Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spreading depolarization as a therapeutic target in migraine

Subjects

Abstract

Migraine with aura is characterized by recurrent attacks of visual and, occasionally, sensory, language and/or motor disturbances, typically followed by headache. Migraine with aura can be associated with allodynia and vascular and psychiatric comorbidities. The electrophysiological cause of the aura is cortical spreading depolarization, a wave of depolarization that propagates slowly across the cortical surface, producing reversible metabolic and electrochemical perturbations. In this Review, we focus on the relationship of spreading depolarization with migraine aura and migraine headache. Abundant evidence causally links spreading depolarization to the headache phase of migraine with aura, as it can activate trigeminal nociceptors, produce dural and cortical inflammation, and induce trigeminal pain behaviour in rodents. In experimental models, migraine prophylaxis reduces susceptibility to spreading depolarization, and abortive treatments abrogate trigeminal pain behaviour that is induced by spreading depolarization. Although questions remain about the role of spreading depolarization in migraine with aura and models of spreading depolarization need to be refined, the cumulative evidence suggests that spreading depolarization is a putative target for therapeutic intervention in migraine. Elucidating the mechanisms by which spreading depolarization can induce trigeminal pain could facilitate drug discovery, and models of spreading depolarization could be effective screening platforms for migraine therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of migraine with aura initiation.
Fig. 2: Propagation patterns of spreading depolarization in lissencephalic and gyrencephalic cortices.
Fig. 3: Spreading depolarization as a high-throughput translational model for preventive migraine drug screening.
Fig. 4: Spreading depolarization as a high-throughput translational model for abortive migraine drug screening using migraine-relevant behaviour.

Similar content being viewed by others

References

  1. Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1211–1259 (2017).

    Google Scholar 

  2. Stovner, L. J. et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 954–976 (2018).

    Google Scholar 

  3. Bonafede, M. et al. Direct and indirect healthcare resource utilization and costs among migraine patients in the United States. Headache 58, 700–714 (2018).

    PubMed  Google Scholar 

  4. Burch, R., Rizzoli, P. & Loder, E. The prevalence and impact of migraine and severe headache in the United States: figures and trends from government health studies. Headache 58, 496–505 (2018).

    PubMed  Google Scholar 

  5. Burch, R. C., Buse, D. C. & Lipton, R. B. Migraine: epidemiology, burden, and comorbidity. Neurol. Clin. 37, 631–649 (2019).

    PubMed  Google Scholar 

  6. Lipton, R. B. et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 68, 343–349 (2007).

    PubMed  CAS  Google Scholar 

  7. Headache classification committee of the international headache society (IHS). The international classification of headache disorders, 3rd edition. Cephalalgia https://doi.org/10.1177/0333102417738202 (2018).

  8. Andress-Rothrock, D., King, W. & Rothrock, J. An analysis of migraine triggers in a clinic-based population. Headache 50, 1366–1370 (2010).

    PubMed  Google Scholar 

  9. Lipton, R. B. et al. Identifying natural subgroups of migraine based on comorbidity and concomitant condition profiles: results of the chronic migraine epidemiology and outcomes (CaMEO) study. Headache 58, 933–947 (2018).

    PubMed  Google Scholar 

  10. Leao, A. A. P. Spreading depression of activity in cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).

    Google Scholar 

  11. Lashley, K. S. Patterns of cerebral integration indicated by the scotomas of migraine. Arch. Neurol. Psychiatry 46, 331–339 (1941).

    Google Scholar 

  12. Leao, A. A. P. & Morison, R. S. Propagation of spreading cortical depression. J. Neurophysiol. 8, 33–45 (1945).

    Google Scholar 

  13. Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl Acad. Sci. USA 98, 4687–4692 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Moskowitz, M. A., Nozaki, K. & Kraig, R. P. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J. Neurosci. 13, 1167–1177 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang, X. et al. Activation of central trigeminovascular neurons by cortical spreading depression. Ann. Neurol. 69, 855–865 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Melo-Carrillo, A. et al. Selective inhibition of trigeminovascular neurons by fremanezumab: a humanized monoclonal anti-CGRP antibody. J. Neurosci. 37, 7149–7163 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang, X. et al. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J. Neurosci. 30, 8807–8814 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Filiz, A. et al. CGRP receptor antagonist MK-8825 attenuates cortical spreading depression induced pain behavior. Cephalalgia 39, 354–365 (2019).

    PubMed  Google Scholar 

  19. Cottier, K. E. et al. Loss of blood–brain barrier integrity in a Kcl-induced model of episodic headache enhances CNS drug delivery. eNeuro https://doi.org/10.1523/ENEURO.0116-18.2018 (2018).

  20. Harriott, A. M. et al. Optogenetic spreading depression elicits trigeminal pain and anxiety behavior. Ann. Neurol. 89, 99–110 (2021).

    PubMed  Google Scholar 

  21. Rodgers, C. I., Armstrong, G. A. & Robertson, R. M. Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980–990 (2010).

    PubMed  CAS  Google Scholar 

  22. Andersen, M. K., Willot, Q. & MacMillan, H. A. A neurophysiological limit and its biogeographic correlations: cold-induced spreading depolarization in tropical butterflies. J. Exp. Biol. 226, jeb246313 (2023).

    PubMed  Google Scholar 

  23. Robertson, R. M., Dawson-Scully, K. D. & Andrew, R. D. Neural shutdown under stress: an evolutionary perspective on spreading depolarization. J. Neurophysiol. 123, 885–895 (2020).

    PubMed  PubMed Central  Google Scholar 

  24. Gorji, A. et al. Spreading depression in human neocortical slices. Brain Res. 906, 74–83 (2001).

    PubMed  CAS  Google Scholar 

  25. Strong, A. J. et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33, 2738–2743 (2002).

    PubMed  Google Scholar 

  26. McLeod, G. A., Josephson, C. B., Engbers, J. D. T., Cooke, L. J. & Wiebe, S. Mapping the migraine: intracranial recording of cortical spreading depression in migraine with aura. Headache 65, 658–665 (2025).

    PubMed  Google Scholar 

  27. Rasmussen, B. K. & Olesen, J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia 12, 221–228 (1992).

    PubMed  CAS  Google Scholar 

  28. Buse, D. C. et al. Sex differences in the prevalence, symptoms, and associated features of migraine, probable migraine and other severe headache: results of the American Migraine Prevalence and Prevention (AMPP) study. Headache 53, 1278–1299 (2013).

    PubMed  Google Scholar 

  29. Lipton, R. B. et al. Cutaneous allodynia in the migraine population. Ann. Neurol. 63, 148–158 (2008).

    PubMed  PubMed Central  Google Scholar 

  30. Lovati, C. et al. Allodynia in different forms of migraine. Neurol. Sci. 28, S220–S221 (2007).

    PubMed  Google Scholar 

  31. Burstein, R., Yarnitsky, D., Goor-Aryeh, I., Ransil, B. J. & Bajwa, Z. H. An association between migraine and cutaneous allodynia. Ann. Neurol. 47, 614–624 (2000).

    PubMed  CAS  Google Scholar 

  32. LoPinto, C., Young, W. B. & Ashkenazi, A. Comparison of dynamic (brush) and static (pressure) mechanical allodynia in migraine. Cephalalgia 26, 852–856 (2006).

    PubMed  CAS  Google Scholar 

  33. Oedegaard, K. J. et al. Migraine with and without aura: association with depression and anxiety disorder in a population-based study. The HUNT study. Cephalalgia 26, 1–6 (2006).

    PubMed  CAS  Google Scholar 

  34. Kim, K. M. et al. Prevalence and impact of visual aura in migraine and probable migraine: a population study. Sci. Rep. 12, 426 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Lipton, R. B. et al. Allodynia is associated with initial and sustained response to acute migraine treatment: results from the American Migraine Prevalence and Prevention study. Headache 57, 1026–1040 (2017).

    PubMed  Google Scholar 

  36. Viana, M. et al. Clinical features of migraine aura: results from a prospective diary-aided study. Cephalalgia 37, 979–989 (2017).

    PubMed  Google Scholar 

  37. Russell, M. B. & Olesen, J. A nosographic analysis of the migraine aura in a general population. Brain 119, 355–361 (1996).

    PubMed  Google Scholar 

  38. Hansen, J. M., Goadsby, P. J. & Charles, A. C. Variability of clinical features in attacks of migraine with aura. Cephalalgia 36, 216–224 (2016).

    PubMed  Google Scholar 

  39. Airy, H. On a distinct form of transient hemiopsia. Philos. Trans. R. Soc. Lond. 160, 247–264 (1870).

    Google Scholar 

  40. Viana, M., Tronvik, E. A., Do, T. P., Zecca, C. & Hougaard, A. Clinical features of visual migraine aura: a systematic review. J. Headache Pain 20, 64 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Petrusic, I., Pavlovski, V., Vucinic, D. & Jancic, J. Features of migraine aura in teenagers. J. Headache Pain 15, 87 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Kelman, L. The aura: a tertiary care study of 952 migraine patients. Cephalalgia 24, 728–734 (2004).

    PubMed  CAS  Google Scholar 

  43. Ahmed, M. A., Donaldson, S., Akor, F., Cahill, D. & Akilani, R. Olfactory hallucination in childhood primary headaches: case series. Cephalalgia 35, 234–239 (2015).

    PubMed  CAS  Google Scholar 

  44. Henkin, R. I., Potolicchio, S. J. & Levy, L. M. Olfactory hallucinations without clinical motor activity: a comparison of unirhinal with birhinal phantosmia. Brain Sci. 3, 1483–1553 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Barrett, C. F., van den Maagdenberg, A., Frants, R. R. & Ferrari, M. D. Familial hemiplegic migraine. Adv. Genet. 63, 57–83 (2008).

    PubMed  CAS  Google Scholar 

  46. Sutherland, H. G., Jenkins, B. & Griffiths, L. R. Genetics of migraine: complexity, implications, and potential clinical applications. Lancet Neurol. 23, 429–446 (2024).

    PubMed  CAS  Google Scholar 

  47. Gosalia, H., Karsan, N. & Goadsby, P. J. Genetic mechanisms of migraine: insights from monogenic migraine mutations. Int. J. Mol. Sci. 24, 12697 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Pietrobon, D. & Moskowitz, M. A. Pathophysiology of migraine. Annu. Rev. Physiol. 75, 365–391 (2013).

    PubMed  CAS  Google Scholar 

  49. Terwindt, G. M., Ophoff, R. A., Haan, J., Frants, R. R. & Ferrari, M. D. Familial hemiplegic migraine: a clinical comparison of families linked and unlinked to chromosome 19.DMG RG. Cephalalgia 16, 153–155 (1996).

    PubMed  CAS  Google Scholar 

  50. Joutel, A. et al. A gene for familial hemiplegic migraine maps to chromosome 19. Nat. Genet. 5, 40–45 (1993).

    PubMed  CAS  Google Scholar 

  51. Hartings, J. A. et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X16654495 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pietrobon, D. & Moskowitz, M. A. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat. Rev. Neurosci. 15, 379–393 (2014).

    PubMed  CAS  Google Scholar 

  53. Somjen, G. G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096 (2001).

    PubMed  CAS  Google Scholar 

  54. Ayata, C. & Lauritzen, M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol. Rev. 95, 953–993 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Dreier, J. P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 17, 439–447 (2011).

    PubMed  CAS  Google Scholar 

  56. Eikermann-Haerter, K. et al. Abnormal synaptic Ca2+ homeostasis and morphology in cortical neurons of familial hemiplegic migraine type 1 mutant mice. Ann. Neurol. 78, 193–210 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Peters, O., Schipke, C. G., Hashimoto, Y. & Kettenmann, H. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J. Neurosci. 23, 9888–9896 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Fabricius, M., Jensen, L. H. & Lauritzen, M. Microdialysis of interstitial amino acids during spreading depression and anoxic depolarization in rat neocortex. Brain Res. 612, 61–69 (1993).

    PubMed  CAS  Google Scholar 

  59. Lindquist, B. E. & Shuttleworth, C. W. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices. Neuroscience 223, 365–376 (2012).

    PubMed  CAS  Google Scholar 

  60. Seidel, J. L., Escartin, C., Ayata, C., Bonvento, G. & Shuttleworth, C. W. Multifaceted roles for astrocytes in spreading depolarization: a target for limiting spreading depolarization in acute brain injury? Glia 64, 5–20 (2016).

    PubMed  Google Scholar 

  61. Grafstein, B. Subverting the hegemony of the synapse: complicity of neurons, astrocytes, and vasculature in spreading depression and pathology of the cerebral cortex. Brain Res. Rev. 66, 123–132 (2010).

    PubMed  Google Scholar 

  62. Grafstein, B. Locus of propagation of spreading cortical depression. J. Neurophysiol. 19, 308–316 (1956).

    PubMed  CAS  Google Scholar 

  63. Hansen, A. J. & Zeuthen, T. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol. Scand. 113, 437–445 (1981).

    PubMed  CAS  Google Scholar 

  64. Obrenovitch, T. P. & Zilkha, E. High extracellular potassium, and not extracellular glutamate, is required for the propagation of spreading depression. J. Neurophysiol. 73, 2107–2114 (1995).

    PubMed  CAS  Google Scholar 

  65. Marrannes, R., Willems, R., De Prins, E. & Wauquier, A. Evidence for a role of the N-methyl-d-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 457, 226–240 (1988).

    PubMed  CAS  Google Scholar 

  66. Masvidal-Codina, E. et al. Characterization of optogenetically-induced cortical spreading depression in awake mice using graphene micro-transistor arrays. J. Neural Eng. https://doi.org/10.1088/1741-2552/abecf3 (2021).

  67. Crivellaro, G. et al. Specific activation of GluN1-N2B NMDA receptors underlies facilitation of cortical spreading depression in a genetic mouse model of migraine with reduced astrocytic glutamate clearance. Neurobiol. Dis. 156, 105419 (2021).

    PubMed  CAS  Google Scholar 

  68. Mody, I., Lambert, J. D. & Heinemann, U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J. Neurophysiol. 57, 869–888 (1987).

    PubMed  CAS  Google Scholar 

  69. Santos, E. et al. Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain. Neuroimage 99, 244–255 (2014).

    PubMed  Google Scholar 

  70. Santos, E., Sanchez-Porras, R., Sakowitz, O. W., Dreier, J. P. & Dahlem, M. A. Heterogeneous propagation of spreading depolarizations in the lissencephalic and gyrencephalic brain. J. Cereb. Blood Flow Metab. 37, 2639–2643 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Cain, S. M. et al. In vivo imaging reveals that pregabalin inhibits cortical spreading depression and propagation to subcortical brain structures. Proc. Natl Acad. Sci. USA 114, 2401–2406 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Vinogradova, L. V., Koroleva, V. I. & Bures, J. Re-entry waves of Leao’s spreading depression between neocortex and caudate nucleus. Brain Res. 538, 161–164 (1991).

    PubMed  CAS  Google Scholar 

  73. Bures, J., Buresova, O., Fifkova, E. & Rabending, G. Reversible deafferentation of cerebral cortex by thalamic spreading depression. Exp. Neurol. 12, 55–67 (1965).

    PubMed  CAS  Google Scholar 

  74. Yuzawa, I. et al. Cortical spreading depression impairs oxygen delivery and metabolism in mice. J. Cereb. Blood Flow Metab. 32, 376–386 (2012).

    PubMed  CAS  Google Scholar 

  75. Ayata, C. et al. Pronounced hypoperfusion during spreading depression in mouse cortex. J. Cereb. Blood Flow Metab. 24, 1172–1182 (2004).

    PubMed  Google Scholar 

  76. Ostergaard, L. et al. Neurovascular coupling during cortical spreading depolarization and -depression. Stroke 46, 1392–1401 (2015).

    PubMed  Google Scholar 

  77. Ayata, C. Spreading depression and neurovascular coupling. Stroke 44, S87–S89 (2013).

    PubMed  Google Scholar 

  78. Sadeghian, H. et al. Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis. Ann. Neurol. 84, 409–423 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Cha, Y. H., Millett, D., Kane, M., Jen, J. & Baloh, R. Adult-onset hemiplegic migraine with cortical enhancement and oedema. Cephalalgia 27, 1166–1170 (2007).

    PubMed  Google Scholar 

  80. Dreier, J. P. et al. Opening of the blood–brain barrier preceding cortical edema in a severe attack of FHM type II. Neurology 64, 2145–2147 (2005).

    PubMed  CAS  Google Scholar 

  81. Kors, E. E. et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann. Neurol. 49, 753–760 (2001).

    PubMed  CAS  Google Scholar 

  82. Hougaard, A. et al. Increased brainstem perfusion, but no blood–brain barrier disruption, during attacks of migraine with aura. Brain 140, 1633–1642 (2017).

    PubMed  Google Scholar 

  83. Amin, F. M. et al. Intact blood–brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study. Eur. J. Neurol. 24, 1116–1124 (2017).

    PubMed  CAS  Google Scholar 

  84. Schain, A. J., Melo-Carrillo, A., Strassman, A. M. & Burstein, R. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. J. Neurosci. 37, 2904–2915 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Takizawa, T. et al. Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X19859381 (2019).

  86. Dell'Orco, M. et al. Repetitive spreading depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. Front. Cell. Neurosci. 14, 1292661 (2023).

    Google Scholar 

  87. Caggiano, A. O. & Kraig, R. P. Eicosanoids and nitric oxide influence induction of reactive gliosis from spreading depression in microglia but not astrocytes. J. Comp. Neurol. 369, 93–108 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Kraig, R. P., Dong, L. M., Thisted, R. & Jaeger, C. B. Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein. J. Neurosci. 11, 2187–2198 (1991).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Yang, L. et al. Human and mouse trigeminal ganglia cell atlas implicates multiple cell types in migraine. Neuron 110, 1806–1821 e1808 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Sukhotinsky, I. et al. Chronic daily cortical spreading depressions suppress spreading depression susceptibility. Cephalalgia 31, 1601–1608 (2011).

    PubMed  Google Scholar 

  92. Nedergaard, M. & Hansen, A. J. Spreading depression is not associated with neuronal injury in the normal brain. Brain Res. 449, 395–398 (1988).

    PubMed  CAS  Google Scholar 

  93. Dreier, J. P. et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J. Cereb. Blood Flow Metab. 37, 1595–1625 (2017).

    PubMed  Google Scholar 

  94. Suryavanshi, P., Reinhart, K. M., Shuttleworth, C. W. & Brennan, K. C. Action potentials are critical for the propagation of focally elicited spreading depolarizations. J. Neurosci. 42, 2371–2383 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Eikermann-Haerter, K., Can, A. & Ayata, C. Pharmacological targeting of spreading depression in migraine. Expert Rev. Neurother. 12, 297–306 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Takizawa, T. et al. Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex. J. Cereb. Blood Flow Metab. 40, 1117–1131 (2020).

    PubMed  CAS  Google Scholar 

  97. Tang, C. et al. Cortical spreading depolarisation-induced facial hyperalgesia, photophobia and hypomotility are ameliorated by sumatriptan and olcegepant. Sci. Rep. 10, 11408 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Milner, P. M. Note on a possible correspondence between the scotomas of migraine and spreading depression of Leao. Electroencephalogr. Clin. Neurophysiol. 10, 705 (1958).

    PubMed  CAS  Google Scholar 

  99. Olesen, J., Larsen, B. & Lauritzen, M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann. Neurol. 9, 344–352 (1981).

    PubMed  CAS  Google Scholar 

  100. Lauritzen, M., Olsen, T. S., Lassen, N. A. & Paulson, O. B. Regulation of regional cerebral blood flow during and between migraine attacks. Ann. Neurol. 14, 569–572 (1983).

    PubMed  CAS  Google Scholar 

  101. Lauritzen, M., Skyhoj Olsen, T., Lassen, N. A. & Paulson, O. B. Changes in regional cerebral blood flow during the course of classic migraine attacks. Ann. Neurol. 13, 633–641 (1983).

    PubMed  CAS  Google Scholar 

  102. O’Brien, M. D. Cerebral-cortex-perfusion rates in migraine. Lancet 1, 1036 (1967).

    PubMed  Google Scholar 

  103. Dreier, J. P. & Reiffurth, C. The stroke-migraine depolarization continuum. Neuron 86, 902–922 (2015).

    PubMed  CAS  Google Scholar 

  104. Bowyer, S. M., Aurora, K. S., Moran, J. E., Tepley, N. & Welch, K. M. Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann. Neurol. 50, 582–587 (2001).

    PubMed  CAS  Google Scholar 

  105. Barkley, G. L. et al. Magnetoencephalographic studies of migraine. Headache 30, 428–434 (1990).

    PubMed  CAS  Google Scholar 

  106. Bowyer, S. M. et al. Analysis of MEG signals of spreading cortical depression with propagation constrained to a rectangular cortical strip. II. Gyrencephalic swine model. Brain Res. 843, 79–86 (1999).

    PubMed  CAS  Google Scholar 

  107. Wijesinghe, R. S. & Tepley, N. A four sphere model for calculating the magnetic field associated with spreading cortical depression. Brain Topogr. 9, 191–202 (1997).

    PubMed  CAS  Google Scholar 

  108. Bolay, H., Vuralli, D. & Goadsby, P. J. Aura and Head pain: relationship and gaps in the translational models. J. Headache Pain 20, 94 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Bahra, A., Matharu, M. S., Buchel, C., Frackowiak, R. S. & Goadsby, P. J. Brainstem activation specific to migraine headache. Lancet 357, 1016–1017 (2001).

    PubMed  CAS  Google Scholar 

  110. Weiller, C. et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1, 658–660 (1995).

    PubMed  CAS  Google Scholar 

  111. Schulte, L. H. & May, A. Of generators, networks and migraine attacks. Curr. Opin. Neurol. 30, 241–245 (2017).

    PubMed  Google Scholar 

  112. Thomsen, A. V. et al. Clinical features of migraine with aura: a REFORM study. J. Headache Pain 25, 22 (2024).

    PubMed  PubMed Central  Google Scholar 

  113. Hansen, J. M. et al. Migraine headache is present in the aura phase: a prospective study. Neurology 79, 2044–2049 (2012).

    PubMed  PubMed Central  Google Scholar 

  114. Eriksen, M. K., Thomsen, L. L. & Olesen, J. Sensitivity and specificity of the new international diagnostic criteria for migraine with aura. J. Neurol. Neurosurg. Psychiatry 76, 212–217 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Arngrim, N. et al. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann. Neurol. 82, 925–939 (2017).

    PubMed  Google Scholar 

  116. Olesen, J. et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann. Neurol. 28, 791–798 (1990).

    PubMed  CAS  Google Scholar 

  117. Lambert, G. A., Truong, L. & Zagami, A. S. Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system. Cephalalgia 31, 1439–1451 (2011).

    PubMed  Google Scholar 

  118. Burstein, R., Strassman, A. & Moskowitz, M. Can cortical spreading depression activate central trigeminovascular neurons without peripheral input? Pitfalls of a new concept. Cephalalgia 32, 509–511 (2012).

    PubMed  PubMed Central  Google Scholar 

  119. Zhao, J. & Levy, D. Cortical spreading depression promotes persistent mechanical sensitization of intracranial meningeal afferents: implications for the intracranial mechanosensitivity of migraine. eNeuro https://doi.org/10.1523/ENEURO.0287-16.2016 (2016).

  120. Fioravanti, B. et al. Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely moving rats. Cephalalgia 31, 1090–1100 (2011).

    PubMed  PubMed Central  Google Scholar 

  121. Han, S. M. et al. Prevalence and characteristics of cutaneous allodynia in probable migraine. Sci. Rep. 11, 2467 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Langford, D. J. et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 7, 447–449 (2010).

    PubMed  CAS  Google Scholar 

  123. Strassman, A. M. et al. Atogepant — an orally-administered CGRP antagonist — attenuates activation of meningeal nociceptors by CSD. Cephalalgia 42, 933–943 (2022).

    PubMed  PubMed Central  Google Scholar 

  124. Melo-Carrillo, A. et al. Combined onabotulinumtoxinA/atogepant treatment blocks activation/sensitization of high-threshold and wide-dynamic range neurons. Cephalalgia 41, 17–32 (2021).

    PubMed  Google Scholar 

  125. Melo-Carrillo, A. et al. Fremanezumab-A humanized monoclonal anti-CGRP antibody-inhibits thinly myelinated (aδ) but not unmyelinated (C) meningeal nociceptors. J. Neurosci. 37, 10587–10596 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Cresta, E., Bellotti, A., Rinaldi, G., Corbelli, I. & Sarchielli, P. Effect of anti-CGRP-targeted therapy on migraine aura: results of an observational case series study. CNS Neurosci. Ther. 30, e14595 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Melo-Carrillo, A., Schain, A. J., Stratton, J., Strassman, A. M. & Burstein, R. Fremanezumab and its isotype slow propagation rate and shorten cortical recovery period but do not prevent occurrence of cortical spreading depression in rats with compromised blood–brain barrier. Pain 161, 1037–1043 (2020).

    PubMed  PubMed Central  Google Scholar 

  128. Levy, D. & Moskowitz, M. A. Meningeal mechanisms and the migraine connection. Annu. Rev. Neurosci. 46, 39–58 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Schain, A. J., Melo-Carrillo, A., Ashina, S., Strassman, A. M. & Burstein, R. Celecoxib reduces cortical spreading depression-induced macrophage activation and dilatation of dural but not pial arteries in rodents: implications for mechanism of action in terminating migraine attacks. Pain 161, 1019–1026 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Melo-Carrillo, A. et al. Exploring the effects of extracranial injections of botulinum toxin type A on prolonged intracranial meningeal nociceptors responses to cortical spreading depression in female rats. Cephalalgia 39, 1358–1365 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Ailani, J., Burch, R. C., Robbins, M. S. & Board of Directors of the American Headache Society The American Headache Society consensus statement: update on integrating new migraine treatments into clinical practice. Headache 61, 1021–1039 (2021).

    PubMed  Google Scholar 

  132. Mathew, N. T., Kailasam, J., Meadors, L., Chernyschev, O. & Gentry, P. Intravenous valproate sodium (depacon) aborts migraine rapidly: a preliminary report. Headache 40, 720–723 (2000).

    PubMed  CAS  Google Scholar 

  133. Edwards, K. R., Norton, J. & Behnke, M. Comparison of intravenous valproate versus intramuscular dihydroergotamine and metoclopramide for acute treatment of migraine headache. Headache 41, 976–980 (2001).

    PubMed  CAS  Google Scholar 

  134. Bakhshayesh, B., Seyed Saadat, S. M., Rezania, K., Hatamian, H. & Hossieninezhad, M. A randomized open-label study of sodium valproate vs sumatriptan and metoclopramide for prolonged migraine headache. Am. J. Emerg. Med. 31, 540–544 (2013).

    PubMed  Google Scholar 

  135. Tepe, N. et al. The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur. J. Neurosci. 41, 120–128 (2015).

    PubMed  Google Scholar 

  136. Fontaine, D. et al. Dural and pial pain-sensitive structures in humans: new inputs from awake craniotomies. Brain 141, 1040–1048 (2018).

    PubMed  Google Scholar 

  137. Ray, B. W. H. Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch. Surg. 41, 813–856 (1940).

    Google Scholar 

  138. Lauritzen, M., Hansen, A. J., Kronborg, D. & Wieloch, T. Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge. J. Cereb. Blood Flow Metab. 10, 115–122 (1990).

    PubMed  CAS  Google Scholar 

  139. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e1027 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Kaag Rasmussen, M. et al. Trigeminal ganglion neurons are directly activated by influx of CSF solutes in a migraine model. Science 385, 80–86 (2024).

    PubMed  CAS  Google Scholar 

  141. Harriott, A. M. & Orlova, Y. Anatomy and physiology of headache. Semin. Neurol. 42, 459–473 (2022).

    PubMed  Google Scholar 

  142. Eftekhari, S., Warfvinge, K., Blixt, F. W. & Edvinsson, L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J. Pain 14, 1289–1303 (2013).

    PubMed  CAS  Google Scholar 

  143. Goadsby, P. J., Edvinsson, L. & Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 28, 183–187 (1990).

    PubMed  CAS  Google Scholar 

  144. Gallai, V. et al. Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 15, 384–390 (1995).

    PubMed  CAS  Google Scholar 

  145. O’Shaughnessy, C. T. & Connor, H. E. Investigation of the role of tachykinin NK1, NK2 receptors and CGRP receptors in neurogenic plasma protein extravasation in dura mater. Eur. J. Pharmacol. 263, 193–198 (1994).

    PubMed  Google Scholar 

  146. Markowitz, S., Saito, K. & Moskowitz, M. A. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J. Neurosci. 7, 4129–4136 (1987).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Lee, W. S., Moussaoui, S. M. & Moskowitz, M. A. Blockade by oral or parenteral RPR 100893 (a non-peptide NK1 receptor antagonist) of neurogenic plasma protein extravasation within guinea-pig dura mater and conjunctiva. Br. J. Pharmacol. 112, 920–924 (1994).

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Goldstein, D. J. et al. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17, 785–790 (1997).

    PubMed  CAS  Google Scholar 

  149. Roon, K. I. et al. No acute antimigraine efficacy of CP-122,288, a highly potent inhibitor of neurogenic inflammation: results of two randomized, double-blind, placebo-controlled clinical trials. Ann. Neurol. 47, 238–241 (2000).

    PubMed  CAS  Google Scholar 

  150. Lee, W. S. & Moskowitz, M. A. Conformationally restricted sumatriptan analogues, CP-122,288 and CP-122,638 exhibit enhanced potency against neurogenic inflammation in dura mater. Brain Res. 626, 303–305 (1993).

    PubMed  CAS  Google Scholar 

  151. Moskowitz, M. A., Reinhard, J. F. Jr., Romero, J., Melamed, E. & Pettibone, D. J. Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? Lancet 2, 883–885 (1979).

    PubMed  CAS  Google Scholar 

  152. Edvinsson, L., Haanes, K. A. & Warfvinge, K. Does inflammation have a role in migraine? Nat. Rev. Neurol. 15, 483–490 (2019).

    PubMed  Google Scholar 

  153. Charles, A., Nwaobi, S. E. & Goadsby, P. Inflammation in migraine…or not…: a critical evaluation of the evidence. Headache 61, 1575–1578 (2021).

    PubMed  Google Scholar 

  154. Dimitriadou, V., Buzzi, M. G., Moskowitz, M. A. & Theoharides, T. C. Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 44, 97–112 (1991).

    PubMed  CAS  Google Scholar 

  155. Levy, D., Burstein, R., Kainz, V., Jakubowski, M. & Strassman, A. M. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130, 166–176 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  156. McIlvried, L. A., Cruz, J. A., Borghesi, L. A. & Gold, M. S. Sex-, stress-, and sympathetic post-ganglionic-dependent changes in identity and proportions of immune cells in the dura. Cephalalgia 37, 36–48 (2017).

    PubMed  Google Scholar 

  157. Dimlich, R. V., Keller, J. T., Strauss, T. A. & Fritts, M. J. Linear arrays of homogeneous mast cells in the dura mater of the rat. J. Neurocytol. 20, 485–503 (1991).

    PubMed  CAS  Google Scholar 

  158. McMenamin, P. G. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J. Comp. Neurol. 405, 553–562 (1999).

    PubMed  CAS  Google Scholar 

  159. Zhang, X. C., Strassman, A. M., Burstein, R. & Levy, D. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. J. Pharmacol. Exp. Ther. 322, 806–812 (2007).

    PubMed  CAS  Google Scholar 

  160. Rozniecki, J. J., Dimitriadou, V., Lambracht-Hall, M., Pang, X. & Theoharides, T. C. Morphological and functional demonstration of rat dura mater mast cell–neuron interactions in vitro and in vivo. Brain Res. 849, 1–15 (1999).

    PubMed  CAS  Google Scholar 

  161. Ottosson, A. & Edvinsson, L. Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17, 166–174 (1997).

    PubMed  CAS  Google Scholar 

  162. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002).

    PubMed  CAS  Google Scholar 

  163. Schain, A. J., Melo-Carrillo, A., Stratton, J., Strassman, A. M. & Burstein, R. CSD-induced arterial dilatation and plasma protein extravasation are unaffected by fremanezumab: implications for CGRP’s role in migraine with aura. J. Neurosci. 39, 6001–6011 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  164. Williamson, D. J., Hargreaves, R. J., Hill, R. G. & Shepheard, S. L. Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia 17, 518–524 (1997).

    PubMed  CAS  Google Scholar 

  165. Schain, A. J. et al. Activation of pial and dural macrophages and dendritic cells by cortical spreading depression. Ann. Neurol. 83, 508–521 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Karatas, H. et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339, 1092–1095 (2013).

    PubMed  CAS  Google Scholar 

  167. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Chen, S. P. et al. Inhibition of the P2X7–PANX1 complex suppresses spreading depolarization and neuroinflammation. Brain 140, 1643–1656 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Zhao, J., Harrison, S. & Levy, D. Meningeal P2X7 signaling mediates migraine-related intracranial mechanical hypersensitivity. J. Neurosci. 43, 5975–5985 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Sword, J., Croom, D., Wang, P. L., Thompson, R. J. & Kirov, S. A. Neuronal pannexin-1 channels are not molecular routes of water influx during spreading depolarization-induced dendritic beading. J. Cereb. Blood Flow Metab. 37, 1626–1633 (2017).

    PubMed  CAS  Google Scholar 

  171. Chen, P. Y. et al. Neuronal NLRP3 inflammasome mediates spreading depolarization-evoked trigeminovascular activation. Brain 146, 2989–3002 (2023).

    PubMed  Google Scholar 

  172. Takizawa, T. et al. High-mobility group box 1 is an important mediator of microglial activation induced by cortical spreading depression. J. Cereb. Blood Flow Metab. 37, 890–901 (2017).

    PubMed  CAS  Google Scholar 

  173. Albrecht, D. S. et al. Imaging of neuroinflammation in migraine with aura: a [11C]PBR28 PET/MRI study. Neurology 92, e2038–e2050 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Hadjikhani, N. et al. Extra-axial inflammatory signal in parameninges in migraine with visual aura. Ann. Neurol. 87, 939–949 (2020).

    PubMed  PubMed Central  Google Scholar 

  175. Klass, A., Sánchez-Porras, R. & Santos, E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J. Cereb. Blood Flow Metab. 38, 1149–1179 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Ayata, C., Jin, H., Kudo, C., Dalkara, T. & Moskowitz, M. A. Suppression of cortical spreading depression in migraine prophylaxis. Ann. Neurol. 59, 652–661 (2006).

    PubMed  CAS  Google Scholar 

  177. Hoffmann, U., Dilekoz, E., Kudo, C. & Ayata, C. Oxcarbazepine does not suppress cortical spreading depression. Cephalalgia 31, 537–542 (2011).

    PubMed  Google Scholar 

  178. Bogdanov, V. B. et al. Migraine preventive drugs differentially affect cortical spreading depression in rat. Neurobiol. Dis. 41, 430–435 (2011).

    PubMed  CAS  Google Scholar 

  179. Richter, F., Mikulik, O., Ebersberger, A. & Schaible, H. G. Noradrenergic agonists and antagonists influence migration of cortical spreading depression in rat-a possible mechanism of migraine prophylaxis and prevention of postischemic neuronal damage. J. Cereb. Blood Flow Metab. 25, 1225–1235 (2005).

    PubMed  CAS  Google Scholar 

  180. Unekawa, M., Tomita, Y., Toriumi, H. & Suzuki, N. Suppressive effect of chronic peroral topiramate on potassium-induced cortical spreading depression in rats. Cephalalgia 32, 518–527 (2012).

    PubMed  Google Scholar 

  181. Akerman, S. & Goadsby, P. J. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport 16, 1383–1387 (2005).

    PubMed  CAS  Google Scholar 

  182. Silberstein, S. et al. Oxcarbazepine in migraine headache: a double-blind, randomized, placebo-controlled study. Neurology 70, 548–555 (2008).

    PubMed  CAS  Google Scholar 

  183. Parker, P. D. et al. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 109, 611–628 e618 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  184. Reinhart, K. M. & Shuttleworth, C. W. Ketamine reduces deleterious consequences of spreading depolarizations. Exp. Neurol. 305, 121–128 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Vitale, M., Tottene, A., Zarin Zadeh, M., Brennan, K. C. & Pietrobon, D. Mechanisms of initiation of cortical spreading depression. J. Headache Pain 24, 105 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  186. Chung, D. Y. et al. Determinants of optogenetic cortical spreading depolarizations. Cereb. Cortex 29, 1150–1161 (2019).

    PubMed  Google Scholar 

  187. Hertle, D. N. et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135, 2390–2398 (2012).

    PubMed  Google Scholar 

  188. Sanchez-Porras, R. et al. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex. Neuropharmacology 84, 52–61 (2014).

    PubMed  CAS  Google Scholar 

  189. Carlson, A. P., Abbas, M., Alunday, R. L., Qeadan, F. & Shuttleworth, C. W. Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J. Neurosurg. 130, 1–7 (2018).

    Google Scholar 

  190. Hoydonckx, Y., McKechnie, T., Peer, M., Englesakis, M. & Kumar, P. A systematic review of the efficacy of ketamine for craniofacial pain. Can. J. Pain 7, 2210167 (2023).

    PubMed  PubMed Central  Google Scholar 

  191. Afridi, S. K., Giffin, N. J., Kaube, H. & Goadsby, P. J. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology 80, 642–647 (2013).

    PubMed  CAS  Google Scholar 

  192. Etchison, A. R. et al. Low-dose ketamine does not improve migraine in the emergency department: a randomized placebo-controlled trial. West. J. Emerg. Med. 19, 952–960 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Benish, T. et al. The THINK (Treatment of Headache with Intranasal Ketamine) trial: a randomized controlled trial comparing intranasal ketamine with intravenous metoclopramide. J. Emerg. Med. 56, 248–257 e241 (2019).

    PubMed  Google Scholar 

  194. Coste, J., Voisin, D. L., Luccarini, P. & Dallel, R. A role for wind-up in trigeminal sensory processing: intensity coding of nociceptive stimuli in the rat. Cephalalgia 28, 631–639 (2008).

    PubMed  CAS  Google Scholar 

  195. Eide, P. K. Wind-up and the NMDA receptor complex from a clinical perspective. Eur. J. Pain 4, 5–15 (2000).

    PubMed  CAS  Google Scholar 

  196. Parsons, C. G., Stoffler, A. & Danysz, W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system-too little activation is bad, too much is even worse. Neuropharmacology 53, 699–723 (2007).

    PubMed  CAS  Google Scholar 

  197. Peeters, M. et al. Effects of pan- and subtype-selective N-methyl-d-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J. Pharmacol. Exp. Ther. 321, 564–572 (2007).

    PubMed  CAS  Google Scholar 

  198. Reinhart, K. M., Humphrey, A., Brennan, K. C., Carlson, A. P. & Shuttleworth, C. W. Memantine improves recovery after spreading depolarization in brain slices and can be considered for future clinical trials. Neurocrit. Care 35, 135–145 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  199. Noruzzadeh, R. et al. Memantine for prophylactic treatment of migraine without aura: a randomized double-blind placebo-controlled study. Headache 56, 95–103 (2016).

    PubMed  Google Scholar 

  200. Shanmugam, S., Karunaikadal, K., Varadarajan, S. & Krishnan, M. Memantine ameliorates migraine headache. Ann. Indian Acad. Neurol. 22, 286–290 (2019).

    PubMed  PubMed Central  Google Scholar 

  201. Zhou, T., Tang, Y. & Zhu, H. Effectiveness and safety of memantine for headache: a meta-analysis of randomized controlled studies. Clin. Neuropharmacol. 45, 40–44 (2022).

    PubMed  CAS  Google Scholar 

  202. Peikert, A., Wilimzig, C. & Kohne-Volland, R. Prophylaxis of migraine with oral magnesium: results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalalgia 16, 257–263 (1996).

    PubMed  CAS  Google Scholar 

  203. Wang, F. et al. Oral magnesium oxide prophylaxis of frequent migrainous headache in children: a randomized, double-blind, placebo-controlled trial. Headache 43, 601–610 (2003).

    PubMed  Google Scholar 

  204. van der Hel, W. S., van den Bergh, W. M., Nicolay, K., Tulleken, K. A. & Dijkhuizen, R. M. Suppression of cortical spreading depressions after magnesium treatment in the rat. Neuroreport 9, 2179–2182 (1998).

    PubMed  Google Scholar 

  205. Hallak, M., Berman, R. F., Irtenkauf, S. M., Evans, M. I. & Cotton, D. B. Peripheral magnesium sulfate enters the brain and increases the threshold for hippocampal seizures in rats. Am. J. Obstet. Gynecol. 167, 1605–1610 (1992).

    PubMed  CAS  Google Scholar 

  206. Ghabriel, M. N. & Vink, R. in Magnesium in the Central Nervous System (eds R. Vink & M. Nechifor) (Univ. Adelaide Press, 2011).

  207. Bigal, M. E., Bordini, C. A., Tepper, S. J. & Speciali, J. G. Intravenous magnesium sulphate in the acute treatment of migraine without aura and migraine with aura. A randomized, double-blind, placebo-controlled study. Cephalalgia 22, 345–353 (2002).

    PubMed  CAS  Google Scholar 

  208. Steiner, T. J., Findley, L. J. & Yuen, A. W. Lamotrigine versus placebo in the prophylaxis of migraine with and without aura. Cephalalgia 17, 109–112 (1997).

    PubMed  CAS  Google Scholar 

  209. Silberstein, S., Goode-Sellers, S., Twomey, C., Saiers, J. & Ascher, J. Randomized, double-blind, placebo-controlled, phase II trial of gabapentin enacarbil for migraine prophylaxis. Cephalalgia 33, 101–111 (2013).

    PubMed  Google Scholar 

  210. Hoffmann, U., Dilekoz, E., Kudo, C. & Ayata, C. Gabapentin suppresses cortical spreading depression susceptibility. J. Cereb. Blood Flow Metab. 30, 1588–1592 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  211. Smith, M. I. et al. Repetitive cortical spreading depression in a gyrencephalic feline brain: inhibition by the novel benzoylamino-benzopyran SB-220453. Cephalalgia 20, 546–553 (2000).

    PubMed  CAS  Google Scholar 

  212. Hauge, A. W., Asghar, M. S., Schytz, H. W., Christensen, K. & Olesen, J. Effects of tonabersat on migraine with aura: a randomised, double-blind, placebo-controlled crossover study. Lancet Neurol. 8, 718–723 (2009).

    PubMed  CAS  Google Scholar 

  213. Tassorelli, C. et al. Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study. Neurology 91, e364–e373 (2018).

    PubMed  PubMed Central  Google Scholar 

  214. Martelletti, P. et al. Consistent effects of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: additional findings from the randomized, sham-controlled, double-blind PRESTO trial. J. Headache Pain 19, 101 (2018).

    PubMed  PubMed Central  Google Scholar 

  215. Grazzi, L. et al. Practical and clinical utility of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: a post hoc analysis of the randomized, sham-controlled, double-blind PRESTO trial. J. Headache Pain 19, 98 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Diener, H. C. et al. Non-invasive vagus nerve stimulation (nVNS) for the preventive treatment of episodic migraine: the multicentre, double-blind, randomised, sham-controlled PREMIUM trial. Cephalalgia 39, 1475–1487 (2019).

    PubMed  PubMed Central  Google Scholar 

  217. Chen, S. P. et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain 157, 797–805 (2016).

    PubMed  PubMed Central  Google Scholar 

  218. Liu, T. T. et al. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J. Headache Pain 23, 12 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Morais, A. et al. Vagus nerve stimulation inhibits cortical spreading depression exclusively through central mechanisms. Pain 161, 1661–1669 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  220. Andreou, A. P. et al. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain 139, 2002–2014 (2016).

    PubMed  PubMed Central  Google Scholar 

  221. Lloyd, J. O. et al. Cortical mechanisms of single-pulse transcranial magnetic stimulation in migraine. Neurotherapeutics 17, 1973–1987 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  222. Lloyd, J. O. et al. Single-pulse transcranial magnetic stimulation for the preventive treatment of difficult-to-treat migraine: a 12-month prospective analysis. J. Headache Pain 23, 63 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  223. Starling, A. J. et al. A multicenter, prospective, single arm, open label, observational study of sTMS for migraine prevention (ESPOUSE Study). Cephalalgia 38, 1038–1048 (2018).

    PubMed  PubMed Central  Google Scholar 

  224. Lipton, R. B. et al. Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol. 9, 373–380 (2010).

    PubMed  Google Scholar 

  225. Misra, U. K., Kalita, J. & Bhoi, S. K. High-rate repetitive transcranial magnetic stimulation in migraine prophylaxis: a randomized, placebo-controlled study. J. Neurol. 260, 2793–2801 (2013).

    PubMed  Google Scholar 

  226. Leahu, P. et al. Increased migraine-free intervals with multifocal repetitive transcranial magnetic stimulation. Brain Stimul. 14, 1544–1552 (2021).

    PubMed  Google Scholar 

  227. Ayata, C. Spreading depression: from serendipity to targeted therapy in migraine prophylaxis. Cephalalgia 29, 1095–1114 (2009).

    PubMed  CAS  Google Scholar 

  228. Takizawa, T., Ayata, C. & Chen, S. P. Therapeutic implications of cortical spreading depression models in migraine. Prog. Brain Res. 255, 29–67 (2020).

    PubMed  Google Scholar 

  229. Ayata, C. Pearls and pitfalls in experimental models of spreading depression. Cephalalgia 33, 604–613 (2013).

    PubMed  Google Scholar 

  230. Morais, A., Qin, T., Ayata, C. & Harriott, A. M. Inhibition of persistent sodium current reduces spreading depression-evoked allodynia in a mouse model of migraine with aura. Pain 164, 2564–2571 (2023).

    PubMed  CAS  Google Scholar 

  231. Harriott, A. M., Kaya, M. & Ayata, C. Oxytocin shortens spreading depolarization-induced periorbital allodynia. J. Headache Pain 25, 152 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  232. Harriott, A. M. et al. The effect of sex and estrus cycle stage on optogenetic spreading depression induced migraine-like pain phenotypes. J. Headache Pain 24, 85 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  233. Harriott, A. M., Takizawa, T., Chung, D. Y. & Chen, S. P. Spreading depression as a preclinical model of migraine. J. Headache Pain 20, 45 (2019).

    PubMed  PubMed Central  Google Scholar 

  234. Tuttle, A. H. et al. A deep neural network to assess spontaneous pain from mouse facial expressions. Mol. Pain 14, 1744806918763658 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Andrea M. Harriott.

Ethics declarations

Competing interests

A.M.H. serves on the board of directors for the Headache Cooperative of New England, the American Migraine Foundation and the American Headache Society, and has received compensation from Abbvie and Theranica for participation on scientific advisory boards. C.A. declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks A. Andreou, T. Dalkara, D. Pietrobon, M. Shibata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harriott, A.M., Ayata, C. Spreading depolarization as a therapeutic target in migraine. Nat Rev Neurol 21, 529–543 (2025). https://doi.org/10.1038/s41582-025-01128-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01128-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing