Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuronal ceroid lipofuscinosis: underlying mechanisms and emerging therapeutic targets

Abstract

The neuronal ceroid lipofuscinoses (NCLs), more commonly known as Batten disease, are a group of fatal inherited neurodegenerative lysosomal storage disorders. Each form is caused by mutations in a different gene, resulting in lysosomal dysfunction, which, by largely unknown mechanisms, has a devastating impact on the central nervous system. The NCLs are grouped together owing to their broadly shared clinical presentations and the presence of autofluorescent storage material. Nevertheless, being caused by deficiencies in dissimilar proteins, marked differences are apparent between NCLs in their clinical presentation and pathology. The effects of disease are not confined to neurons and appear unrelated to autofluorescent storage material, with glial cells also affected. The rest of the body is also affected, with life-limiting disease in the bowel and effects on other body systems, which will also require treatment for maximal therapeutic benefit. Since the development of enzyme replacement therapy for CLN2 disease, much has been learnt about the practicalities of its delivery. Considerable progress has also been made in the understanding of NCL cell biology, disease pathogenesis and potential links to other disorders. Here, we highlight these advances and how they inform the ongoing development of therapeutic strategies and their future prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nature and subcellular location of proteins that, when deficient, cause individual forms of NCL.
Fig. 2: Different routes by which experimental therapies for neuronal ceroid lipofuscinoses can be delivered.
Fig. 3: Presence of disease outside the brain and spinal cord in neuronal ceroid lipofuscinoses.

Similar content being viewed by others

References

  1. Kohlschütter, A., Schulz, A., Bartsch, U. & Storch, S. Current and emerging treatment strategies for neuronal ceroid lipofuscinoses. CNS Drugs 33, 315–325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mole, S. E. et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 18, 107–116 (2019).

    Article  PubMed  Google Scholar 

  3. Johnson, T. B. et al. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat. Rev. Neurol. 15, 161–178 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Augustine, E. F. et al. Management of CLN1 disease: International clinical consensus. Pediatr. Neurol. 120, 38–51 (2021).

    Article  PubMed  Google Scholar 

  5. Mole, S. E. et al. Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients. Orphanet J. Rare Dis. 16, 185 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ostergaard, J. R. Juvenile neuronal ceroid lipofuscinosis (Batten disease): current insights. Degener. Neurol. Neuromuscul. Dis. 6, 73–83 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, G. W., Goebel, H. H. & Simonati, A. Human pathology in NCL. Biochim. Biophys. Acta 1832, 1807–1826 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Tyynelä, J., Cooper, J. D., Khan, M. N., Shemilt, S. J. & Haltia, M. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol. 14, 349–357 (2004).

    Article  PubMed  Google Scholar 

  9. Hachiya, Y. et al. Mechanisms of neurodegeneration in neuronal ceroid-lipofuscinoses. Acta Neuropathol. 111, 168–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Radke, J., Stenzel, W. & Goebel, H. H. Human NCL neuropathology. Biochim. Biophys. Acta 1852, 2262–2266 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Markham, A. Cerliponase alfa: first global approval. Drugs 77, 1247–1249 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Schulz, A. et al. CLN2 study group. Study of intraventricular cerliponase alfa for CLN2 disease. N. Engl. J. Med. 378, 1898–1907 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Batten, F. E. Cerebral degeneration with symmetrical changes in the maculae in two members of a family. Trans. Ophthalmol. Soc. UK 23, 386–390 (1903).

    Google Scholar 

  14. Stengel, O. C. Beretning om et maerkeligt Sygdomstilfaelde hos fire Sødskende I Nærheden af Röraas. Eyr 1, 347–352 (1826).

    Google Scholar 

  15. Brean, A. An account of a strange instance of disease-Stengel-Batten-Spielmayer-Vogt disease. Tidsskr. Nor. Laegeforen. 124, 970–971 (2004).

    PubMed  Google Scholar 

  16. Haltia, M. & Goebel, H. H. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim. Biophys. Acta 1832, 1795–17800 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, R. E. & Mole, S. E. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology 79, 183–191 (2012).

    Article  PubMed  Google Scholar 

  18. Zeman, W. & Dyken, P. Neuronal ceroid-lipofuscinosis (Batten’s disease): relationship to amaurotic family idiocy? Pediatrics 44, 570–583 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Seehafer, S. S. & Pearce, D. A. You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol. Aging 27, 576–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Vesa, J. et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376, 584–587 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Sleat, D. E. et al. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science 277, 1802–1805 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Lerner, T. J. et al. Isolation of a novel gene underlying Batten disease, CLN3. Cell 82, 949–957 (1995).

    Article  Google Scholar 

  23. Schulz, A. et al. Impaired cell adhesion and apoptosis in a novel CLN9 Batten disease variant. Ann. Neurol. 56, 342–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Savukoski, M. et al. CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat. Genet. 19, 286–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Wheeler, R. B. et al. The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am. J. Hum. Genet. 70, 537–542 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kousi, M. et al. Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis. Brain 132, 810–819 (2009).

    Article  PubMed  Google Scholar 

  27. Ranta, S. et al. The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat. Genet. 23, 233–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Siintola, E. et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129, 1438–1445 (2006).

    Article  PubMed  Google Scholar 

  29. Canafoglia, L. et al. Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia 55, e56–e59 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Bras, J., Verloes, A., Schneider, S. A., Mole, S. E. & Guerreiro, R. J. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum. Mol. Genet. 21, 2646–2650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith, K. R. et al. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 22, 1417–1423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Staropoli, J. F. et al. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am. J. Hum. Genet. 91, 202–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neufeld, E. F. & Muenzer, J. In: The Online Metabolic and Molecular Bases of Inherited Disease (ed. Valle, D. L. et al.) (McGraw Hill, 2019).

  34. Platt, F. M., Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).

    Article  PubMed  Google Scholar 

  35. Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatol 50, v4–v12 (2011).

    Article  CAS  Google Scholar 

  36. McBride, K. L. & Flanigan, K. M. Update in the mucopolysaccharidoses. Semin. Pediatr. Neurol. 37, 100874 (2021).

    Article  PubMed  Google Scholar 

  37. di Ronza, A. et al. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat. Cell Biol. 20, 1370–1377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bajaj, L. et al. A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J. Clin. Invest. 130, 4118–4132 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Parenti, G., Medina, D. L. & Ballabio, A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol. Med. 13, e12836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nosková, L. et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am. J. Hum. Genet. 89, 241–252 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Benitez, B. A. et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One 6, e26741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sands, M. S. & Davidson, B. L. Gene therapy for lysosomal storage diseases. Mol. Ther. 13, 839–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Neufeld, E. F. & Fratantoni, J. C. Inborn errors of mucopolysaccharide metabolism. Science 169, 141–146 (1970).

    Article  CAS  PubMed  Google Scholar 

  44. Kornfeld, S. Lysosomal enzyme targeting. Biochem. Soc. Trans. 18, 367–374 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Kornfeld, S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu. Rev. Biochem. 61, 307–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Chang, M. et al. Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol. Ther. 16, 649–656 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, S. et al. Large-volume intrathecal enzyme delivery increases survival of a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol. Ther. 19, 1842–1848 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wiseman, J. A. et al. Chronic enzyme replacement to the brain of a late infantile neuronal ceroid lipofuscinosis mouse has differential effects on phenotypes of disease. Mol. Ther. Methods Clin. Dev. 4, 204–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katz, M. L. et al. Enzyme replacement therapy attenuates disease progression in a canine model of late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). J. Neurosci. Res. 92, 1591–1598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vuillemenot, B. R. et al. Nonclinical evaluation of CNS-administered TPP1 enzyme replacement in canine CLN2 neuronal ceroid lipofuscinosis. Mol. Genet. Metab. 114, 281–293 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, J. et al. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol. Genet. Metab. 107, 213–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu, J. Y. et al. Intrathecal enzyme replacement therapy improves motor function and survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol. Genet. Metab. 116, 98–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Nelvagal, H. R. et al. Cross-species efficacy of enzyme replacement therapy for CLN1 disease in mice and sheep. J. Clin. Invest. 132, e163107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Griffey, M. A. et al. Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol. Dis. 16, 360–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Griffey, M., Macauley, S. L., Ogilvie, J. M. & Sands, M. S. AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol. Ther. 12, 413–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Griffey, M. A. et al. CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol. Ther. 13, 538–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Macauley, S. L. et al. Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Ann. Neurol. 71, 797–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roberts, M. S. et al. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J. Inherit. Metab. Dis. 35, 847–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macauley, S. L. et al. An anti-neuroinflammatory that targets dysregulated glia enhances the efficacy of CNS-directed gene therapy in murine infantile neuronal ceroid lipofuscinosis. J. Neurosci. 34, 13077–13082 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shyng, C. et al. Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc. Natl Acad. Sci. USA 114, E5920–E5929 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Passini, M. A. et al. Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J. Neurosci. 26, 1334–1342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sondhi, D. et al. AAV2-mediated CLN2 gene transfer to rodent and non-human primate brain results in long-term TPP-I expression compatible with therapy for LINCL. Gene Ther. 12, 1618–1632 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Cabrera-Salazar, M. A. et al. Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile Batten disease. Mol. Ther. 15, 1782–1788 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Sondhi, D. et al. Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis. Exp. Neurol. 213, 18–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Katz, M. L. et al. AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease. Sci. Transl. Med. 7, 313ra180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Takahashi, K. et al. Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model. J. Clin. Invest. 133, e165908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tecedor, L. et al. An AAV variant selected through NHP screens robustly transduces the brain and drives secreted protein expression in NHPs and mice. Sci. Transl. Med. 17, eadr2531 (2025).

    Article  CAS  PubMed  Google Scholar 

  69. Mitchell, N. L. et al. Longitudinal in vivo monitoring of the CNS demonstrates the efficacy of gene therapy in a sheep model of CLN5 Batten disease. Mol. Ther. 26, 2366–2378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitchell, N. L. et al. Long-term safety and dose escalation of intracerebroventricular CLN5 gene therapy in sheep supports clinical translation for CLN5 Batten disease. Front. Genet. 14, 1212228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murray, S. J. et al. Magnetic resonance imaging as a readout of CLN5 gene therapy efficacy in sheep. Brain Behav. 15, e70431 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Murray, S. J. et al. Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease. Exp. Eye Res. 207, 108600 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Murray, S. J. et al. Efficacy of dual intracerebroventricular and intravitreal CLN5 gene therapy in sheep prompts the first clinical trial to treat CLN5 Batten disease. Front. Pharmacol. 14, 1212235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sondhi, D. et al. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene. Hum. Gene Ther. 25, 223–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Bosch, M. E. et al. Self-complementary AAV9 gene delivery partially corrects pathology associated with juvenile neuronal ceroid lipofuscinosis (CLN3). J. Neurosci. 36, 9669–9682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleine et al. Gene therapy targeting the inner retina rescues the retinal phenotype in a mouse model of CLN3 Batten disease. Hum. Gene Ther. 31, 709–718 (2020).

    Article  Google Scholar 

  77. Johnson, T. B. et al. Early postnatal administration of an AAV9 gene therapy is safe and efficacious in CLN3 disease. Front. Genet. 14, 1118649 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ziółkowska, E. A. et al. Gene therapy ameliorates neuromuscular pathology in CLN3 disease. Acta Neuropathol. Commun. 13, 160 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kleine et al. Prevention of photoreceptor cell loss in a Cln6nclf mouse model of Batten disease requires CLN6 gene transfer to bipolar cells. Mol. Ther. 26, 1343–1353 (2018).

    Article  Google Scholar 

  80. Kleine et al. Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease. Hum. Mol. Genet. 28, 3867–3879 (2019).

    Article  Google Scholar 

  81. Cain, J. T. et al. Gene therapy corrects brain and behavioral pathologies in CLN6-Batten disease. Mol. Ther. 27, 1836–1847 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. White, K. A. et al. Intracranial delivery of AAV9 gene therapy partially prevents retinal degeneration and visual deficits in CLN6-Batten disease mice. Mol. Ther. Methods Clin. Dev. 20, 497–507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, X. et al. AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease. J. Clin. Invest. 132, e146286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Donsante, A. et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Sabatino, D. E. et al. Evaluating the state of the science for adeno-associated virus integration: an integrated perspective. Mol. Ther. 30, 2646–2663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Centa, J. L. et al. Therapeutic efficacy of antisense oligonucleotides in mouse models of CLN3 Batten disease. Nat. Med. 26, 1444–1451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zebronkysen. Fore Batten Foundation https://www.forebatten.org/zebronkysen (2024).

  89. Pineda, M., Walterfang, M. & Patterson, M. C. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J. Rare Dis. 13, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05174039 (2024).

  91. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Palmieri, M. et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun. 8, 14338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lotfi, P. et al. Trehalose reduces retinal degeneration, neuroinflammation and storage burden caused by a lysosomal hydrolase deficiency. Autophagy 14, 1419–1434 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Soldati, C. et al. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol. Med. 13, e13742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Seehafer, S. S. et al. Immunosuppression alters disease severity in juvenile Batten disease mice. J. Neuroimmunol. 230, 169–172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Groh, J., Berve, K. & Martini, R. Fingolimod and teriflunomide attenuate neurodegeneration in mouse models of neuronal ceroid lipofuscinosis. Mol. Ther. 25, 1889–1899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tarczyluk-Wells, M. A. et al. Combined anti-inflammatory and neuroprotective treatments have the potential to impact disease phenotypes in Cln3 -/- mice. Front. Neurol. 10, 963 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kovács, A. D. et al. Temporary inhibition of AMPA receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease. Neuropharmacology 60, 405–409 (2011).

    Article  PubMed  Google Scholar 

  99. Kovács, A. D. et al. Age-dependent therapeutic effect of memantine in a mouse model of juvenile Batten disease. Neuropharmacology 63, 769–775 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Aldrich, A. et al. Efficacy of phosphodiesterase-4 inhibitors in juvenile Batten disease (CLN3). Ann. Neurol. 80, 909–923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ghosh, A., Rangasamy, S. B., Modi, K. K. & Pahan, K. Gemfibrozil, food and drug administration-approved lipid-lowering drug, increases longevity in mouse model of late infantile neuronal ceroid lipofuscinosis. J. Neurochem. 141, 423–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sarkar, C. et al. Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. Nat. Neurosci. 16, 1608–1617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Levin, S. W. et al. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: a pilot study. Lancet Neurol. 13, 777–787 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nickel, M. et al. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: an observational Cohort study. Lancet Child Adolesc. Health 2, 582–590 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schulz, A. et al. Real-world clinical outcomes of patients with CLN2 disease treated with cerliponase alfa. Front. Neurol. 16, 1516026 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schulz, A. et al. Safety and efficacy of cerliponase alfa in children with neuronal ceroid lipofuscinosis type 2 (CLN2 disease): an open-label extension study. Lancet Neurol. 23, 60–70 (2024).

    Article  CAS  PubMed  Google Scholar 

  107. Gaur, P. et al. Enzyme replacement therapy for CLN2 disease: MRI volumetry shows significantly slower volume loss compared with a natural history cohort. AJNR Am. J. Neuroradiol. 45, 1791–1797 (2024).

    Article  PubMed  Google Scholar 

  108. Schwering, C. et al. Development of the “Hamburg best practice guidelines for ICV-enzyme replacement therapy (ERT) in CLN2 disease” based on 6 years treatment experience in 48 patients. J. Child Neurol. 36, 635–641 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schwering, C. et al. Therapeutic management of COVID-19 in a pediatric patient with neurodegenerative CLN2 disease and ICV-enzyme replacement therapy: a case report. Neuropediatrics 53, 381–384 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Dulz, S. et al. Ongoing retinal degeneration despite intraventricular enzyme replacement therapy with cerliponase alfa in late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2 disease). Br. J. Ophthalmol. 107, 1478–1483 (2023).

    Article  PubMed  Google Scholar 

  111. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05152914 (2024).

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05791864 (2023).

  113. Paushter, D. H. et al. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 136, 1–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jian, J., Hettinghouse, A. & Liu, C. J. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes. Genes Dis. 4, 125–126 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Laqtom, N. N. et al. CLN3 is required for the clearance of glycerophosphodiesters from lysosomes. Nature 609, 1005–1011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Saarela, D. et al. Tagless LysoIP for immunoaffinity enrichment of native lysosomes from clinical samples. J. Clin. Invest. 135, e183592 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nyame, K. et al. Glycerophosphodiesters inhibit lysosomal phospholipid catabolism in Batten disease. Mol. Cell. 84, 1354–1364.e9 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Medoh, U. N. et al. The Batten disease gene product CLN5 is the lysosomal bis(monoacylglycero)phosphate synthase. Science 381, 1182–1189 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Danyukova, T. et al. Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation. Hum. Mol. Genet. 27, 1711–1722 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huber, R. J., Mathavarajah, S. & Yap, S. Q. Mfsd8 localizes to endocytic compartments and influences the secretion of Cln5 and cathepsin D in dictyostelium. Cell Signal. 70, 109572 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Jansen, M. & Beaumelle, B. How palmitoylation affects trafficking and signaling of membrane receptors. Biol. Cell. 114, 61–72 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Jin, J., Zhi, X., Wang, X. & Meng, D. Protein palmitoylation and its pathophysiological relevance. J. Cell Physiol. 236, 3220–3233 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Ramzan, F., Abrar, F., Mishra, G. G., Qi Liao, L. M. & Martin, D. D. O. Lost in traffic: consequences of altered palmitoylation in neurodegeneration. Front. Physiol. 14, 1166125 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Petropavlovskiy, A. A., Kogut, J. A., Leekha, A., Townsend, C. A. & Sanders, S. S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal. 5, NS20210005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hayashi, T. Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br. J. Pharmacol. 178, 784–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Tong, J. et al. GABAAR-PPT1 palmitoylation homeostasis controls synaptic transmission and circuitry oscillation. Transl. Psychiatry 14, 488 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Plavelil, N. et al. Defective anterograde protein-trafficking contributes to endoplasmic reticulum-stress in a CLN1 disease model. Neurobiol. Dis. 209, 106890 (2025).

    Article  CAS  PubMed  Google Scholar 

  129. Bagh, M. B. et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat. Commun. 8, 14612 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bagh, M. B. et al. Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease. J. Biol. Chem. 300, 105641 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Appu, A. P. et al. Niemann Pick C1 mistargeting disrupts lysosomal cholesterol homeostasis contributing to neurodegeneration in a Batten disease model. Sci. Adv. 11, eadr5703 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Barker, E. et al. Proximity labelling reveals effects of disease-causing mutation on the DNAJC5/cysteine string protein α interactome. Biochem. J. 481, 141–160 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Gorenberg, E. L. et al. Identification of substrates of palmitoyl protein thioesterase 1 highlights roles of depalmitoylation in disulfide bond formation and synaptic function. PLoS Biol. https://doi.org/10.1371/journal.pbio.3001590 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dang, T. et al. ATP13A2 protects dopaminergic neurons in Parkinson’s disease: from biology to pathology. J. Biomed. Res. 36, 98–108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. van Veen, S. et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419–424 (2020).

    Article  PubMed  Google Scholar 

  136. Sharma, J. et al. Calpain activity is negatively regulated by a KCTD7-Cullin-3 complex via non-degradative ubiquitination. Cell Discov. 9, 32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, Y. et al. KCTD7 mutations impair the trafficking of lysosomal enzymes through CLN5 accumulation to cause neuronal ceroid lipofuscinoses. Sci. Adv. 8, eabm5578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Palmer, D. N., Barry, L. A., Tyynelä, J. & Cooper, J. D. NCL disease mechanisms. Biochim. Biophys. Acta 1832, 1882–1893 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Cooper, J. D., Tarczyluk, M. A. & Nelvagal, H. R. Towards a new understanding of NCL pathogenesis. Biochim. Biophys. Acta 1852, 2256–2261 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Nelvagal, H. R., Lange, J., Takahashi, K., Tarczyluk-Wells, M. A. & Cooper, J. D. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165570 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Takahashi, K., Nelvagal, H. R., Lange, J. & Cooper, J. D. Glial dysfunction and its contribution to the pathogenesis of the neuronal ceroid lipofuscinoses. Front. Neurol. 13, 886567 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cooper, J. D., Messer, A., Feng, A. K., Chua-Couzens, J. & Mobley, W. C. Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin-like growth factor-1 treatment. J. Neurosci. 19, 2556–2567 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chattopadhyay, S. et al. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum. Mol. Genet. 11, 1421–1431 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Pontikis, C. C. et al. Late onset neurodegeneration in the Cln3-/- mouse model of juvenile neuronal ceroid lipofuscinosis is preceded by low level glial activation. Brain Res. 1023, 231–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Kopra, O. et al. A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging. Hum. Mol. Genet. 13, 2893–2906 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Pontikis, C. C., Cotman, S. L., MacDonald, M. E. & Cooper, J. D. Thalamocortical neuron loss and localized astrocytosis in the Cln3Deltaex7/8 knock-in mouse model of Batten disease. Neurobiol. Dis. 20, 823–836 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Kielar, C. et al. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol. Dis. 25, 150–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Oswald, M. J., Palmer, D. N., Kay, G. W., Barwell, K. J. & Cooper, J. D. Location and connectivity determine GABAergic interneuron survival in the brains of south Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis. Neurobiol. Dis. 32, 50–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Partanen, S. et al. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis. J. Neuropathol. Exp. Neurol. 67, 16–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Morgan, J. P. et al. A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease. PLoS One 8, e78694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Singh, Y. et al. Loss of Cln5 leads to altered Gad1 expression and deficits in interneuron development in mice. Hum. Mol. Genet. 28, 3309–3322 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Takahashi, K. et al. GABAergic interneurons contribute to the fatal seizure phenotype of CLN2 disease mice. JCI Insight https://doi.org/10.1172/jci.insight.184487 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Macauley, S. L. et al. Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse. Exp. Neurol. 217, 124–135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Groh, J. et al. Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain 136, 1083–1101 (2013).

    Article  PubMed  Google Scholar 

  155. Bible, E., Gupta, P., Hofmann, S. L. & Cooper, J. D. Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol. Dis. 16, 346–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Weimer, J. M. et al. Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis. Brain Res. 1266, 93–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Weimer, J. M. et al. Alterations in striatal dopamine catabolism precede loss of substantia nigra neurons in a mouse model of juvenile neuronal ceroid lipofuscinosis. Brain Res. 1162, 98–112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Weimer, J. M. et al. Visual deficits in a mouse model of Batten disease are the result of optic nerve degeneration and loss of dorsal lateral geniculate thalamic neurons. Neurobiol. Dis. 22, 284–293 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Nelvagal, H. R., Dearborn, J. T., Ostergaard, J. R., Sands, M. S. & Cooper, J. D. Spinal manifestations of CLN1 disease start during the early postnatal period. Neuropathol. Appl. Neurobiol. 47, 251–267 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Ostergaard, J. R., Nelvagal, H. R. & Cooper, J. D. Top-down and bottom-up propagation of disease in the neuronal ceroid lipofuscinoses. Front. Neurol. 11, 1061363 (2022).

    Article  Google Scholar 

  161. Gomez-Giro, G. et al. Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathol. Commun. 30, 222 (2019).

    Article  Google Scholar 

  162. Ahrens-Nicklas, R. C. et al. Neuronal genetic rescue normalizes brain network dynamics in a lysosomal storage disorder despite persistent storage accumulation. Mol. Ther. 6, 2464–2473 (2022).

    Article  Google Scholar 

  163. Lange, J. et al. Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. Acta Neuropathol. Commun. 6, 74 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Parviainen, L. et al. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol. Commun. 5, 74 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bosch, M. E. & Kielian, T. Astrocytes in juvenile neuronal ceroid lipofuscinosis (CLN3) display metabolic and calcium signaling abnormalities. J. Neurochem. 148, 612–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Burkovetskaya, M. et al. Evidence for aberrant astrocyte hemichannel activity in juvenile neuronal ceroid lipofuscinosis (JNCL). PLoS One 9, 95023 (2014).

    Article  Google Scholar 

  167. Xiong, J. & Kielian, T. Microglia in juvenile neuronal ceroid lipofuscinosis are primed toward a pro-inflammatory phenotype. J. Neurochem. 127, 245–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Yasa, S. et al. Loss of CLN3 in microglia leads to impaired lipid metabolism and myelin turnover. Commun. Biol. 7, 1373 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Berve, K., West, B. L., Martini, R. & Groh, J. Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice. J. Neuroinflammation. 28, 323 (2020).

    Article  Google Scholar 

  170. Macauley, S. L., Pekny, M. & Sands, M. S. The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J. Neurosci. 26, 15575–15585 (2011).

    Article  Google Scholar 

  171. Zhang, X. et al. Seizures in PPT1 Knock-in mice are associated with inflammatory activation of microglia. Int. J. Mol. Sci. 17, 5586 (2022).

    Article  Google Scholar 

  172. Groh, J. et al. Sialoadhesin promotes neuroinflammation-related disease progression in two mouse models of CLN disease. Glia 64, 792–809 (2016).

    Article  PubMed  Google Scholar 

  173. Groh, J., Berve, K. & Martini, R. Immune modulation attenuates infantile neuronal ceroid lipofuscinosis in mice before and after disease onset. Brain Commun. 21, fcab047 (2021).

    Article  Google Scholar 

  174. Haltia, M., Rapola, J. & Santavuori, P. Infantile type of so-called neuronal ceroid-lipofuscinosis. Histological and electron microscopic studies. Acta Neuropathol. 11, 157–170 (1973).

    Article  Google Scholar 

  175. Rapola, J. & Haltia, M. Cytoplasmic inclusions in the vermiform appendix and skeletal muscle in two types of so-called neuronal ceroid-lipofuscinosis. Brain 96, 833–840 (1973).

    Article  CAS  PubMed  Google Scholar 

  176. Galvin, N. et al. A murine model of infantile neuronal ceroid lipofuscinosis-ultrastructural evaluation of storage in the central nervous system and viscera. Pediatr. Dev. Pathol. 11, 185–192 (2008).

    Article  PubMed  Google Scholar 

  177. Katz, M. L. et al. Extraneuronal pathology in a canine model of CLN2 neuronal ceroid lipofuscinosis after intracerebroventricular gene therapy that delays neurological disease progression. Gene Ther. 24, 215–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ostergaard, J. R., Rasmussen, T. B. & Mølgaard, H. Cardiac involvement in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology 76, 1245–1251 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Rietdorf, K. et al. Cardiac pathology in neuronal ceroid lipofuscinoses (NCL): more than a mere co-morbidity. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165643 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Ostergaard, J. R. Paroxysmal sympathetic hyperactivity in juvenile neuronal ceroid lipofuscinosis (Batten disease). Auton. Neurosci. 214, 15–18 (2018).

    Article  PubMed  Google Scholar 

  181. Handrup, M. M., Mølgaard, H., Andersen, B. N. & Ostergaard, J. R. Pacemaker implantation in juvenile neuronal ceroid lipofuscinosis (CLN3)-a long-term follow-up study. Front. Neurol. 13, 846240 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Baekmann, C. et al. Insight of autonomic dysfunction in CLN3 disease: a study on episodes resembling paroxysmal sympathetic hyperactivity (PSH). Orphanet J. Rare Dis. 19, 374 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ostergaard, J. R. Etiology of anxious and fearful behavior in juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Front. Psychiatry 14, 1059082 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Barney, C. C., Hoch, J., Byiers, B., Dimian, A. & Symons, F. J. A case-controlled investigation of pain experience and sensory function in neuronal ceroid lipofuscinosis. Clin. J. Pain. 31, 998–1003 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Mannerkoski, M. K., Heiskala, H. J., Santavuori, P. R. & Pouttu, J. A. Transdermal fentanyl therapy for pains in children with infantile neuronal ceroid lipofuscinosis. Eur. J. Paediatr. Neurol. 5, 175–177 (2001).

    Article  PubMed  Google Scholar 

  186. Santavuori, P. et al. Psychological symptoms and sleep disturbances in neuronal ceroid-lipofuscinoses (NCL). J. Inher. Metab. Dis. 16, 245–248 (1993).

    Article  CAS  PubMed  Google Scholar 

  187. Bosch-Queralt, M., Fledrich, R. & Stassart, R. M. Schwann cell functions in peripheral nerve development and repair. Neurobiol. Dis. 176, 105952 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Santosa, K. B., Keane, A. M., Jablonka-Shariff, A., Vannucci, B. & Snyder-Warwick, A. K. Clinical relevance of terminal Schwann cells: an overlooked component of the neuromuscular junction. J. Neurosci. Res. 96, 1125–1135 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hastings, R. L. & Valdez, G. Origin, identity, and function of terminal Schwann cells. Trends Neurosci. 47, 432–446 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ziółkowska, E. A. et al. Gene therapy prevents bowel dysmotility, enteric neuron degeneration and extends survival in lysosomal storage disorder mouse models. Sci. Transl. Med. 17, 1445 (2025).

    Article  Google Scholar 

  191. Ziółkowska, E. A. et al. Enteric nervous system degeneration in human and murine CLN3 disease, is ameliorated by gene therapy in mice. Preprint at bioRxiv https://doi.org/10.1101/2025.01.29.635518 (2025).

  192. Shacka, J. J. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res. Bull. 1, 43–57 (2012).

    Article  Google Scholar 

  193. Minnis, C. J., Thornton, C. D., FitzPatrick, L. M. & McKay, T. R. Cellular models of Batten disease. Biochim. Biophys. Acta Mol. Basis Dis. 1, 165559 (2020).

    Article  Google Scholar 

  194. Nittari, G. et al. Batten disease through different in vivo and in vitro models: a review. J. Neurosci. Res. 101, 298–315 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Dwojak, E. et al. Six induced pluripotent stem cell lines from fibroblasts of individuals with CLN3-related conditions. Stem Cell Res. 81, 103563 (2024).

    Article  CAS  PubMed  Google Scholar 

  196. Otero, M. G. et al. Cellular modeling of CLN6 with IPSC-derived neurons and glia. Preprint at bioRxiv https://doi.org/10.1101/2024.01.29.577876 (2024).

  197. Ofrim, M. et al. Characterization of two human induced pluripotent stem cell lines derived from Batten disease patient fibroblasts harbouring CLN5 mutations. Stem Cell Res. 74, 103291 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. Bossolasco, P. et al. GRN-/- iPSC-derived cortical neurons recapitulate the pathological findings of both frontotemporal lobar degeneration and neuronal ceroidolipofuscinosis. Neurobiol. Dis. 175, 105891 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Uusi-Rauva, K. et al. Induced pluripotent stem cells derived from a CLN5 patient manifest phenotypic characteristics of neuronal ceroid lipofuscinoses. Int. J. Mol. Sci. 1, 955 (2017).

    Article  Google Scholar 

  200. Lojewski, X. et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum. Mol. Genet. 23, 2005–2022 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Kinarivala, N. et al. An iPSC-derived neuron model of CLN3 disease facilitates small molecule phenotypic screening. ACS Pharmacol. Transl. Sci. 3, 931–947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mikulka, C. R. et al. Cell-autonomous expression of the acid hydrolase galactocerebrosidase. Proc. Natl Acad. Sci. USA 21, 9032–9041 (2020).

    Article  Google Scholar 

  203. Eaton, S. L. & Wishart, T. M. Bridging the gap: large animal models in neurodegenerative research. Mamm. Genome 28, 324–337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Katz, M. L. et al. Canine neuronal ceroid lipofuscinoses: promising models for preclinical testing of therapeutic interventions. Neurobiol. Dis. 108, 277–287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Murray, S. J. & Mitchell, N. L. The translational benefits of sheep as large animal models of human neurological disorders. Front. Vet. Sci. 15, 831838 (2022).

    Article  Google Scholar 

  206. Mitchell, N. L., Russell, K. N., Barrell, G. K., Tammen, I. & Palmer, D. N. Characterization of neuropathology in ovine CLN5 and CLN6 neuronal ceroid lipofuscinoses (Batten disease). Dev. Neurobiol. 83, 127–142 (2023).

    Article  CAS  PubMed  Google Scholar 

  207. Murray, S. J. et al. Progressive MRI brain volume changes in ovine models of CLN5 and CLN6 neuronal ceroid lipofuscinosis. Brain Commun. 2, fcac339 (2023).

    Google Scholar 

  208. Kay, G. W., Palmer, D. N., Rezaie, P. & Cooper, J. D. Activation of non-neuronal cells within the prenatal developing brain of sheep with neuronal ceroid lipofuscinosis. Brain Pathol. 16, 110–116 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Oswald, M. J. et al. Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6). Neurobiol. Dis. 20, 49–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Amorim, I. S. et al. Molecular neuropathology of the synapse in sheep with CLN5 Batten disease. Brain Behav. 9, e00401 (2015).

    Article  Google Scholar 

  211. Frugier, T. et al. A new large animal model of CLN5 neuronal ceroid lipofuscinosis in Borderdale sheep is caused by a nucleotide substitution at a consensus splice site (c.571+1G>A) leading to excision of exon 3. Neurobiol. Dis. 29, 306–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Munesue, Y. et al. Cynomolgus macaque model of neuronal ceroid lipofuscinosis type 2 disease. Exp. Neurol. 363, 114381 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. McBride, J. L. et al. Discovery of a CLN7 model of Batten disease in non-human primates. Neurobiol. Dis. 119, 65–78 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Swier, V. J. et al. A novel porcine model of CLN2 Batten disease that recapitulates patient phenotypes. Neurotherapeutics 19, 1905–1919 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Knoernschild, K. et al. Magnetic resonance brain volumetry biomarkers of CLN2 Batten disease identified with miniswine model. Sci. Rep. 29, 5146 (2023).

    Article  Google Scholar 

  216. Swier, V. J. et al. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis. Model. Mech. 1, dmm050038 (2023).

    Article  Google Scholar 

  217. Eaton, S. L. et al. CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci. Rep. 9, 9891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Eaton, S. L. et al. Modelling neurological diseases in large animals: criteria for model selection and clinical assessment. Cells 11, 2641 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Iwan, K. et al. Urine proteomics analysis of patients with neuronal ceroid lipofuscinoses. iScience 31, 102020 (2020).

    Google Scholar 

  220. Brudvig, J. J. et al. Glycerophosphoinositol is elevated in blood samples from CLN3Δex7-8 pigs, Cln3Δex7-8 mice, and CLN3-affected individuals. Biomark. Insights 17, 11772719221107765 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Velinov, M. et al. Mutations in the gene DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry family and 8 other families. PLoS One 7, 29729 (2012).

    Article  Google Scholar 

  222. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 22, 1651–1661 (2009).

    Article  Google Scholar 

  223. Gan-Or, Z. et al. The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease. Neurology 23, 1606–1610 (2013).

    Article  Google Scholar 

  224. Michelakakis, H. et al. Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson’s disease. Mov. Disord. 27, 400–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Li, G. et al. Association of GALC, ZNF184, IL1R2 and ELOVL7 with Parkinson’s disease in southern Chinese. Front. Aging Neurosci. 13, 402 (2018).

    Article  Google Scholar 

  226. Lopergolo, D. et al. Familial Alzheimer’s disease associated with heterozygous NPC1 mutation. J. Med. Genet. 21, 332–339 (2024).

    Article  Google Scholar 

  227. Suire, C. N. et al. Cathepsin D regulates cerebral Aβ42/40 ratios via differential degradation of Aβ42 and Aβ40. Alzheimers Res. Ther. 6, 80 (2020).

    Article  Google Scholar 

  228. Ntais, C., Polycarpou, A. & Ioannidis, J. P. Meta-analysis of the association of the cathepsin D Ala224Val gene polymorphism with the risk of Alzheimer’s disease: a HuGE gene-disease association review. Am. J. Epidemiol. 15, 527–536 (2004).

    Article  Google Scholar 

  229. Solé-Domènech, S. et al. Lysosomal enzyme tripeptidyl peptidase 1 destabilizes fibrillar Aβ by multiple endoproteolytic cleavages within the β-sheet domain. Proc. Natl Acad. Sci. Usa. 13, 1493–1498 (2018).

    Article  Google Scholar 

  230. Benitez, B. A. et al. Haploinsufficiency of lysosomal enzyme genes in Alzheimer’s disease. Preprint at bioRxiv https://doi.org/10.1101/2024.11.16.623962 (2024).

  231. Gupta, P. et al. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc. Natl Acad. Sci. USA 98, 13566–13571 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Miller, J. N., Kovács, A. D. & Pearce, D. A. The novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Hum. Mol. Genet. 24, 185–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  233. Jalanko, A. et al. Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons. Neurobiol. Dis. 18, 226–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Sanders, D. N. et al. A mutation in canine PPT1 causes early onset neuronal ceroid lipofuscinosis in a Dachshund. Mol. Genet. Metab. 100, 349–356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kolicheski, A. et al. Homozygous PPT1 splice donor mutation in a cane corso dog with neuronal ceroid lipofuscinosis. J. Vet. Intern. Med. 31, 149–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Sleat, D. E. et al. A mouse model of classical late-infantile neuronal ceroid lipofuscinosis based on targeted disruption of the CLN2 gene results in a loss of tripeptidyl-peptidase I activity and progressive neurodegeneration. J. Neurosci. 24, 9117–9126 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Geraets, R. D. et al. A tailored mouse model of CLN2 disease: a nonsense mutant for testing personalized therapies. PLoS One 12, e0176526 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Awano, T. et al. A frame shift mutation in canine TPP1 (the ortholog of human CLN2) in a juvenile Dachshund with neuronal ceroid lipofuscinosis. Mol. Genet. Metab. 89, 254–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  239. Mahmood, F. et al. A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation. Brain 136, 1488–1507 (2013).

    Article  PubMed  Google Scholar 

  240. Mitchison, H. M. et al. Targeted disruption of the Cln3 gene provides a mouse model for Batten disease. The Batten mouse model consortium [corrected]. Neurobiol. Dis. 6, 321–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  241. Katz, M. L. et al. A mouse gene knockout model for juvenile ceroid-lipofuscinosis (Batten disease). J. Neurosci. Res. 57, 551–556 (1999).

    Article  CAS  PubMed  Google Scholar 

  242. Cotman, S. L. et al. Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth. Hum. Mol. Genet. 11, 2709–2721 (2002).

    Article  CAS  PubMed  Google Scholar 

  243. Heins-Marroquin, U. et al. CLN3 deficiency leads to neurological and metabolic perturbations during early development. Life Sci. Alliance 7, e202302057 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wager, K. et al. Neurodegeneration and epilepsy in a zebrafish model of CLN3 disease (Batten disease). PLoS One 11, e0157365 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  245. López-Begines, S. et al. Neuronal lipofuscinosis caused by Kufs disease/CLN4 DNAJC5 mutations but not by a CSPα/DNAJC5 deficiency. Sci. Adv. 11, eads3393 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Melville, S. A. et al. A mutation in canine CLN5 causes neuronal ceroid lipofuscinosis in border collie dogs. Genomics 86, 287–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  247. Kolicheski, A. et al. Australian cattle dogs with neuronal ceroid lipofuscinosis are homozygous for a CLN5 nonsense mutation previously identified in border collies. J. Vet. Intern. Med. 30, 1149–1158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Gilliam, D. et al. Golden retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5. Mol. Genet. Metab. 115, 101–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Houweling, P. J. et al. Neuronal ceroid lipofuscinosis in Devon cattle is caused by a single base duplication (c.662dupG) in the bovine CLN5 gene. Biochim. Biophys. Acta 1762, 890–897 (2006).

    Article  CAS  PubMed  Google Scholar 

  250. Bronson, R. T. et al. Neuronal ceroid lipofuscinosis (nclf), a new disorder of the mouse linked to chromosome 9. Am. J. Med. Genet. 77, 289–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  251. Jolly, R. D. et al. Ceroid-lipofuscinosis (Batten’s disease): pathogenesis and sequential neuropathological changes in the ovine model. Neuropathol. Appl. Neurobiol. 15, 371–383 (1989).

    Article  CAS  PubMed  Google Scholar 

  252. Katz, M. L. et al. O’Brien DP. A missense mutation in canine CLN6 in an Australian shepherd with neuronal ceroid lipofuscinosis. J. Biomed. Biotechnol. 2011, 198042 (2011).

    PubMed  Google Scholar 

  253. Brandenstein, L., Schweizer, M., Sedlacik, J., Fiehler, J. & Storch, S. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum. Mol. Genet. 25, 777–791 (2016).

    Article  CAS  PubMed  Google Scholar 

  254. Ashwini, A. et al. Neuronal ceroid lipofuscinosis associated with an MFSD8 mutation in Chihuahuas. Mol. Genet. Metab. 118, 326–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Faller, K. M. et al. The Chihuahua dog: a new animal model for neuronal ceroid lipofuscinosis CLN7 disease? J. Neurosci. Res. 94, 339–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Katz, M. L. et al. A mutation in the CLN8 gene in English Setter dogs with neuronal ceroid-lipofuscinosis. Biochem. Biophys. Res. Commun. 327, 541–547 (2005).

    Article  CAS  PubMed  Google Scholar 

  257. Guo, J. et al. A CLN8 nonsense mutation in the whole genome sequence of a mixed breed dog with neuronal ceroid lipofuscinosis and Australian shepherd ancestry. Mol. Genet. Metab. 112, 302–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  258. Guo, J. et al. Neuronal ceroid lipofuscinosis in a German shorthaired pointer associated with a previously reported CLN8 nonsense variant. Mol. Genet. Metab. Rep. 21, 100521 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Saftig, P. et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 14, 3599–3608 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Awano, T. et al. A mutation in the cathepsin D gene (CTSD) in American bulldogs with neuronal ceroid lipofuscinosis. Mol. Genet. Metab. 87, 341–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  261. Tyynelä, J. et al. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 19, 2786–2792 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Hafler, B. P., Klein, Z. A., Jimmy Zhou, Z. & Strittmatter, S. M. Progressive retinal degeneration and accumulation of autofluorescent lipopigments in progranulin deficient mice. Brain Res. 1588, 168–174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Schultheis, P. J. et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Hum. Mol. Genet. 22, 2067–2082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Farias, F. H. et al. A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol. Dis. 42, 468–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  265. Liang, J. H. et al. Kctd7 deficiency induces myoclonic seizures associated with purkinje cell death and microvascular defects. Dis. Model. Mech. 15, dmm049642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work is inspired by families affected by Batten disease, and this manuscript is dedicated to them and their children. We would also like to thank the many talented individuals from our labs who have contributed so much to our research efforts. We also thank A. Barnwell for constructive comments on the manuscript. Studies in our laboratories were funded by many sources, including NIH grants R56 NS117635, R01 NS124655, R01 NS140682, R21 NS116574, R21 NS126907 and RM1 NS132962 (to J.D.C.). Foundation support was obtained from the Batten Disease Support Research and Advocacy Foundation (BDSRA Foundation), Batten Disease Family Association (BDFA), Batten Disease Global Research Initiative, Beyond Batten Disease Foundation, Children’s Brain Diseases Foundation, Fore Batten Foundation, Haley’s Heroes, Lehrman Family Fund, Noah’s Hope/Hope for Bridget and The Natalie Fund.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. All authors contributed substantially to discussion of the content. J.D.C. wrote the first draft of the article but all authors reviewed and/or substantially edited the manuscript before submission.

Corresponding author

Correspondence to Jonathan D. Cooper.

Ethics declarations

Competing interests

J.D.C. has received research support from Abeona Therapeutics Inc., BioMarin Pharmaceutical Inc., Neurogene, and REGENXBIO Inc. and is a consultant for JCR Pharmaceuticals. The remaining authors declare no conflicts of interest.

Peer review

Peer review information

Nature Reviews Neurology thanks Paul Gissen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Batten Disease Support Research and Advocacy Foundation (BDSRA Foundation): https://bdsrafoundation.org

The NCL Resource - A gateway for Batten disease: https://www.ucl.ac.uk/ncl-disease/ncl-resource-gateway-batten-disease

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziółkowska, E.A., Takahashi, K., Dickson, P.I. et al. Neuronal ceroid lipofuscinosis: underlying mechanisms and emerging therapeutic targets. Nat Rev Neurol (2025). https://doi.org/10.1038/s41582-025-01132-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41582-025-01132-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing