Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Parkinson disease is a fatty acidopathy

Abstract

On the basis of extensive mechanistic research over three decades, Parkinson disease (PD) and related synucleinopathies have been proposed to be combined proteinopathies and lipidopathies. Evidence strongly supports a physiological and pathogenic interplay between the disease-associated protein α-synuclein and lipids, with a demonstrable role for lipids in modulating PD phenotypes in the brain. Here, we refine this hypothesis by proposing PD to be a disease specifically involving metabolic dysregulation of fatty acids, a ‘fatty acidopathy’. We review extensive findings from many laboratories supporting the perspective that PD centres on fatty acid dyshomeostasis — alterations in the fatty acid-ome — as the critical feature of lipid aberration in PD and other α-synucleinopathies. This construct places transient α-synuclein binding to fatty acid side chains of cytoplasmic vesicles as a principal contributor to the biology of PD-relevant α-synuclein–membrane interactions. We propose that α-synuclein–fatty acid interactions in the fatty acid-rich brain are interdependent determinants of the gradual progression from neuronal health to PD, with attendant therapeutic implications.

Key points

  • Parkinson disease (PD) and related α-synucleinopathies have increasingly been considered lipidopathies as well as proteinopathies.

  • Extensive evidence reviewed herein supports both physiological and pathogenic interplay between α-synuclein and fatty acids as determinants of progression from neuronal health to PD.

  • α-Synuclein homeostasis is affected by membrane fatty acid composition, and dysregulated fatty acid metabolism alters transient α-synuclein membrane binding, including at synaptic vesicles.

  • We propose that PD is a fatty acidopathy, with fatty acid side chain dyshomeostasis being a chief contributor to lipid aberrations in synucleinopathies.

  • The fatty acid-ome holds promise for identifying and validating PD biomarkers and therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: α-Synuclein–membrane interactions.
Fig. 2: α-Synuclein–membrane binding influences neurotransmitter release.
Fig. 3: Parkinson disease is a fatty acidopathy.

Similar content being viewed by others

References

  1. Fanning, S., Selkoe, D. & Dettmer, U. Parkinson’s disease: proteinopathy or lipidopathy? npj Parkinsons Dis. 6, 3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fanning, S., Selkoe, D. & Dettmer, U. Vesicle trafficking and lipid metabolism in synucleinopathy. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02177-z (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Flores-Leon, M. & Outeiro, T. F. More than meets the eye in Parkinson’s disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol. 146, 369–385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klemann, C. et al. Integrated molecular landscape of Parkinson’s disease. npj Parkinsons Dis. 3, 14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Moors, T. E. et al. The subcellular arrangement of α-synuclein proteoforms in the Parkinson’s disease brain as revealed by multicolor STED microscopy. Acta Neuropathol. https://doi.org/10.1007/s00401-021-02329-9 (2021).

  7. Roy, S. & Wolman, L. Ultrastructural observations in Parkinsonism. J. Pathol. 99, 39–44 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Forno, L. S. & Norville, R. L. Ultrastructure of Lewy bodies in the stellate ganglion. Acta Neuropathol. 34, 183–197 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Dickson, D. W. et al. Diffuse Lewy body disease: light and electron microscopic immunocytochemistry of senile plaques. Acta Neuropathol. 78, 572–584 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Moors, T. E. & Milovanovic, D. Defining a Lewy body: running up the hill of shifting definitions and evolving concepts. J. Parkinsons Dis. 14, 17–33 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bodner, C. R., Dobson, C. M. & Bax, A. Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 390, 775–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bodner, C. R., Maltsev, A. S., Dobson, C. M. & Bax, A. Differential phospholipid binding of α-synuclein variants implicated in Parkinson’s disease revealed by solution NMR spectroscopy. Biochemistry 49, 862–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Ruiperez, V., Darios, F. & Davletov, B. Alpha-synuclein, lipids and Parkinson’s disease. Prog. Lipid Res. 49, 420–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Stockl, M., Fischer, P., Wanker, E. & Herrmann, A. α-Synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. J. Mol. Biol. 375, 1394–1404 (2008).

    Article  PubMed  Google Scholar 

  15. Westphal, C. H. & Chandra, S. S. Monomeric synucleins generate membrane curvature. J. Biol. Chem. 288, 1829–1840 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Runwal, G. & Edwards, R. H. The membrane interactions of synuclein: physiology and pathology. Annu. Rev. Pathol. 16, 465–485 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Fanning, S. et al. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol. Cell 73, 1001–1014.e8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Golovko, M. Y. et al. α-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of α-synuclein palmitate binding. Biochemistry 44, 8251–8259 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Golovko, M. Y., Rosenberger, T. A., Feddersen, S., Faergeman, N. J. & Murphy, E. J. α-Synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J. Neurochem. 101, 201–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Rappley, I. et al. Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with α-synuclein genotype. J. Neurochem. 111, 15–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Golovko, M. Y. et al. Acyl-CoA synthetase activity links wild-type but not mutant α-synuclein to brain arachidonate metabolism. Biochemistry 45, 6956–6966 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Barcelo-Coblijn, G., Golovko, M. Y., Weinhofer, I., Berger, J. & Murphy, E. J. Brain neutral lipids mass is increased in α-synuclein gene-ablated mice. J. Neurochem. 101, 132–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Jove, M., Pradas, I., Dominguez-Gonzalez, M., Ferrer, I. & Pamplona, R. Lipids and lipoxidation in human brain aging. Mitochondrial ATP-synthase as a key lipoxidation target. Redox Biol. 23, 101082 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. O’Brien, J. S. & Sampson, E. L. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6, 545–551 (1965).

    Article  PubMed  Google Scholar 

  26. O’Brien, J. S. & Sampson, E. L. Lipid composition of the normal human brain: gray matter, white matter, and myelin. J. Lipid Res. 6, 537–544 (1965).

    Article  PubMed  Google Scholar 

  27. Di Pardo, A. & Maglione, V. The S1P axis: new exciting route for treating Huntington’s disease. Trends Pharmacol. Sci. 39, 468–480 (2018).

    Article  PubMed  Google Scholar 

  28. Block, R. C., Dorsey, E. R., Beck, C. A., Brenna, J. T. & Shoulson, I. Altered cholesterol and fatty acid metabolism in Huntington disease. J. Clin. Lipidol. 4, 17–23 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Foley, P. Lipids in Alzheimer’s disease: a century-old story. Biochim. Biophys. Acta 1801, 750–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Morgado, I. & Garvey, M. Lipids in amyloid-β processing, aggregation, and toxicity. Adv. Exp. Med. Biol. 855, 67–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. van Wijk, N. et al. Nutrients required for phospholipid synthesis are lower in blood and cerebrospinal fluid in mild cognitive impairment and Alzheimer’s disease dementia. Alzheimers Dement. (Amst.) 8, 139–146 (2017).

    Article  PubMed  Google Scholar 

  32. Trimbuch, T. et al. Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling. Cell 138, 1222–1235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Etschmaier, K. et al. Adipose triglyceride lipase affects triacylglycerol metabolism at brain barriers. J. Neurochem. 119, 1016–1028 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sastry, P. S. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24, 69–176 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Burre, J. The synaptic function of α-synuclein. J. Parkinsons Dis. 5, 699–713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bussell, R. Jr & Eliezer, D. A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J. Mol. Biol. 329, 763–778 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Clayton, D. F. & George, J. M. Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 120–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Lorenzen, N., Lemminger, L., Pedersen, J. N., Nielsen, S. B. & Otzen, D. E. The N-terminus of alpha-synuclein is essential for both monomeric and oligomeric interactions with membranes. FEBS Lett. 588, 497–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Blauwendraat, C. et al. Insufficient evidence for pathogenicity of SNCA His50Gln (H50Q) in Parkinson’s disease. Neurobiol. Aging 64, 159 e155–159.e8 (2018).

    Article  Google Scholar 

  40. Kruger, R. et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Lesage, S. et al. G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Proukakis, C. et al. A novel alpha-synuclein missense mutation in Parkinson disease. Neurology 80, 1062–1064 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zarranz, J. J. et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Appel-Cresswell, S. et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 28, 811–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Assayag, K., Yakunin, E., Loeb, V., Selkoe, D. J. & Sharon, R. Polyunsaturated fatty acids induce alpha-synuclein-related pathogenic changes in neuronal cells. Am. J. Pathol. 171, 2000–2011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiechle, M., Grozdanov, V. & Danzer, K. M. The role of lipids in the initiation of alpha-synuclein misfolding. Front. Cell Dev. Biol. 8, 562241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Galvagnion, C. The role of lipids interacting with alpha-synuclein in the pathogenesis of Parkinson’s disease. J. Parkinsons Dis. 7, 433–450 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Fecchio, C. et al. alpha-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity. PLoS ONE 8, e82732 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lokappa, S. B. et al. Sequence and membrane determinants of the random coil–helix transition of alpha-synuclein. J. Mol. Biol. 426, 2130–2144 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Man, W. K. et al. The docking of synaptic vesicles on the presynaptic membrane induced by alpha-synuclein is modulated by lipid composition. Nat. Commun. 12, 927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kubo, S. et al. A combinatorial code for the interaction of alpha-synuclein with membranes. J. Biol. Chem. 280, 31664–31672 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Beyer, K. Mechanistic aspects of Parkinson’s disease: alpha-synuclein and the biomembrane. Cell Biochem. Biophys. 47, 285–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. O’Leary, E. I. & Lee, J. C. Interplay between alpha-synuclein amyloid formation and membrane structure. Biochim. Biophys. Acta Proteins Proteom. 1867, 483–491 (2019).

    Article  PubMed  Google Scholar 

  55. Alza, N. P., Iglesias Gonzalez, P. A., Conde, M. A., Uranga, R. M. & Salvador, G. A. Lipids at the crossroad of alpha-synuclein function and dysfunction: biological and pathological implications. Front. Cell Neurosci. 13, 175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sharon, R. et al. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37, 583–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sharon, R. et al. alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl Acad. Sci. USA 98, 9110–9115 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lucke, C., Gantz, D. L., Klimtchuk, E. & Hamilton, J. A. Interactions between fatty acids and alpha-synuclein. J. Lipid Res. 47, 1714–1724 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Karube, H. et al. N-terminal region of alpha-synuclein is essential for the fatty acid-induced oligomerization of the molecules. FEBS Lett. 582, 3693–3700 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, G. F., Li, C. & Pielak, G. J. 19F NMR studies of alpha-synuclein–membrane interactions. Protein Sci. 19, 1686–1691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ali, A., Holman, A. P., Rodriguez, A., Osborne, L. & Kurouski, D. Elucidating the mechanisms of alpha-synuclein–lipid interactions using site-directed mutagenesis. Neurobiol. Dis. 198, 106553 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ali, A., Zhaliazka, K., Dou, T., Holman, A. P. & Kurouski, D. The toxicities of A30P and A53T alpha-synuclein fibrils can be uniquely altered by the length and saturation of fatty acids in phosphatidylserine. J. Biol. Chem. 299, 105383 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perrin, R. J., Woods, W. S., Clayton, D. F. & George, J. M. Interaction of human α-synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J. Biol. Chem. 275, 34393–34398 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Rhoades, E., Ramlall, T. F., Webb, W. W. & Eliezer, D. Quantification of α-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys. J. 90, 4692–4700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jo, E., McLaurin, J., Yip, C. M., St George-Hyslop, P. & Fraser, P. E. α-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34328–34334 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Brummel, B. E., Braun, A. R. & Sachs, J. N. Polyunsaturated chains in asymmetric lipids disorder raft mixtures and preferentially associate with α-synuclein. Biochim. Biophys. Acta Biomembr. 1859, 529–536 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Harayama, T. & Shimizu, T. Roles of polyunsaturated fatty acids, from mediators to membranes. J. Lipid Res. 61, 1150–1160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perrin, R. J., Woods, W. S., Clayton, D. F. & George, J. M. Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J. Biol. Chem. 276, 41958–41962 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Broersen, K., van den Brink, D., Fraser, G., Goedert, M. & Davletov, B. α-Synuclein adopts an α-helical conformation in the presence of polyunsaturated fatty acids to hinder micelle formation. Biochemistry 45, 15610–15616 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Burre, J., Sharma, M. & Sudhof, T. C. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl Acad. Sci. USA 111, E4274–E4283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Manna, M. & Murarka, R. K. Polyunsaturated fatty acid modulates membrane-bound monomeric α-synuclein by modulating membrane microenvironment through preferential interactions. ACS Chem. Neurosci. 12, 675–688 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Tyoe, O., Aryal, C. & Diao, J. Docosahexaenoic acid promotes vesicle clustering mediated by α-synuclein via electrostatic interaction. Eur. Phys. J. E Soft Matter 46, 96 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bothun, G. D., Boltz, L., Kurniawan, Y. & Scholz, C. Cooperative effects of fatty acids and n-butanol on lipid membrane phase behavior. Colloids Surf. B Biointerfaces 139, 62–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Maulucci, G. et al. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic. Res. 50, S40–S50 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Fredriksen, K. et al. Pathological α-syn aggregation is mediated by glycosphingolipid chain length and the physiological state of α-syn in vivo. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2108489118 (2021).

  76. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Chia, R. et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat. Genet. 53, 294–303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mizuta, I. et al. Multiple candidate gene analysis identifies α-synuclein as a susceptibility gene for sporadic Parkinson’s disease. Hum. Mol. Genet. 15, 1151–1158 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 1303–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Edwards, T. L. et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 49, 1511–1516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nuber, S. et al. A brain-penetrant stearoyl-CoA desaturase inhibitor reverses α-synuclein toxicity. Neurotherapeutics 19, 1018–1036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nuber, S. et al. A stearoyl-coenzyme A desaturase inhibitor prevents multiple Parkinson disease phenotypes in α-synuclein mice. Ann. Neurol. 89, 74–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Vincent, B. M. et al. Inhibiting stearoyl-CoA desaturase ameliorates α-synuclein cytotoxicity. Cell Rep. 25, 2742–2754.e31 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Raja, W. K. et al. Patient-derived three-dimensional cortical neurospheres to model Parkinson’s disease. PLoS ONE 17, e0277532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fanning, S. et al. Lipase regulation of cellular fatty acid homeostasis as a Parkinson’s disease therapeutic strategy. npj Parkinsons Dis. 8, 74 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Imberdis, T. et al. Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearoyl-CoA desaturase. Proc. Natl Acad. Sci. USA 116, 20760–20769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nicholatos, J. W. et al. SCD inhibition protects from α-synuclein-induced neurotoxicity but is toxic to early neuron cultures. eNeuro https://doi.org/10.1523/ENEURO.0166-21.2021 (2021).

  94. Tripathi, A. et al. Pathogenic mechanisms of cytosolic and membrane-enriched α-synuclein converge on fatty acid homeostasis. J. Neurosci. 42, 2116–2130 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Castagnet, P. I., Golovko, M. Y., Barcelo-Coblijn, G. C., Nussbaum, R. L. & Murphy, E. J. Fatty acid incorporation is decreased in astrocytes cultured from α-synuclein gene-ablated mice. J. Neurochem. 94, 839–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Golovko, M. Y. et al. The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol. Cell. Biochem. 326, 55–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Kawahata, I. & Fukunaga, K. Pathogenic impact of fatty acid-binding proteins in Parkinson’s disease-potential biomarkers and therapeutic targets. Int. J. Mol. Sci. https://doi.org/10.3390/ijms242317037 (2023).

  98. Mollenhauer, B. et al. Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: marker candidates for dementia with Lewy bodies. Neurodegener. Dis. 4, 366–375 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kawahata, I., Sekimori, T., Oizumi, H., Takeda, A. & Fukunaga, K. Using fatty acid-binding proteins as potential biomarkers to discriminate between Parkinson’s disease and dementia with Lewy bodies: exploration of a novel technique. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241713267 (2023).

  100. Wada-Isoe, K., Imamura, K., Kitamaya, M., Kowa, H. & Nakashima, K. Serum heart-fatty acid binding protein levels in patients with Lewy body disease. J. Neurol. Sci. 266, 20–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Teunissen, C. E. et al. Brain-specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur. J. Neurol. 18, 865–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Backstrom, D. C. et al. Cerebrospinal fluid patterns and the risk of future dementia in early, incident Parkinson disease. JAMA Neurol. 72, 1175–1182 (2015).

    Article  PubMed  Google Scholar 

  103. Basso, M. et al. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4, 3943–3952 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Fukui, N. et al. An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3. J. Biol. Chem. 296, 100663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shioda, N. et al. FABP3 protein promotes α-synuclein oligomerization associated with 1-methyl-1,2,3,6-tetrahydropiridine-induced neurotoxicity. J. Biol. Chem. 289, 18957–18965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yabuki, Y. et al. Fatty acid binding protein 3 enhances the spreading and toxicity of α-synuclein in mouse brain. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21062230 (2020).

  107. Oizumi, H. et al. Fatty acid-binding protein 3 expression in the brain and skin in human synucleinopathies. Front. Aging Neurosci. 13, 648982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheng, A. et al. Fatty acid-binding protein 7 triggers α-synuclein oligomerization in glial cells and oligodendrocytes associated with oxidative stress. Acta Pharmacol. Sin. 43, 552–562 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Cheng, A., Jia, W., Kawahata, I. & Fukunaga, K. Impact of fatty acid-binding proteins in α-synuclein-induced mitochondrial injury in synucleinopathy. Biomedicines https://doi.org/10.3390/biomedicines9050560 (2021).

  110. Matsuo, K. et al. Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice. Neuropharmacology 150, 164–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Bartels, T., Choi, J. G. & Selkoe, D. J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Middleton, E. R. & Rhoades, E. Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys. J. 99, 2279–2288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dettmer, U., Newman, A. J., von Saucken, V. E., Bartels, T. & Selkoe, D. KTKEGV repeat motifs are key mediators of normal α-synuclein tetramerization: their mutation causes excess monomers and neurotoxicity. Proc. Natl Acad. Sci. USA 112, 9596–9601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dettmer, U. et al. Loss of native α-synuclein multimerization by strategically mutating its amphipathic helix causes abnormal vesicle interactions in neuronal cells. Hum. Mol. Genet. 26, 3466–3481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dettmer, U. et al. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat. Commun. 6, 7314 (2015).

    Article  PubMed  Google Scholar 

  116. Dettmer, U., Newman, A. J., Luth, E. S., Bartels, T. & Selkoe, D. In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells. J. Biol. Chem. 288, 6371–6385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, W. et al. A soluble α-synuclein construct forms a dynamic tetramer. Proc. Natl Acad. Sci. USA 108, 17797–17802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nuber, S. et al. Abrogating native α-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson’s disease. Neuron 100, 75–90.e75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fonseca-Ornelas, L. et al. Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons. npj Parkinsons Dis. 8, 118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Glajch, K. E. et al. Wild-type GBA1 increases the α-synuclein tetramer–monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2103425118 (2021).

  121. Kim, S. et al. GBA1 deficiency negatively affects physiological α-synuclein tetramers and related multimers. Proc. Natl Acad. Sci. USA 115, 798–803 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. de Boni, L. et al. Brain region-specific susceptibility of Lewy body pathology in synucleinopathies is governed by α-synuclein conformations. Acta Neuropathol. 143, 453–469 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wang, L. et al. α-Synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol. 24, 2319–2326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fauvet, B. et al. α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J. Biol. Chem. 287, 15345–15364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee, H. J., Choi, C. & Lee, S. J. Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J. Biol. Chem. 277, 671–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Zhu, M., Li, J. & Fink, A. L. The association of α-synuclein with membranes affects bilayer structure, stability, and fibril formation. J. Biol. Chem. 278, 40186–40197 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Dikiy, I. & Eliezer, D. Folding and misfolding of α-synuclein on membranes. Biochim. Biophys. Acta 1818, 1013–1018 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Cui, H., Lyman, E. & Voth, G. A. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys. J. 100, 1271–1279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jensen, M. B. et al. Membrane curvature sensing by amphipathic helices: a single liposome study using α-synuclein and annexin B12. J. Biol. Chem. 286, 42603–42614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nuscher, B. et al. α-Synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study. J. Biol. Chem. 279, 21966–21975 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Rovere, M. et al. E46K-like α-synuclein mutants increase lipid interactions and disrupt membrane selectivity. J. Biol. Chem. 294, 9799–9812 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Clayton, D. F. & George, J. M. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Pranke, I. M. et al. α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J. Cell Biol. 194, 89–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fusco, G. et al. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat. Commun. 5, 3827 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Ouberai, M. M. et al. α-Synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling. J. Biol. Chem. 288, 20883–20895 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Varkey, J. et al. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J. Biol. Chem. 285, 32486–32493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mizuno, N. et al. Remodeling of lipid vesicles into cylindrical micelles by α-synuclein in an extended α-helical conformation. J. Biol. Chem. 287, 29301–29311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jiang, Z., de Messieres, M. & Lee, J. C. Membrane remodeling by α-synuclein and effects on amyloid formation. J. Am. Chem. Soc. 135, 15970–15973 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Shi, Z., Sachs, J. N., Rhoades, E. & Baumgart, T. Biophysics of α-synuclein induced membrane remodelling. Phys. Chem. Chem. Phys. 17, 15561–15568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Braun, A. R., Lacy, M. M., Ducas, V. C., Rhoades, E. & Sachs, J. N. α-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry. J. Am. Chem. Soc. 136, 9962–9972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Madine, J., Doig, A. J. & Middleton, D. A. A study of the regional effects of α-synuclein on the organization and stability of phospholipid bilayers. Biochemistry 45, 5783–5792 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Peeters, B. W. A., Piet, A. C. A. & Fornerod, M. Generating membrane curvature at the nuclear pore: a lipid point of view. Cells https://doi.org/10.3390/cells11030469 (2022).

  143. McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Adamczyk, A., Kacprzak, M. & Kazmierczak, A. α-Synuclein decreases arachidonic acid incorporation into rat striatal synaptoneurosomes. Folia Neuropathol. 45, 230–235 (2007).

    CAS  PubMed  Google Scholar 

  145. Sharon, R., Bar-Joseph, I., Mirick, G. E., Serhan, C. N. & Selkoe, D. J. Altered fatty acid composition of dopaminergic neurons expressing α-synuclein and human brains with α-synucleinopathies. J. Biol. Chem. 278, 49874–49881 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Jo, E., Fuller, N., Rand, R. P., St George-Hyslop, P. & Fraser, P. E. Defective membrane interactions of familial Parkinson’s disease mutant A30P α-synuclein. J. Mol. Biol. 315, 799–807 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Choi, W. et al. Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Lett. 576, 363–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Fiske, M. et al. Familial Parkinson’s disease mutant E46K α-synuclein localizes to membranous structures, forms aggregates, and induces toxicity in yeast models. ISRN Neurol. 2011, 521847 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kiely, A. P. et al. Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Mol. Neurodegener. 10, 41 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Fares, M. B. et al. The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum. Mol. Genet. 23, 4491–4509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Perlmutter, J. D., Braun, A. R. & Sachs, J. N. Curvature dynamics of α-synuclein familial Parkinson disease mutants: molecular simulations of the micelle- and bilayer-bound forms. J. Biol. Chem. 284, 7177–7189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tsigelny, I. F. et al. Molecular determinants of α-synuclein mutants’ oligomerization and membrane interactions. ACS Chem. Neurosci. 6, 403–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Maroteaux, L., Campanelli, J. T. & Scheller, R. H. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804–2815 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Busch, D. J. et al. Acute increase of α-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation. Mol. Biol. Cell 25, 3926–3941 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Snead, D. & Eliezer, D. α-Synuclein function and dysfunction on cellular membranes. Exp. Neurobiol. 23, 292–313 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. George, J. M., Jin, H., Woods, W. S. & Clayton, D. F. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Lautenschlager, J. et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat. Commun. 9, 712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Burre, J., Sharma, M. & Sudhof, T. C. Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J. Neurosci. 32, 15227–15242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burre, J. et al. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yoo, G., Yeou, S., Son, J. B., Shin, Y. K. & Lee, N. K. Cooperative inhibition of SNARE-mediated vesicle fusion by α-synuclein monomers and oligomers. Sci. Rep. 11, 10955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kaur, U. & Lee, J. C. Unroofing site-specific α-synuclein–lipid interactions at the plasma membrane. Proc. Natl Acad. Sci. USA 117, 18977–18983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lou, X., Kim, J., Hawk, B. J. & Shin, Y. K. α-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking. Biochem. J. 474, 2039–2049 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Lai, Y. et al. Nonaggregated α-synuclein influences SNARE-dependent vesicle docking via membrane binding. Biochemistry 53, 3889–3896 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Diao, J. et al. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. eLife 2, e00592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. DeWitt, D. C. & Rhoades, E. α-Synuclein can inhibit SNARE-mediated vesicle fusion through direct interactions with lipid bilayers. Biochemistry 52, 2385–2387 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Nemani, V. M. et al. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sulzer, D. & Edwards, R. H. The physiological role of α-synuclein and its relationship to Parkinson’s Disease. J. Neurochem. 150, 475–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bridi, J. C. & Hirth, F. Mechanisms of α-synuclein induced synaptopathy in Parkinson’s disease. Front. Neurosci. 12, 80 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Logan, T., Bendor, J., Toupin, C., Thorn, K. & Edwards, R. H. α-Synuclein promotes dilation of the exocytotic fusion pore. Nat. Neurosci. 20, 681–689 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Darios, F. et al. α-Synuclein sequesters arachidonic acid to modulate SNARE-mediated exocytosis. EMBO Rep. 11, 528–533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fonseca-Ornelas, L. et al. Altered conformation of α-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson’s disease. Cell Rep. 36, 109333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Atias, M. et al. Synapsins regulate α-synuclein functions. Proc. Natl Acad. Sci. USA 116, 11116–11118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Medeiros, A. T., Soll, L. G., Tessari, I., Bubacco, L. & Morgan, J. R. α-Synuclein dimers impair vesicle fission during clathrin-mediated synaptic vesicle recycling. Front. Cell Neurosci. 11, 388 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Vargas, K. J. et al. Synucleins have multiple effects on presynaptic architecture. Cell Rep. 18, 161–173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fortin, D. L. et al. Neural activity controls the synaptic accumulation of α-synuclein. J. Neurosci. 25, 10913–10921 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fortin, D. L. et al. Lipid rafts mediate the synaptic localization of α-synuclein. J. Neurosci. 24, 6715–6723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sun, J. et al. Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA 116, 11113–11115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lundblad, M., Decressac, M., Mattsson, B. & Bjorklund, A. Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc. Natl Acad. Sci. USA 109, 3213–3219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cabin, D. E. et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J. Neurosci. 22, 8797–8807 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fusco, G. et al. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat. Commun. 7, 12563 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Michaelson, D. M., Barkai, G. & Barenholz, Y. Asymmetry of lipid organization in cholinergic synaptic vesicle membranes. Biochem. J. 211, 155–162 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Brenna, J. T. & Carlson, S. E. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development. J. Hum. Evol. 77, 99–106 (2014).

    Article  PubMed  Google Scholar 

  184. Fujita, S., Ikegaya, Y., Nishikawa, M., Nishiyama, N. & Matsuki, N. Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A(2) inhibitor in rat hippocampal slices. Br. J. Pharmacol. 132, 1417–1422 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tanaka, K., Farooqui, A. A., Siddiqi, N. J., Alhomida, A. S. & Ong, W. Y. Effects of docosahexaenoic acid on neurotransmission. Biomol. Therap. 20, 152–157 (2012).

    Article  CAS  Google Scholar 

  186. Harauma, A. et al. The essentiality of arachidonic acid in addition to docosahexaenoic acid for brain growth and function. Prostagland. Leukotrienes Essent. Fat. Acids 116, 9–18 (2017).

    Article  CAS  Google Scholar 

  187. Wang, B. et al. Signal Transduction and Targeted Therapy Vol. 6 (Springer Nature, 2021).

  188. Cao, D. et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J. Neurochem. 111, 510–521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Singh, M. Essential fatty acids, DHA and human brain. Ind. J. Pediatr. 72, 239–242 (2005).

    Article  Google Scholar 

  190. Wurtman, R. J. Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism 57(Suppl. 2), S6–S10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Simon-Sanchez, J. et al. Genome-wide association study confirms extant PD risk loci among the Dutch. Eur. J. Hum. Genet. 19, 655–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mata, I. F. et al. SNCA variant associated with Parkinson disease and plasma α-synuclein level. Arch. Neurol. 67, 1350–1356 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Blauwendraat, C. et al. Parkinson’s disease age at onset genome-wide association study: defining heritability, genetic loci, and α-synuclein mechanisms. Mov. Disord. 34, 866–875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Foo, J. N. et al. Identification of risk loci for Parkinson disease in Asians and comparison of risk between Asians and Europeans: a genome-wide association study. JAMA Neurol. 77, 746–754 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pan, H. et al. Genome-wide association study using whole-genome sequencing identifies risk loci for Parkinson’s disease in Chinese population. npj Parkinsons Dis. 9, 22 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Do, C. B. et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 7, e1002141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kim, J. J. et al. Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease. Nat. Genet. https://doi.org/10.1038/s41588-023-01584-8 (2023).

  198. Jung, S. Y., Jeon, H. K., Choi, J. S. & Kim, Y. J. Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells. J. Cell. Biochem. 113, 3730–3739 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Li, G. et al. Association of GALC, ZNF184, IL1R2 and ELOVL7 with Parkinson’s disease in Southern Chinese. Front. Aging Neurosci. 10, 402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Keo, A. et al. Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease. Commun. Biol. 3, 101 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Naganuma, T., Sato, Y., Sassa, T., Ohno, Y. & Kihara, A. Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 585, 3337–3341 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Malaguti, M. C. et al. A novel homozygous PLA2G6 mutation causes dystonia-parkinsonism. Parkinsonism Relat. Disord. 21, 337–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Morgan, N. V. et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 38, 752–754 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mori, A. et al. Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc. Natl Acad. Sci. USA 116, 20689–20699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Shen, T. et al. Early-onset Parkinson’s disease caused by PLA2G6 compound heterozygous mutation, a case report and literature review. Front. Neurol. 10, 915 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Yamashita, C. et al. Mutation screening of PLA2G6 in Japanese patients with early onset dystonia-parkinsonism. J. Neural Transm. 124, 431–435 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Gui, Y. X. et al. Four novel rare mutations of PLA2G6 in Chinese population with Parkinson’s disease. Parkinsonism Relat. Disord. 19, 21–26 (2013).

    Article  PubMed  Google Scholar 

  208. Rappley, I. et al. Evidence that α-synuclein does not inhibit phospholipase D. Biochemistry 48, 1077–1083 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Gorbatyuk, O. S. et al. α-Synuclein expression in rat substantia nigra suppresses phospholipase D2 toxicity and nigral neurodegeneration. Mol. Ther. 18, 1758–1768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Mendez-Gomez, H. R. et al. The lipase activity of phospholipase D2 is responsible for nigral neurodegeneration in a rat model of Parkinson’s disease. Neuroscience 377, 174–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Bae, E. J. et al. Phospholipase D1 regulates autophagic flux and clearance of α-synuclein aggregates. Cell Death Differ. 21, 1132–1141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Conde, M. A. et al. Phospholipase D1 downregulation by α-synuclein: implications for neurodegeneration in Parkinson’s disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 639–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Gatarek, P. et al. Plasma metabolic disturbances in Parkinson’s disease patients. Biomedicines https://doi.org/10.3390/biomedicines10123005 (2022).

  214. Hu, W. et al. Metabolic profiling reveals circulating biomarkers associated with incident and prevalent Parkinson’s disease. npj Parkinsons Dis. 10, 130 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhang, J. et al. Targeted fatty acid metabolomics to discover Parkinson’s disease associated metabolic alteration. J. Mass Spectrom. 56, e4781 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Willkommen, D. et al. Metabolomic investigations in cerebrospinal fluid of Parkinson’s disease. PLoS ONE 13, e0208752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Trupp, M. et al. Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J. Parkinsons Dis. 4, 549–560 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Zhao, H. et al. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1081–1082, 101–108 (2018).

    Article  Google Scholar 

  219. LeWitt, P. A. et al. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 88, 862–869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chistyakov, D. V. et al. Plasma oxylipin profiles reflect Parkinson’s disease stage. Prostaglandins Other Lipid Mediat. 171, 106788 (2024).

    Article  CAS  PubMed  Google Scholar 

  221. Abbott, S. K. et al. Fatty acid composition of the anterior cingulate cortex indicates a high susceptibility to lipid peroxidation in Parkinson’s disease. J. Parkinsons Dis. 5, 175–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Dalfo, E. et al. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol. 64, 816–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Eijsvogel, P. P. N. M. et al. Fatty acids as potential biomarkers of stearoyl-CoA desaturase inhibition: variation in healthy subjects and Parkinson’s disease patients. Biomark. Neuropsychiatr. 13, 100132 (2025).

    Article  Google Scholar 

  224. Terry-Kantor, E. et al. Rapid α-synuclein toxicity in a neural cell model and its rescue by a stearoyl-CoA desaturase inhibitor. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21155193 (2020).

  225. Heman-Ackah, S. M. et al. α-Synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Hum. Mol. Genet. 26, 4441–4450 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Maulik, M. et al. Genetic silencing of fatty acid desaturases modulates α-synuclein toxicity and neuronal loss in Parkinson-like models of C. elegans. Front. Aging Neurosci. 11, 207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tardiff, D. F. et al. Non-clinical pharmacology of YTX-7739: a clinical stage stearoyl-CoA desaturase inhibitor being developed for Parkinson’s disease. Mol. Neurobiol. 59, 2171–2189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Adom, M. A. et al. Reducing the lipase LIPE in mutant α-synuclein mice improves Parkinson-like deficits and reveals sex differences in fatty acid metabolism. Neurobiol. Dis. 199, 106593 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bousquet, M., Calon, F. & Cicchetti, F. Impact of omega-3 fatty acids in Parkinson’s disease. Ageing Res. Rev. 10, 453–463 (2011).

    Article  CAS  PubMed  Google Scholar 

  230. Li, P. & Song, C. Potential treatment of Parkinson’s disease with omega-3 polyunsaturated fatty acids. Nutr. Neurosci. 25, 180–191 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Fecchio, C., Palazzi, L. & de Laureto, P. P. α-Synuclein and polyunsaturated fatty acids: molecular basis of the interaction and implication in neurodegeneration. Molecules 23, 1531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Alves, B. D. S., Schimith, L. E., da Cunha, A. B., Dora, C. L. & Hort, M. A. Omega-3 polyunsaturated fatty acids and Parkinson’s disease: a systematic review of animal studies. J. Neurochem. 168, 1655–1683 (2024).

    Article  CAS  PubMed  Google Scholar 

  233. Vos, M. et al. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J. Cell Biol. 216, 695–708 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Duan, W. X., Wang, F., Liu, J. Y. & Liu, C. F. Relationship between short-chain fatty acids and Parkinson’s disease: a review from pathology to clinic. Neurosci. Bull. https://doi.org/10.1007/s12264-023-01123-9 (2023).

  235. Fitzner, D. et al. Cell-type- and brain-region-resolved mouse brain lipidome. Cell Rep. 32, 108132 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Osetrova, M. et al. Lipidome atlas of the adult human brain. Nat. Commun. 15, 4455 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Barber, C. N. & Raben, D. M. Lipid metabolism crosstalk in the brain: glia and neurons. Front. Cell. Neurosci. 13, 212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Cleland, N. R. W. & Bruce, K. D. Fatty acid sensing in the brain: the role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 223, 166–178 (2024).

    Article  CAS  PubMed  Google Scholar 

  239. Ioannou, M. S. et al. Neuron–astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Ioannou, M. S., Liu, Z. & Lippincott-Schwartz, J. A neuron-glia co-culture system for studying intercellular lipid transport. Curr. Protoc. Cell Biol. 84, e95 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  241. de Lau, L. M. et al. Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64, 2040–2045 (2005).

    Article  PubMed  Google Scholar 

  242. Keramati, M., Kheirouri, S. & Etemadifar, M. Dietary approach to stop hypertension (DASH), but not Mediterranean and MIND, dietary pattern protects against Parkinson’s disease. Food Sci. Nutr. 12, 943–951 (2024).

    Article  CAS  PubMed  Google Scholar 

  243. Maraki, M. I. et al. Mediterranean diet is associated with a lower probability of prodromal Parkinson’s disease and risk for Parkinson’s disease/dementia with Lewy bodies: a longitudinal study. Eur. J. Neurol. 30, 934–942 (2023).

    Article  PubMed  Google Scholar 

  244. Xu, S., Li, W. & Di, Q. Association of dietary patterns with Parkinson’s disease: a cross-sectional study based on the United States National Health and Nutritional Examination Survey Database. Eur. Neurol. 86, 63–72 (2023).

    Article  PubMed  Google Scholar 

  245. Solch, R. J. et al. Mediterranean diet adherence, gut microbiota, and Alzheimer’s or Parkinson’s disease risk: a systematic review. J. Neurol. Sci. 434, 120166 (2022).

    Article  CAS  PubMed  Google Scholar 

  246. Alcalay, R. N. et al. The association between Mediterranean diet adherence and Parkinson’s disease. Mov. Disord. 27, 771–774 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Kamel, F. et al. Dietary fat intake, pesticide use, and Parkinson’s disease. Parkinsonism Relat. Disord. 20, 82–87 (2014).

    Article  PubMed  Google Scholar 

  248. Qu, Y., Chen, X., Xu, M. M. & Sun, Q. Relationship between high dietary fat intake and Parkinson’s disease risk: a meta-analysis. Neural Regen. Res. 14, 2156–2163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Zimmer, L. et al. Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n−3 polyunsaturated fatty acids. J. Lipid Res. 41, 32–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  250. Chalon, S. et al. Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 128, 2512–2519 (1998).

    Article  CAS  PubMed  Google Scholar 

  251. Vial, D. & Piomelli, D. Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonate-specific phospholipase A2. J. Neurochem. 64, 2765–2772 (1995).

    Article  CAS  PubMed  Google Scholar 

  252. Chang, J. P., Abele, J. T., Van Goor, F., Wong, A. O. & Neumann, C. M. Role of arachidonic acid and calmodulin in mediating dopamine D1- and GnRH-stimulated growth hormone release in goldfish pituitary cells. Gen. Comp. Endocrinol. 102, 88–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  253. Yehuda, S., Rabinovitz, S., Carasso, R. L. & Mostofsky, D. I. Fatty acids and brain peptides. Peptides 19, 407–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  254. Aharon-Peretz, J., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med. 351, 1972–1977 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Goker-Alpan, O. et al. Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 67, 908–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  256. Clark, L. N. et al. Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology 69, 1270–1277 (2007).

    Article  CAS  PubMed  Google Scholar 

  257. Nichols, W. C. et al. Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 72, 310–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Robak, L. A. et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 140, 3191–3203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Zhu, X. C. et al. Association of Parkinson’s disease GWAS-linked loci with Alzheimer’s disease in Han Chinese. Mol. Neurobiol. 54, 308–318 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Chen, Y. P. et al. GAK rs1564282 and DGKQ rs11248060 increase the risk for Parkinson’s disease in a Chinese population. J. Clin. Neurosci. 20, 880–883 (2013).

    Article  CAS  PubMed  Google Scholar 

  261. Quadri, M. et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum. Mutat. 34, 1208–1215 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The α-synuclein-related work of the authors is supported by NIH grants R01 NS083845 (to D.S.) and R01 133243 (to S.F.), the Michael J. Fox Foundation (to S.F.), The Ellison Foundation of Boston (to S.F.) and a philanthropic gift establishing the Karolinska–Harvard Collaboration on Parkinson’s Disease (to D.S.). The authors thank U. Dettmer, S. Nuber and G. Ho for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the preparation of this manuscript.

Corresponding authors

Correspondence to Saranna Fanning or Dennis Selkoe.

Ethics declarations

Competing interests

D.S. declares that he is a director and consultant for Prothena Biosciences and an ad hoc consultant for Roche and Eisai. S.F. declares that she is an ad hoc consultant for Janssen.

Peer review

Peer review information

Nature Reviews Neurology thanks Jean-Christophe Rochet, who co-reviewed with Wenzhu Qi; Woojin Kim, who co-reviewed with Finula Isik; and Dmitry Kurouski for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanning, S., Selkoe, D. Parkinson disease is a fatty acidopathy. Nat Rev Neurol (2025). https://doi.org/10.1038/s41582-025-01142-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41582-025-01142-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing