Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in PET imaging of protein aggregates associated with neurodegenerative disease

Abstract

Neurodegenerative diseases such as Alzheimer disease (AD), Parkinson disease, frontotemporal lobar degeneration and multiple system atrophy (MSA) are characterized pathologically by deposition of specific proteins in the brain. Five major neurodegenerative disease-associated proteins — amyloid-β (Aβ), tau, α-synuclein, TAR DNA-binding protein 43 (TDP43) and fused in sarcoma (FUS) — are commonly encountered, and the disease specificity and neurotoxicity of the fibrillar protein assemblies are determined by factors such as the protein type, fibril structure, degree of multimerization and post-translational modifications. This article reviews the latest advances in PET technologies aimed at visualizing neurodegenerative proteinopathies, and highlights the importance of these technologies for emerging diagnostic and therapeutic approaches. PET allows Aβ deposition to be visualized throughout the natural history of AD and following anti-Aβ immunotherapies. However, whether this technology can visualize specific Aβ assembly subspecies primarily targeted by the treatment remains inconclusive. Various PET radiotracers can capture AD-type tau deposits, although only a few are known to react with non-AD tau pathologies, and cryo-electron microscopy has revealed the mode of binding of these compounds to different tau protofibrils. High-contrast PET imaging of α-synuclein lesions in MSA is a recent development in the field, and gradual progress is being made towards visualization of other, less abundant α-synuclein pathologies. Imaging of TDP43 and FUS deposits presents particular challenges, which might be overcome by establishing public–private partnerships focused on biomarker development.

Key points

  • Extensive research programmes have aimed to develop small-molecule PET radiotracers for protein aggregates that are implicated in Alzheimer disease (AD) and other neurodegenerative disorders.

  • Amyloid-β (Aβ) PET has been applied in clinical practice, providing robust diagnostic indicators and neuropathology-based outcome measures for trials of anti-Aβ disease-modifying treatments.

  • Diverse tau PET tracers can capture AD-type tau assemblies with varying degrees of off-target binding, whereas only a limited subset can yield high contrast for non-AD-type tau deposits.

  • Cryo-electron microscopy of disease-specific tau fibril folds has identified at least two distinct binding modes of PET radioligands, explaining their selectivity for AD versus non-AD tau pathologies.

  • Despite selectivity issues, high-contrast PET tracers for α-synuclein deposits in multiple system atrophy have become clinically available, and the possibility of visualizing α-synuclein fibrils in Parkinson disease and dementia with Lewy bodies has been demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Core brain pathologies in FTLD and related disorders.
Fig. 2: Maturation of amyloid plaques and their detectability by PET radiotracers.
Fig. 3: Clinically available tau PET radiotracers.
Fig. 4: Modes of tau PET tracer binding and visualization of tau pathologies.
Fig. 5: PET imaging of α-synuclein pathologies.

Similar content being viewed by others

References

  1. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde [German]. Allg. Z. Psychiat. 64, 146–148 (1907).

    Google Scholar 

  2. Kwon, S., Iba, M., Kim, C. & Masliah, E. Immunotherapies for aging-related neurodegenerative diseases — emerging perspectives and new targets. Neurotherapeutics 17, 935–954 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Villemagne, V. L., Fodero-Tavoletti, M. T., Masters, C. L. & Rowe, C. C. Tau imaging: early progress and future directions. Lancet Neurol. 4, 114–124 (2015).

    Article  Google Scholar 

  4. Wilson et al. Hallmarks of neurodegenerative diseases. Cell 186, 693–714 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Josephs, K. A. et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 122, 137–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wong, Y. C. & Krainc, D. α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat. Med. 23, 1–13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neumann, M., Lee, E. B. & Mackenzie, I. R. Frontotemporal lobar degeneration TDP-43-immunoreactive pathological subtypes: clinical and mechanistic significance. Adv. Exp. Med. Biol. 1231, 201–217 (2021).

    Article  Google Scholar 

  8. Harrison, R. S., Sharpe, P. C., Singh, Y. & Fairlie, D. P. Amyloid peptides and proteins in review. Rev. Physiol. Biochem. Pharmacol. 159, 1–77 (2007).

    CAS  PubMed  Google Scholar 

  9. Nordberg, A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol. 3, 519–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Pike, V. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol. Sci. 30, 431–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheres, S. H. W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701–710 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X.-Q. & Mobley, W. C. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front. Neurosci. 13, 659 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sehlin, D. et al. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease. Nat. Commun. 7, 10759 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, J., Dickson, D. W., Trojanowski, J. Q. & Lee, V. M. The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Exp. Neurol. 158, 328–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Tenreiro, S., Eckermann, K. & Outeiro, T. F. Protein phosphorylation in neurodegeneration: friend or foe? Front. Mol. Neurosci. 7, 42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cummings, J. The role of biomarkers in Alzheimer’s disease drug development. Adv. Exp. Med. Biol. 1118, 29–61 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jack, C. R. Jr. et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s association workgroup. Alzheimers Dement. 20, 5143–5169 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jack, C. R. Jr. et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simuni, T. et al. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol. 23, 178–190 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Höglinger, G. U. et al. A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23, 191–204 (2024).

    Article  PubMed  Google Scholar 

  21. Boccardi, M. et al. The Strategic Biomarker Roadmap for the validation of Alzheimer’s diagnostic biomarkers: methodological update. Eur. J. Nucl. Med. Mol. Imaging 48, 2070–2085 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chiotis, K. et al. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol. Aging 52, 214–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Wolters, E. E. et al. Clinical validity of increased cortical uptake of [18F]flortaucipir on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase biomarker development framework. Eur. J. Nucl. Med. Mol. Imaging 48, 2097–2109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Doraiswamy, P. M. et al. Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Mol. Psychiatry 19, 1044–10451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shchebinin, S. et al. Association of amyloid reduction after donanemab treatment with tau pathology and clinical outcomes. JAMA Neurol. 79, 1015–1024 (2022).

    Article  Google Scholar 

  27. Pemberton, H. G. et al. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur. J. Nucl. Med. Mol. Imaging 49, 3508–3528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klunk, W. E. et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 11, 1–15 (2015).

    Article  PubMed  Google Scholar 

  29. Clark, C. M. et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 11, 669–678 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Curtis, C. et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 72, 287–294 (2015).

    Article  PubMed  Google Scholar 

  31. Sabri, O. et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 11, 964–974 (2015).

    Article  PubMed  Google Scholar 

  32. La Joie, R. et al. Multisite study of the relationships between antemortem [11C]PIB-PET centiloid values and postmortem measures of Alzheimer’s disease neuropathology. Alzheimers Dement. 15, 205–216 (2019).

    Article  PubMed  Google Scholar 

  33. Yamaguchi, H. et al. Alzheimer type dementia: diffuse type of senile plaques demonstrated by beta protein immunostaining. Prog. Clin. Biol. Res. 317, 467–474 (1989).

    CAS  PubMed  Google Scholar 

  34. Sheng, J. G., Mrak, R. E. & Griffin, W. S. Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol. 94, 1–5 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Mathur, R. et al. A reduced astrocyte response to β-amyloid plaques in the ageing brain associates with cognitive impairment. PLoS ONE 10, e0118463 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Malek-Ahmadi, M., Perez, S. E., Chen, K. & Mufson, E. J. Neuritic and diffuse plaque associations with memory in non-cognitively impaired elderly. J. Alzheimers Dis. 53, 1641–1652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jack, C. R. Jr et al. An operational approach to National Institute on Aging–Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann. Neurol. 71, 765–775 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia. A meta-analysis. JAMA 313, 1924–1938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Petersen, R. C. et al. Mild cognitive impairment due to Alzheimer’s disease in the community. Ann. Neurol. 74, 199–208 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Donohue, M. C. et al. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317, 2305–2316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brookmeyer, R. & Abdalla, N. Estimation of lifetime risks of Alzheimer’s disease dementia using biomarkers for preclinical disease. Alzheimers Dement. 14, 981–988 (2018).

    Article  PubMed  Google Scholar 

  42. Jansen, W. J. et al. Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. JAMA Neurol. 79, 228–243 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ossenkoppele, R. et al. Prevalence of amyloid PET positivity in dementia syndromes. JAMA 313, 1939–1949 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Johnson, K. A. et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 9, e1–e16 (2013).

    Article  Google Scholar 

  46. Rabinovici, G. D. et al. Association of amyloid positron emission tomography with subsequent change in clinical management among Medicare beneficiaries with mild cognitive impairment or dementia. JAMA 321, 1286–1294 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Wilde, A. et al. Association of amyloid positron emission tomography with changes in diagnosis and patient treatment in an unselected memory clinic cohort: the ABIDE project. JAMA Neurol. 75, 1062–1070 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Altomare, D. et al. Clinical effect of early vs late amyloid positron emission tomography in memory clinic patients: the AMYPAD-DPMS randomized clinical trial. JAMA Neurol. 80, 548–557 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. van Maurik, I. S. et al. A more precise diagnosis by means of amyloid PET contributes to delayed institutionalization, lower mortality, and reduced care costs in a tertiary memory clinic setting. Alzheimers Dement. 19, 2006–2013 (2022).

    Article  PubMed  Google Scholar 

  50. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Mintun, M. A. et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 384, 1691–1704 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2022).

    Article  PubMed  Google Scholar 

  53. Salloway, S. et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med. 27, 1187–1196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reardon, S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature 613, 227–228 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Klunk, W. E. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer’s disease brain but not in transgenic mouse brain. J. Neurosci. 25, 10598–10606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maeda, J. et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J. Neurosci. 27, 10957–10968 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saido, T. C. et al. Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques. Neuron 14, 457–466 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Kawarabayashi, T. et al. Age-dependent changes in brain, CSF, and plasma amyloid β protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J. Neurosci. 21, 372–381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bayer, T. A. & Wirths, O. Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol. 127, 787–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thal, D. R., Walter, J., Saido, T. C. & Fändrich, M. Different aspects of Alzheimer’s disease-related amyloid β-peptide pathology and their relationship to amyloid positron emission tomography imaging and dementia. Acta Neuropathol. Commun. 7, 178 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bao, F. et al. Different β-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol. Aging 33, 825.e1–825.e13 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. van Berckel, B. N. M. et al. Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J. Nucl. Med. 54, 1570–1576 (2013).

    Article  PubMed  Google Scholar 

  63. Lowe, V. J. et al. White matter reference region in PET studies of 11C-Pittsburgh compound B uptake: effects of age and amyloid-β deposition. J. Nucl. Med. 59, 1583–1589 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Southekal, S. et al. Flortaucipir F 18 quantitation using parametric estimation of reference signal intensity. J. Nucl. Med. 59, 944–951 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Okamura, N. et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J. Neurosci. 25, 10857–10862 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chien, D. T. et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J. Alzheimers Dis. 34, 457–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Chien, D. T. et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J. Alzheimers Dis. 38, 171–184 (2014).

    Article  PubMed  Google Scholar 

  68. Maruyama, M. et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79, 1094–1108 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Johnson, K. A. et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79, 110–119 (2016).

    Article  PubMed  Google Scholar 

  70. Harada, R. et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J. Nucl. Med. 57, 208–214 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Ng, K. P. et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res. Ther. 9, 25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Marquié, M. et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann. Neurol. 78, 787–800 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ni, R. et al. Comparative in vitro and in vivo quantifications of pathologic tau deposits and their association with neurodegeneration in tauopathy mouse models. J. Nucl. Med. 59, 960–966 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Hashimoto, H. et al. Identification of a major radiometabolite of [11C]PBB3. Nucl. Med. Biol. 42, 905–910 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Ikonomovic, M. D., Abrahamson, E. E., Price, J. C., Mathis, C. A. & Klunk, W. E. [F-18]AV-1451 positron emission tomography retention in choroid plexus: more than “off-target” binding. Ann. Neurol. 80, 307–308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Aguero, C. et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol. Commun. 7, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Honer, M. et al. Preclinical evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as novel PET radiotracers for imaging tau aggregates in Alzheimer disease. J. Nucl. Med. 59, 675–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kroth, H. et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur. J. Nucl. Med. Mol. Imaging 46, 2178–2189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sanabria Bohórquez, S. et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 46, 2077–2089 (2019).

    Article  PubMed  Google Scholar 

  80. Tagai, K. et al. High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron 109, 42–58.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Baker, S. L. et al. Evaluation of [18F]-JNJ-64326067-AAA tau PET tracer in humans. J. Cereb. Blood Flow. Metab. 41, 3302–3313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 (2016).

    Article  PubMed  Google Scholar 

  84. Dickson, D. W., Kouri, N., Murray, M. E. & Josephs, K. A. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J. Mol. Neurosci. 45, 384–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tarutani, A. et al. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol. 143, 613–640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leuzy, A. et al. Tau PET imaging in neurodegenerative tauopathies — still a challenge. Mol. Psychiatry 24, 1112–1134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Marquié, M. et al. Pathological correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies. Ann. Neurol. 81, 117–128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ono, M. et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain 140, 764–780 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Malarte, M. L. et al. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer’s disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol. Psychiatry 28, 1272–1283 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Brendel, M. et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol. 77, 1408–1419 (2020).

    Article  PubMed  Google Scholar 

  91. Endo, H. et al. In vivo binding of a tau imaging probe, [11C]PBB3, in patients with progressive supranuclear palsy. Mov. Disord. 34, 744–754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakano, Y. et al. PET-based classification of corticobasal syndrome. Parkinsonism Relat. Disord. 98, 92–98 (2022).

    Article  PubMed  Google Scholar 

  93. Li, L. et al. Clinical utility of 18F-APN-1607 tau PET imaging in patients with progressive supranuclear palsy. Mov. Disord. 36, 2314–2323 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Endo, H. et al. A machine learning-based approach to discrimination of tauopathies using [18F]PM-PBB3 PET images. Mov. Disord. 37, 2236–2246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tezuka, T. et al. Evaluation of [18F]PI-2620, a second-generation selective tau tracer, for assessing four-repeat tauopathies. Brain Commun. 3, fcab190 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shi, Y. et al. Structure-based classification of tauopathies. Nature 598, 359–363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shi, Y. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 141, 697–708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alosco, M. L. et al. 18F-MK-6240 tau PET as a biomarker for chronic traumatic encephalopathy: case series of 10 symptomatic former National Football League players. Alzheimers Dement. 18, e066995 (2022).

    Article  Google Scholar 

  99. Merz, G. E. et al. Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments. Nat. Commun. 14, 3048 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kunach, P. et al. Cryo-EM structure of Alzheimer’s disease tau filaments with PET ligand MK-6240. Nat. Commun. 15, 8497 (2023).

    Article  Google Scholar 

  101. Alosco, M. L. et al. Associations between near end-of-life flortaucipir PET and postmortem CTE-related tau neuropathology in six former American football players. Eur. J. Nucl. Med. Mol. Imaging 50, 435–452 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Takahata, K. et al. Grouping tau topologies in former boxers assessed by PET with 18F-PM-PBB3: a reappraisal of dementia pugilistica. Alzheimers Dement. 16, e041510 (2020).

    Article  Google Scholar 

  103. Qi, C. et al. Identical tau filaments in subacute sclerosing panencephalitis and chronic traumatic encephalopathy. Acta Neuropathol. Commun. 11, 74 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qi, C. et al. Tau filaments from amyotrophic lateral sclerosis/parkinsonism-dementia complex adopt the CTE fold. Proc. Natl Acad. Sci. USA 120, e2306767120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Braak, H. & Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Schöll, M. et al. PET imaging of tau deposition in the aging human brain. Neuron 89, 971–982 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pascoal, T. A. et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 143, 2818–2830 (2020).

    Article  PubMed  Google Scholar 

  109. Leuzy, A. et al. Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders. JAMA Neurol. 77, 955–965 (2020).

    Article  PubMed  Google Scholar 

  110. Ossenkoppele, R. et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA 320, 1151–1162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jie, C. V. M. L., Treyer, V., Schibli, R. & Mu, L. Tauvid™: the first FDA-approved PET tracer for imaging tau pathology in Alzheimer’s disease. Pharmaceuticals 14, 110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leuzy, A. et al. Comparison of group-level and individualized brain regions for measuring change in longitudinal tau positron emission tomography in Alzheimer disease. JAMA Neurol. 80, 614–623 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vogel, J. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27, 871–881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Villemagne, V. L. et al. CenTauR: toward a universal scale and masks for standardizing tau imaging studies. Alzheimers Dement. 15, e12454 (2023).

    Google Scholar 

  115. Fleisher, A. S. et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol. 77, 829–839 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Groot, C. et al. Tau positron emission tomography for predicting dementia in individuals with mild cognitive impairment. JAMA Neurol. 81, 845–856 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chen, S.-D. et al. Staging tau pathology with tau PET in Alzheimer’s disease: a longitudinal study. Transl. Psychiatry 11, 483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wuestefeld, A. et al. Age-related and amyloid-beta-independent tau deposition and its downstream effects. Brain 146, 3192–3205 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Villemagne, V. L. et al. What is T+? A Gordian Knot of tracers, thresholds, and topographies. J. Nucl. Med. 62, 614–619 (2021).

    Article  PubMed  Google Scholar 

  121. Ossenkoppele, R. et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 78, 961–971 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Altomare, D. et al. Diagnostic value of amyloid-PET and tau-PET: a head-to-head comparison. Eur. J. Nucl. Med. Mol. Imaging 48, 2200–2211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shimohama, S. et al. Impact of amyloid and tau PET on changes in diagnosis and patient management. Neurology 100, e264–e274 (2023).

    Article  PubMed  Google Scholar 

  124. Smith, R. et al. Clinical utility of tau positron emission tomography in the diagnostic workup of patients with cognitive symptoms. JAMA Neurol. 80, 749–756 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Budd Haeberlein, S. et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 9, 197–210 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 330, 512–527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Teng, E. et al. Safety and efficacy of semorinemab in individuals with prodromal to mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 79, 758–767 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Edwards, A. L. et al. Exploratory tau biomarker results from a multiple ascending-dose study of BIIB080 in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 80, 1344–1352 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mummery, C. J. et al. Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat. Med. 29, 1437–1447 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ziogas, N. et al. Exploratory clinical outcomes from BIIB080 (MAPT ASO) phase 1b multiple ascending dose and long-term extension study in mild Alzheimer’s disease. J. Prev. Alz. Dis. 10, S41 (2023).

    Google Scholar 

  131. Endo, H. et al. Correlation of 18F-PM-PBB3 (18F-florzolotau) tau PET imaging with postmortem neuropathological findings in a case with progressive supranuclear palsy (P9-11.015) [abstract]. Neurology https://doi.org/10.1212/WNL.0000000000201875 (2023).

  132. Tagai, K. et al. An optimized reference tissue method for quantification of tau protein depositions in diverse neurodegenerative disorders by PET with 18F-PM-PBB3 (18F-APN-1607). Neuroimage 264, 119763 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Leuzy, A. et al. Harmonizing tau positron emission tomography in Alzheimer’s disease: the CenTauR scale and the joint propagation model. Alzheimers Dement. 20, 5833–5848 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. van Eimeren, T. et al. Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: proposal for a neuroimaging biomarker utility system. Alzheimers Dement. 11, 301–309 (2019).

    Google Scholar 

  135. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  136. Cykowski, M. D. et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 138, 2293–2309 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kikuchi, A. et al. In vivo visualization of α-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain 133, 1772–1778 (2010).

    Article  PubMed  Google Scholar 

  138. Verdurand, M. et al. Amyloid-beta radiotracer [18F]BF-227 does not bind to cytoplasmic glial inclusions of postmortem multiple system atrophy brain tissue. Contrast Media Mol. Imaging 2018, 9165458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Koga, S., Ono, M., Sahara, N., Higuchi, M. & Dickson, D. W. Fluorescence and autoradiographic evaluation of tau PET ligand PBB3 to α-synuclein pathology. Mov. Disord. 32, 884–892 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, F. T. et al. 18F-florzolotau tau positron emission tomography imaging in patients with multiple system atrophy-parkinsonian subtype. Mov. Disord. 37, 1915–1923 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Roshanbin, S. et al. In vivo imaging of α-synuclein with antibody-based PET. Neuropharmacology 208, 108985 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Pees, J. Y. et al. Development of pyridothiophene compounds for PET imaging of α-synuclein aggregates. Chem. Eur. J. 30, e202303921 (2024).

    Article  CAS  PubMed  Google Scholar 

  143. Kim, H. Y. et al. A novel brain PET radiotracer for imaging alpha synuclein fibrils in multiple system atrophy. J. Med. Chem. 66, 12185–12202 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zeng, Q. et al. Discovery and evaluation of imidazo[2,1-b][1,3,4]thiadiazole derivatives as new candidates for α-synuclein PET imaging. J. Med. Chem. 67, 12345–12358 (2024).

    Article  Google Scholar 

  145. Zhang, X. et al. Radiosynthesis and in vivo evaluation of two PET radioligands for imaging α-synuclein. Appl. Sci. 4, 66–78 (2014).

    Article  PubMed  Google Scholar 

  146. Kuebler, L. et al. [11C]MODAG-001 — towards a PET tracer targeting α-synuclein aggregates. Eur. J. Nucl. Med. Mol. Imaging 48, 1759–1772 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Korat, Š. et al. Toward novel [18F]fluorine-labeled radiotracers for the imaging of α-synuclein fibrils. Front. Aging Neurosci. 14, 830704 (2022).

    Article  Google Scholar 

  148. Bonanno, F. et al. Advancing Parkinson’s disease diagnostics: the potential of arylpyrazolethiazole derivatives for imaging α-synuclein aggregates. ACS Omega 9, 24774–24788 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maurer, A. et al. 11C radiolabeling of anle253b: a putative PET tracer for Parkinson’s disease that binds to α-synuclein fibrils in vitro and crosses the blood-brain barrier. ChemMedChem 15, 411–415 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Janssen, B. et al. Identification of a putative α-synuclein radioligand using an in silico similarity search. Mol. Imaging Biol. 25, 704–719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Di Nanni, A. et al. A fluorescent probe as a lead compound for a selective α-synuclein PET tracer. ACS Omega 8, 24339–24352 (2023).

    Article  Google Scholar 

  152. Wu, J. et al. Development of an ¹⁸F-labeled azobenzothiazole tracer for α-synuclein aggregates in the brain. Org. Biomol. Chem. 22, 3724–3732 (2024).

    Article  Google Scholar 

  153. Antonschmidt, L. et al. The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils. Nat. Commun. 13, 5285 (2022).

    Article  Google Scholar 

  154. Hsieh, C. J. et al. Alpha synuclein fibrils contain multiple binding sites for small molecules. ACS Chem. Neurosci. 9, 2521–2527 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Endo, H. et al. Imaging α-synuclein pathologies in animal models and patients with Parkinson’s and related diseases. Neuron 112, 2540–2557.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  156. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Macdonald, J. A. et al. Assembly of α-synuclein and neurodegeneration in the central nervous system of heterozygous M83 mice following the peripheral administration of α-synuclein seeds. Acta Neuropathol. Commun. 9, 189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Miranda-Azpiazu, P. et al. Identification and in vitro characterization of C05-01, a PBB3 derivative with improved affinity for alpha-synuclein. Brain Res. 1749, 147131 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Matsuoka, K. et al. High-contrast imaging of α-synuclein pathologies in living patients with multiple system atrophy. Mov. Disord. 37, 2159–2161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Smith, R. et al. The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases. Nat. Commun. 14, 6750 2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xiang, J. et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 186, 3350–3367.e19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Arseni, D. et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139–143 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Knight, A. C. et al. Head-to-head comparison of tau-PET radioligands for imaging TDP-43 in post-mortem ALS brain. Mol. Imaging Biol. 25, 513–527 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Arseni, D. et al. TDP-43 forms amyloid filaments with a distinct fold in type A FTLD-TDP. Nature 620, 898–903 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Arseni, D. et al. Heteromeric amyloid filaments of ANXA11 and TDP-43 in FTLD-TDP type C. Nature 634, 662–668 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bigio, E. H. et al. Inclusions in frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), but not FTLD with FUS proteinopathy (FTLD-FUS), have properties of amyloid. Acta Neuropathol. 125, 463–465 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Seredenina, T. et al. Discovery and optimization of the first-in-class TDP-43 PET tracer. Alzheimers Dement. 19, e075525 (2023).

    Article  Google Scholar 

  169. Spina, S. et al. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain 144, 2186–2198 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Schweighauser, M. et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605, 310–314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jiang, Y. X. et al. Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature 605, 304–309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Perneel, J. et al. Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol. 145, 285–302 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Hampel, H. et al. Blood-based biomarkers for Alzheimer’s disease: mapping the road to the clinic. Nat. Rev. Neurol. 14, 639–652 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Karikari, T. K. et al. Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat. Rev. Neurol. 18, 400–418 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Milà-Alomà, M. et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat. Med. 28, 1797–1801 (2022).

    PubMed  PubMed Central  Google Scholar 

  176. Tagai, K. et al. A novel plasma p-tau181 assay as a specific biomarker of tau pathology in Alzheimer’s disease. Transl. Neurodegener. 13, 44 (2023).

    Article  Google Scholar 

  177. Horie, K. et al. Plasma MTBR-tau243 biomarker identifies tau tangle pathology in Alzheimer’s disease. Nat. Med. 31, 2044–2053 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Altomare, D. et al. Plasma biomarkers for Alzheimer’s disease: a field-test in a memory clinic. J. Neurol. Neurosurg. Psychiatry 94, 420–427 (2023).

    Article  PubMed  Google Scholar 

  179. Brum, W. S. et al. A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings. Nat. Commun. 15, 2311 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Eberling, J. L., Dave, K. D. & Frasier, M. A. α-Synuclein imaging: a critical need for Parkinson’s disease research. J. Parkinsons Dis. 3, 565–567 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Suhara, T. et al. Strategies for utilizing neuroimaging biomarkers in CNS drug discovery and development: CINP/JSNP working group report. Int. J. Neuropsychopharmacol. 20, 285–294 (2017).

    CAS  PubMed  Google Scholar 

  182. Thal, D. R. et al. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol. 129, 167–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Schöll, M. et al. Biomarkers for tau pathology. Mol. Cell Neurosci. 97, 18–33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and reviewed and/or edited the manuscript before submission. M.H, K. Takahata. and H.E. contributed substantially to discussion of the content. M.H., K. Tagai. and H.E. wrote the article.

Corresponding author

Correspondence to Makoto Higuchi.

Ethics declarations

Competing interests

M.H. holds patents on PBB3, florzolotau and related compounds (JP 5422782/EP 12 884 742.3/CA2894994/HK1208672) and α-synuclein ligands (JP7460176). M.H. is supported by research grants from the Japan Agency for Medical Research and Development (JP24zf0127012 and JP24wm0625001) and Japan Science and Technology Agency (JPMJMS2024). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuchi, M., Tagai, K., Takahata, K. et al. Advances in PET imaging of protein aggregates associated with neurodegenerative disease. Nat Rev Neurol 21, 506–522 (2025). https://doi.org/10.1038/s41582-025-01126-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01126-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing