tracz, J. A., Vinokuroff, K. E. & Musto, A. E. CD40–CD40L in neurological disease. Int. J. Mol. Sci. 23, 4115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Carvalho, C. & Moreira, P. I. Oxidative stress: a major player in cerebrovascular alterations associated to neurodegenerative events. Front. Physiol. 9, 806 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wei, C. et al. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 629, 893–900 (2024).

    Article  CAS  PubMed  Google Scholar 

  138. Peng, X., Luo, Z., He, S., Zhang, L. & Li, Y. Blood–brain barrier disruption by lipopolysaccharide and sepsis-associated encephalopathy. Front. Cell Infect. Microbiol. 11, 768108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gu, M., Mei, X. L. & Zhao, Y. N. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic approaches. Neurotox. Res. 39, 489–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, H. R. et al. Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury. Theranostics 12, 512–529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Torres-Platas, S. G., Cruceanu, C., Chen, G. G., Turecki, G. & Mechawar, N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun. 42, 50–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Quan, N. Immune-to-brain signaling: how important are the blood–brain barrier-independent pathways? Mol. Neurobiol. 37, 142–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Reardon, C., Murray, K. & Lomax, A. E. Neuroimmune communication in health and disease. Physiol. Rev. 98, 2287–2316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Whooley, M. A. et al. Depressive symptoms, health behaviors, and risk of cardiovascular events in patients with coronary heart disease. JAMA 300, 2379–2388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Whooley, M. A. Depression and cardiovascular disease: healing the broken-hearted. JAMA 295, 2874–2881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kendler, K. S., Gatz, M., Gardner, C. O. & Pedersen, N. L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry 163, 109–114 (2006).

    Article  PubMed  Google Scholar 

  147. Mullins, N. & Lewis, C. M. Genetics of depression: progress at last. Curr. Psychiatry Rep. 19, 43 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maher, B. S. Polygenic scores in epidemiology: risk prediction, etiology, and clinical utility. Curr. Epidemiol. Rep. 2, 239–244 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rabinowitz, J. A. et al. Depression polygenic scores are associated with major depressive disorder diagnosis and depressive episode in Mexican adolescents. J. Affect. Disord. Rep. 2, 100028 (2020).

    Google Scholar 

  151. Kappelmann, N. et al. Polygenic risk for immuno-metabolic markers and specific depressive symptoms: a multi-sample network analysis study. Brain Behav. Immun. 95, 256–268 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Maes, M. et al. Psychomotor retardation, anorexia, weight loss, sleep disturbances, and loss of energy: psychopathological correlates of hyperhaptoglobinemia during major depression. Psychiatry Res. 47, 229–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Wingo, T. S. et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat. Neurosci. 24, 810–817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pelegrin, P. P2X7 receptor and the NLRP3 inflammasome: partners in crime. Biochem. Pharmacol. 187, 114385 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Bufalino, C., Hepgul, N., Aguglia, E. & Pariante, C. M. The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav. Immun. 31, 31–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Wong, M. L., Dong, C., Maestre-Mesa, J. & Licinio, J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol. Psychiatry 13, 800–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Holtzman, S., Abbey, S. E., Chan, C., Bargman, J. M. & Stewart, D. E. A genetic predisposition to produce low levels of IL-10 is related to depressive symptoms: a pilot study of patients with end stage renal disease. Psychosomatics 53, 155–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Moreira, E. G. et al. Lowered PON1 activities are strongly associated with depression and bipolar disorder, recurrence of (hypo)mania and depression, increased disability and lowered quality of life. World J. Biol. Psychiatry 20, 368–380 (2019).

    Article  PubMed  Google Scholar 

  159. Bortolasci, C. C. et al. Lowered plasma paraoxonase (PON)1 activity is a trait marker of major depression and PON1 Q192R gene polymorphism-smoking interactions differentially predict the odds of major depression and bipolar disorder. J. Affect. Disord. 159, 23–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Kubera, M., Obuchowicz, E., Goehler, L., Brzeszcz, J. & Maes, M. In animal models, psychosocial stress-induced (neuro) inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 35, 744–759 (2011).

    Article  CAS  Google Scholar 

  161. Maes, M. et al. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 10, 313–318 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Maes, M. et al. The effects of psychological stress on leukocyte subset distribution in humans: evidence of immune activation. Neuropsychobiology 39, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Steptoe, A., Hamer, M. & Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav. Immun. 21, 901–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Kuebler, U. et al. Stress-induced modulation of NF-κB activation, inflammation-associated gene expression, and cytokine levels in blood of healthy men. Brain Behav. Immun. 46, 87–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M. & Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21, 642–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Danese, A. & Baldwin, J. R. Hidden wounds? Inflammatory links between childhood trauma and psychopathology. Annu. Rev. Psychol. 68, 517–544 (2017).

    Article  PubMed  Google Scholar 

  167. Flouri, E., Francesconi, M., Papachristou, E., Midouhas, E. & Lewis, G. Stressful life events, inflammation and emotional and behavioural problems in children: a population-based study. Brain Behav. Immun. 80, 66–72 (2019).

    Article  PubMed  Google Scholar 

  168. Iob, E., Lacey, R., Giunchiglia, V. & Steptoe, A. Adverse childhood experiences and severity levels of inflammation and depression from childhood to young adulthood: a longitudinal cohort study. Mol. Psychiatry 27, 2255–2263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Moraes, J. B. et al. Elevated C-reactive protein levels in women with bipolar disorder may be explained by a history of childhood trauma, especially sexual abuse, body mass index and age. CNS Neurol. Disord. Drug. Targets 16, 514–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Almulla, A. F., Algon, A. A. A. & Maes, M. Adverse childhood experiences and recent negative events are associated with activated immune and growth factor pathways, the phenome of first episode major depression and suicidal behaviors. Psychiatry Res. 334, 115812 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Maes, M. et al. T cell activation and lowered T regulatory cell numbers are key processes in severe major depressive disorder: effects of recurrence of illness and adverse childhood experiences. J. Affect. Disord. 362, 62–74 (2024).

    Article  CAS  PubMed  Google Scholar 

  172. Moraes, J. B. et al. In major affective disorders, early life trauma predict increased nitro-oxidative stress, lipid peroxidation and protein oxidation and recurrence of major affective disorders, suicidal behaviors and a lowered quality of life. Metab. Brain Dis. 33, 1081–1096 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Uysal, N. et al. Age-dependent effects of maternal deprivation on oxidative stress in infant rat brain. Neurosci. Lett. 384, 98–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Schiavone, S., Jaquet, V., Trabace, L. & Krause, K. H. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid. Redox Signal. 18, 1475–1490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Maes, M. et al. Adverse childhood experiences and reoccurrence of illness impact the gut microbiome, which affects suicidal behaviours and the phenome of major depression: towards enterotypic phenotypes. Acta Neuropsychiat. 35, 328–345 (2023).

    Article  Google Scholar 

  176. Vyas, N. et al. Systematic review and meta-analysis of the effect of adverse childhood experiences (ACEs) on brain-derived neurotrophic factor (BDNF) levels. Psychoneuroendocrinology 151, 106071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, M., Chen, J., Yin, Z., Wang, L. & Peng, L. The association between depression and metabolic syndrome and its components: a bidirectional two-sample Mendelian randomization study. Transl. Psychiatry 11, 633 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Khodabandehloo, H., Gorgani-Firuzjaee, S., Panahi, G. & Meshkani, R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl. Res. 167, 228–256 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Qin, X. et al. PPARγ-mediated microglial activation phenotype is involved in depressive-like behaviors and neuroinflammation in stressed C57BL/6J and ob/ob mice. Psychoneuroendocrinology 117, 104674 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Milanova, I. V., Correa-da-Silva, F., Kalsbeek, A. & Yi, C. X. Mapping of microglial brain region, sex and age heterogeneity in obesity. Int. J. Mol. Sci. 22, 3141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jung, E. S. & Mook-Jung, I. New microglia on the block. Cell Metab. 31, 664–666 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Hu, Y., Dong, X. & Chen, J. Adiponectin and depression: a meta-analysis. Biomed. Rep. 3, 38–42 (2015).

    Article  PubMed  Google Scholar 

  185. Rudzki, L. & Maes, M. From “leaky gut” to impaired glia–neuron communication in depression. Adv. Exp. Med. Biol. 1305, 129–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Safadi, J. M., Quinton, A. M. G., Lennox, B. R., Burnet, P. W. J. & Minichino, A. Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Mol. Psychiatry 27, 141–153 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Borkent, J., Ioannou, M., Laman, J. D., Haarman, B. C. M. & Sommer, I. E. C. Role of the gut microbiome in three major psychiatric disorders. Psychol. Med. 52, 1222–1242 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Aynur, A. & Elif, D. Inhibition of Pseudomonas aeruginosa biofilm formation and motilities by human serum paraoxonase (hPON1). AIMS Microbiol. 2, 388–401 (2016).

    Article  Google Scholar 

  189. Ozer, E. A. et al. Human and murine paraoxonase 1 are host modulators of pseudomonas aeruginosa quorum-sensing. FEMS Microbiol. Lett. 253, 29–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Pirillo, A., Catapano, A. L. & Norata, G. D. in High Density Lipoproteins: From Biological Understanding to Clinical Exploitation (eds von Eckardstein, A. & Kardassis, D.) 483–508 (Springer, 2015).

  191. Al-Sadi, R. et al. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS ONE 9, e85345 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Meyer, F., Wendling, D., Demougeot, C., Prati, C. & Verhoeven, F. Cytokines and intestinal epithelial permeability: a systematic review. Autoimmun. Rev. 22, 103331 (2023).

    Article  CAS  PubMed  Google Scholar 

  193. Li, L. et al. Oxidative stress, inflammation, gut dysbiosis: what can polyphenols do in inflammatory bowel disease? Antioxidants 12, 967 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gomes, C. et al. Increased root canal endotoxin levels are associated with chronic apical periodontitis, increased oxidative and nitrosative stress, major depression, severity of depression, and a lowered quality of life. Mol. Neurobiol. 55, 2814–2827 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Vásquez-Pérez, J. M. et al. Is nasal dysbiosis a required component for neuroinflammation in major depressive disorder? Mol. Neurobiol. 62, 2459–2469 (2024).

    Article  PubMed  Google Scholar 

  196. Al-Hakeim, H. K., Al-Rubaye, H. T., Al-Hadrawi, D. S., Almulla, A. F. & Maes, M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study. Mol. Psychiatry 28, 564–578 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Almulla, A. F., Thipakorn, Y., Zhou, B., Vojdani, A. & Maes, M. Immune activation and immune-associated neurotoxicity in long-COVID: a systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav. Immun. 122, 75–94 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. Al-Hakeim, H. K., Al-Rubaye, H. T., Almulla, A. F., Al-Hadrawi, D. S. & Maes, M. Chronic fatigue, depression and anxiety symptoms in long COVID are strongly predicted by neuroimmune and neuro-oxidative pathways which are caused by the inflammation during acute infection. J. Clin. Med. 12, 511 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Maes, M., Almulla, A. F., Tang, X., Stoyanova, K. & Vojdani, A. From human herpes virus-6 reactivation to autoimmune reactivity against tight junctions and neuronal antigens, to inflammation, depression, and chronic fatigue syndrome due to long COVID. J. Med. Virol. 96, e29864 (2024).

    Article  CAS  PubMed  Google Scholar 

  200. Marzan, D. E. et al. Activated microglia drive demyelination via CSF1R signaling. Glia 69, 1583–1604 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Liu, J. et al. Neuromodulatory activities of CD4+CD25+ regulatory T cells in a murine model of HIV-1-associated neurodegeneration. J. Immunol. 182, 3855–3865 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Reynolds, A. D., Banerjee, R., Liu, J., Gendelman, H. E. & Mosley, R. L. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J. Leukoc. Biol. 82, 1083–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Stoll, G. & Jander, S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol. 58, 233–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  204. Zhang, J. et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci. Adv. 7, eabb9888 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chen, S. et al. Natural alkaloids from Lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food Funct. 10, 6062–6073 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Ising, C. & Heneka, M. T. Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis. 9, 120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Milatovic, D., Zaja-Milatovic, S., Montine, K. S., Shie, F. S. & Montine, T. J. Neuronal oxidative damage and dendritic degeneration following activation of CD14-dependent innate immune response in vivo. J. Neuroinflamm. 1, 20 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael Maes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Mu-Hong Chen, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, M., Almulla, A.F., You, Z. et al. Neuroimmune, metabolic and oxidative stress pathways in major depressive disorder. Nat Rev Neurol 21, 473–489 (2025). https://doi.org/10.1038/s41582-025-01116-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01116-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing