Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bridging global diversity gaps in Parkinson disease research

Abstract

The global burden of Parkinson disease (PD) is rapidly shifting towards low-income and middle-income countries (LMICs), which already account for 44% of all individuals with PD. Despite this trend, the populations of LMICs and other under-represented populations defined by ethnicity, sex, geography and minority groups within high-income countries remain largely excluded from PD research. The continuation of these disparities limits our knowledge of disease biology and restricts the applicability of advances in prevention, diagnosis and treatment, increasing inequity in global health. Substantial disparities persist across the PD research continuum, extending beyond resource limitations and encompassing epidemiology, environment, genetics, deep phenotyping and biomarkers, data integration and diversity-aware analytics, clinical trials and basic science. To repair structural diversity gaps that compromise validity and equity in PD research, we propose an ethically grounded, coordinated agenda that prioritizes increased funding and local capacity building in under-represented regions, the development and adoption of harmonized and context-adapted methods, sustained community engagement with cultural competence, the creation of collaborative research networks, and more inclusive editorial and regulatory policies. Moreover, because inequities in care and research commonly co-occur and are mutually reinforcing, PD research should advance alongside a worldwide commitment to minimum standards of care and access to treatment. This Perspective details diversity gaps across PD research, outlines priority actions to address them, and illustrates, through recent examples, how interventions along these axes can advance equity and representation in PD studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Raudino, F. The Parkinson disease before James Parkinson. Neurol. Sci. 33, 945–948 (2012).

    Article  PubMed  Google Scholar 

  2. GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 939–953 (2018).

    Article  Google Scholar 

  3. Su, D. et al. Projections for prevalence of Parkinson’s disease and its driving factors in 195 countries and territories to 2050: modelling study of Global Burden of Disease Study 2021. Br. Med. J. 388, e080952 (2025).

    Article  Google Scholar 

  4. Schlickmann, T. H. et al. Prevalence, distribution and future projections of Parkinson disease in Brazil: insights from the ELSI-Brazil cohort study. Lancet Reg. Health Am. 44, 101046 (2025).

    PubMed  PubMed Central  Google Scholar 

  5. Schiess, N. et al. Six action steps to address global disparities in Parkinson disease: a World Health Organization priority. JAMA Neurol. 79, 929–936 (2022).

    Article  PubMed  Google Scholar 

  6. Ben-Shlomo, Y. et al. The epidemiology of Parkinson’s disease. Lancet 403, 283–292 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pereira, G. M. et al. A systematic review and meta-analysis of the prevalence of Parkinson’s disease in lower to upper-middle-income countries. npj Parkinsons Dis. 10, 181 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ou, Z. et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health 9, 776847 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhu, J. et al. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: a systematic review and meta-analysis. Lancet Healthy Longev. 5, e464–e479 (2024).

    Article  PubMed  Google Scholar 

  10. Siddiqi, S. et al. Race and ethnicity matter! Moving Parkinson’s risk research towards diversity and inclusiveness. npj Parkinsons Dis. 11, 45 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pearson, C. et al. Care access and utilization among medicare beneficiaries living with Parkinson’s disease. npj Parkinsons Dis. 9, 108 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Okubadejo, N. U., Bower, J. H., Rocca, W. A. & Maraganore, D. M. Parkinson’s disease in Africa: a systematic review of epidemiologic and genetic studies. Mov. Disord. 21, 2150–2156 (2006).

    Article  PubMed  Google Scholar 

  13. Yang, Q. et al. Disease burden of Parkinson’s disease in Asia and its 34 countries and territories from 1990 to 2021: findings from the Global Burden of Disease Study 2021. Neuroepidemiology 59, 525–557 (2024).

    Article  PubMed  Google Scholar 

  14. Wright Willis, A., Evanoff, B. A., Lian, M., Criswell, S. R. & Racette, B. A. Geographic and ethnic variation in Parkinson disease: a population-based study of US Medicare beneficiaries. Neuroepidemiology 34, 143–151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dahodwala, N. et al. Racial differences in the diagnosis of Parkinson’s disease. Mov. Disord. 24, 1200–1205 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Willis, A. W. et al. Incidence of Parkinson disease in North America. npj Parkinsons Dis. 8, 170 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Harris, S., Narayanan, N. S. & Tranel, D. Does Black vs. White race affect practitioners’ appraisal of Parkinson’s disease? npj Parkinsons Dis. 9, 106 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dekker, M. C. J. et al. Parkinson’s disease research on the African continent: obstacles and opportunities. Front. Neurol. 11, 512 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma, E., Krening, E., Seto, B. K. & Bruno, M. K. Challenges faced by rural health care providers caring for Parkinson’s disease patients in neighbor islands of Hawai’i. Hawaii J. Health Soc. Welf. 83, 99–107 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wan, Y. et al. Determinants of diagnostic latency in Chinese people with Parkinson’s disease. BMC Neurol. 19, 120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tan, A. H. et al. Knowledge of Parkinson’s disease in a multiethnic urban Asian setting. J. Parkinsons Dis. 5, 865–879 (2015).

    Article  PubMed  Google Scholar 

  22. George, S., Duran, N. & Norris, K. A systematic review of barriers and facilitators to minority research participation among African Americans, Latinos, Asian Americans, and Pacific Islanders. Am. J. Public Health 104, e16–e31 (2014).

    Article  PubMed  Google Scholar 

  23. Armstrong, M. J. & Okun, M. S. Time for a new image of Parkinson disease. JAMA Neurol. 77, 1345–1346 (2020).

    Article  PubMed  Google Scholar 

  24. Zirra, A. et al. Gender differences in the prevalence of Parkinson’s disease. Mov. Disord. Clin. Pract. 10, 86–93 (2023).

    Article  PubMed  Google Scholar 

  25. Park, J. H. et al. Trends in the incidence and prevalence of Parkinson’s disease in Korea: a nationwide, population-based study. BMC Geriatr. 19, 320 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kimura, H. et al. Female preponderance of Parkinson’s disease in Japan. Neuroepidemiology 21, 292–296 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. Kapoor, M. et al. Missing female patients: an observational analysis of sex ratio among outpatients in a referral tertiary care public hospital in India. BMJ Open 9, e026850 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan, A. H. et al. Genetic testing for Parkinson’s disease and movement disorders in less privileged areas: barriers and opportunities. Mov. Disord. Clin. Pract. 11, 14–20 (2024).

    Article  PubMed  Google Scholar 

  29. Abraham, D. S. et al. Sex differences in Parkinson’s disease presentation and progression. Parkinsonism Relat. Disord. 69, 48–54 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Subramanian, I. et al. Unmet needs of women living with Parkinson’s disease: gaps and controversies. Mov. Disord. 37, 444–455 (2022).

    Article  PubMed  Google Scholar 

  31. Sarapura-Castro, E. et al. Prevalence of Parkinson’s disease in a town of the Central Highlands of Peru: a population-based study. Mov. Disord. Clin. Pract. https://doi.org/10.1002/mdc3.70354 (2025).

    Article  PubMed  Google Scholar 

  32. Bonander, C. et al. A capture–recapture-based ascertainment probability weighting method for effect estimation with under-ascertained outcomes. Epidemiology 35, 340–348 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  33. García-Bustillo, Á. et al. The feasibility and practical utility of virtual visits for patients with Parkinson’s disease in different world regions. Mov. Disord. Clin. Pract. https://doi.org/10.1002/mdc3.70314 (2025).

    Article  PubMed  Google Scholar 

  34. Charani, E. et al. Funders: the missing link in equitable global health research? PLoS Glob. Public Health 2, e0000583 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dorsey, E. R. & Bloem, B. R. Parkinson’s disease is predominantly an environmental disease. J. Parkinsons Dis. 14, 451–465 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626 (2012).

    Article  Google Scholar 

  37. Siddique, H. M. A. & Kiani, A. K. Industrial pollution and human health: evidence from middle-income countries. Environ. Sci. Pollut. Res. Int. 27, 12439–12448 (2020).

    Article  PubMed  Google Scholar 

  38. Tangamornsuksan, W. et al. Paraquat exposure and Parkinson’s disease: a systematic review and meta-analysis. Arch. Environ. Occup. Health 74, 225–238 (2019).

    Article  PubMed  CAS  Google Scholar 

  39. Kasdagli, M. I., Katsouyanni, K., Dimakopoulou, K. & Samoli, E. Air pollution and Parkinson’s disease: a systematic review and meta-analysis up to 2018. Int. J. Hyg. Environ. Health 222, 402–409 (2019).

    Article  PubMed  CAS  Google Scholar 

  40. Lock, E. A., Zhang, J. & Checkoway, H. Solvents and Parkinson disease: a systematic review of toxicological and epidemiological evidence. Toxicol. Appl. Pharmacol. 266, 345–355 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Zhao, Y., Ray, A., Portengen, L., Vermeulen, R. & Peters, S. Metal exposure and risk of Parkinson disease: a systematic review and meta-analysis. Am. J. Epidemiol. 192, 1207–1223 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fang, X. et al. Association of levels of physical activity with risk of Parkinson disease: a systematic review and meta-analysis. JAMA Netw. Open 1, e182421 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Costa, J., Lunet, N., Santos, C., Santos, J. & Vaz-Carneiro, A. Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J. Alzheimers Dis. 20 (Suppl. 1), S221–S238 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Strikwerda, A. J., Dommershuijsen, L. J., Ikram, M. K. & Voortman, T. Diet quality and risk of Parkinson’s disease: the Rotterdam Study. Nutrients 13, 3970 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jafari, S., Etminan, M., Aminzadeh, F. & Samii, A. Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov. Disord. 28, 1222–1229 (2013).

    Article  PubMed  Google Scholar 

  46. Moura, D. D. et al. History of high household pesticide use and Parkinson’s disease in Brazil. Parkinsonism Relat. Disord. 113, 105493 (2023).

    Article  PubMed  CAS  Google Scholar 

  47. Santos-Lobato, B. L. & Schuh, A. F. S. Exposure to household pesticides and Parkinson’s disease in the Parkinson’s Progression Markers Initiative cohort. Front. Neurol. 15, 1411468 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ritz, B. et al. Pooled analysis of tobacco use and risk of Parkinson disease. Arch. Neurol. 64, 990–997 (2007).

    Article  PubMed  Google Scholar 

  49. Lee, P. C., Rhodes, S. L., Sinsheimer, J. S., Bronstein, J. & Ritz, B. Functional paraoxonase 1 variants modify the risk of Parkinson’s disease due to organophosphate exposure. Environ. Int. 56, 42–47 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kumar, B. et al. Role of PON1 L55M gene polymorphism in Parkinson’s disease among North Indian population. Neurol. India 72, 364–367 (2024).

    Article  PubMed  Google Scholar 

  51. Najafi, F. et al. Association between socioeconomic status and Parkinson’s disease: findings from a large incident case-control study. BMJ Neurol. Open 5, e000386 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Atterling Brolin, K. et al. Environmental risk factors for Parkinson’s disease: a critical review and policy implications. Mov. Disord. 40, 204–221 (2025).

    Article  PubMed  Google Scholar 

  53. Mills, M. C. & Rahal, C. The GWAS Diversity Monitor tracks diversity by disease in real time. Nat. Genet. 52, 242–243 (2020).

    Article  PubMed  CAS  Google Scholar 

  54. Jia, F., Fellner, A. & Kumar, K. R. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes 13, 471 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Vollstedt, E. J. et al. Embracing monogenic Parkinson’s disease: the MJFF Global Genetic PD Cohort. Mov. Disord. 38, 286–303 (2023).

    Article  PubMed  CAS  Google Scholar 

  56. Saffie Awad, P. et al. Frequency of hereditary and GBA1-related Parkinsonism in Latin America: a systematic review and meta-analysis. Mov. Disord. 39, 6–16 (2024).

    Article  PubMed  CAS  Google Scholar 

  57. Shu, L., Zhang, Y., Sun, Q., Pan, H. & Tang, B. A comprehensive analysis of population differences in variant distribution in Parkinson’s disease. Front. Aging Neurosci. 11, 13 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Schumacher-Schuh, A. F. et al. Underrepresented populations in Parkinson’s genetics research: current landscape and future directions. Mov. Disord. 37, 1593–1604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Koros, C. et al. The landscape of monogenic Parkinson’s disease in populations of non-European ancestry: a narrative review. Genes 14, 2097 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Junker, J. et al. Team science approaches to unravel monogenic Parkinson’s disease on a global scale. Mov. Disord. 39, 1868–1873 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guadagnolo, D., Piane, M., Torrisi, M. R., Pizzuti, A. & Petrucci, S. Genotype–phenotype correlations in monogenic Parkinson disease: a review on clinical and molecular findings. Front. Neurol. 12, 648588 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Foo, J. N. et al. Identification of risk loci for Parkinson disease in Asians and comparison of risk between Asians and Europeans: a genome-wide association study. JAMA Neurol. 77, 746–754 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Akçimen, F. et al. Large-scale genetic characterization of Parkinson’s disease in the African and African admixed populations. Preprint at medRxiv https://doi.org/10.1101/2025.01.14.25320205 (2025).

  64. Lim, S. Y. et al. Uncovering the genetic basis of Parkinson’s disease globally: from discoveries to the clinic. Lancet Neurol. 23, 1267–1280 (2024).

    Article  PubMed  CAS  Google Scholar 

  65. Khani, M. et al. Towards a global view of Parkinson’s disease genetics. Ann. Neurol. 95, 831–842 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tan, A. H. et al. Global perspectives on returning genetic research results in Parkinson disease. Neurol. Genet. 10, e200213 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tan, M. M. X. et al. Genome-wide determinants of mortality and motor progression in Parkinson’s disease. npj Parkinsons Dis. 10, 113 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Martínez Carrasco, A. et al. Genome-wide analysis of motor progression in Parkinson disease. Neurol. Genet. 9, e200092 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Global Parkinson’s Genetics Program. GP2: the Global Parkinson’s Genetics Program. Mov. Disord. 36, 842–851 (2021).

    Article  Google Scholar 

  71. Zabetian, C. P. & Mata, I. F. Latin American Research Consortium on the Genetics of PD (LARGE-PD). LARGE-PD: examining the genetics of Parkinson’s disease in Latin America. Mov. Disord. 32, 1330–1331 (2017).

    Article  PubMed  Google Scholar 

  72. International Parkinson Disease Genomics Consortium (IPDGC). Ten years of the International Parkinson Disease Genomics Consortium: progress and next steps. J. Parkinsons Dis. 10, 19–30 (2020).

    Article  Google Scholar 

  73. Mok, K. Y. East Asian Parkinson Disease Genomics Consortium. The East Asian Parkinson Disease Genomics Consortium. Lancet Neurol. 20, 982 (2021).

    Article  PubMed  Google Scholar 

  74. Loesch, D. P. et al. Characterizing the genetic architecture of Parkinson’s disease in Latinos. Ann. Neurol. 90, 353–365 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rajan, R. et al. Genetic architecture of Parkinson’s disease in the Indian population: harnessing genetic diversity to address critical gaps in Parkinson’s disease research. Front. Neurol. 11, 524 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Step, K. et al. Genome-wide association analyses reveal susceptibility variants linked to Parkinson’s disease in the South African population using inferred global and local ancestry. Preprint at medRxiv https://doi.org/10.1101/2025.08.01.25331910 (2025).

  77. Kim, J. J. et al. Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease. Nat. Genet. 56, 27–36 (2024).

    Article  PubMed  CAS  Google Scholar 

  78. Rizig, M. et al. Identification of genetic risk loci and causal insights associated with Parkinson’s disease in African and African admixed populations: a genome-wide association study. Lancet Neurol. 22, 1015–1025 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Saffie-Awad, P. et al. Insights into ancestral diversity in Parkinson’s disease risk: a comparative assessment of polygenic risk scores. npj Parkinsons Dis. 11, 201 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

    Article  PubMed  CAS  Google Scholar 

  82. Klokkaris, A. & Migdalska-Richards, A. An overview of epigenetic changes in the Parkinson’s disease brain. Int. J. Mol. Sci. 25, 6168 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lefèvre-Arbogast, S. et al. Assessing the contribution of the chemical exposome to neurodegenerative disease. Nat. Neurosci. 27, 812–821 (2024).

    Article  PubMed  Google Scholar 

  84. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rebbeck, T. R. et al. A framework for promoting diversity, equity, and inclusion in genetics and genomics research. JAMA Health Forum 3, e220603 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bhérer, C. et al. A cost-effective sequencing method for genetic studies combining high-depth whole exome and low-depth whole genome. npj Genom. Med. 9, 8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sengupta, D. et al. Performance and accuracy evaluation of reference panels for genotype imputation in sub-Saharan African populations. Cell Genom. 3, 100332 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nicol, D., Nielsen, J. & Archer, M. Data access arrangements in genomic research consortia. Sci. Rep. 14, 21685 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Blauwendraat, C. et al. Tackling a disease on a global scale, the Global Parkinson’s Genetics Program, GP2: a new generation of opportunities. Am. J. Hum. Genet. 112, 1988–2000 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Heinzel, S., Lerche, S., Maetzler, W. & Berg, D. Global, yet incomplete overview of cohort studies in Parkinson’s disease. J. Parkinsons Dis. 7, 423–432 (2017).

    Article  PubMed  Google Scholar 

  91. Marek, K. et al. The Parkinson’s progression markers initiative (PPMI) — establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol. 5, 1460–1477 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rosenthal, L. S. et al. The NINDS Parkinson’s disease biomarkers program. Mov. Disord. 31, 915–923 (2016).

    Article  PubMed  CAS  Google Scholar 

  93. Pourzinal, D. et al. Systematic review of data-driven cognitive subtypes in Parkinson disease. Eur. J. Neurol. 29, 3395–3417 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mestre, T. A. et al. Parkinson’s disease subtypes: critical appraisal and recommendations. J. Parkinsons Dis. 11, 395–404 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bega, D. et al. Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: a systematic review and meta-analysis. npj Parkinsons Dis. 7, 43 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Siderowf, A. et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22, 407–417 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Pedersen, C. C. et al. Serum neurofilament light at diagnosis: a prognostic indicator for accelerated disease progression in Parkinson’s disease. npj Parkinsons Dis. 10, 162 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mao, H. et al. Ultrasensitive detection of aggregated α-synuclein using quiescent seed amplification assay for the diagnosis of Parkinson’s disease. Transl. Neurodegener. 13, 35 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kuang, Y. et al. A skin-specific α-synuclein seeding amplification assay for diagnosing Parkinson’s disease. npj Parkinsons Dis. 10, 129 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Alonso, C. C. G., Silva, F. G., Costa, L. O. P. & Freitas, S. M. S. F. Smell tests to distinguish Parkinson’s disease from other neurological disorders: a systematic review and meta-analysis. Expert Rev. Neurother. 21, 365–379 (2021).

    Article  PubMed  CAS  Google Scholar 

  101. Galbiati, A., Verga, L., Giora, E., Zucconi, M. & Ferini-Strambi, L. The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta-analysis of longitudinal studies. Sleep Med. Rev. 43, 37–46 (2019).

    Article  PubMed  Google Scholar 

  102. Kim, J. J. et al. Bidirectional relationship between olfaction and Parkinson’s disease. npj Parkinsons Dis. 10, 232 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Postuma, R. B. et al. Environmental risk factors for REM sleep behavior disorder: a multicenter case-control study. Neurology 79, 428–434 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article  PubMed  Google Scholar 

  105. Simuni, T. et al. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol. 23, 178–190 (2024).

    Article  PubMed  CAS  Google Scholar 

  106. Höglinger, G. U. et al. A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23, 191–204 (2024).

    Article  PubMed  Google Scholar 

  107. Kalia, L. V. et al. International Parkinson and Movement Disorder Society viewpoint on biological frameworks of Parkinson’s disease: current status and future directions. Mov. Disord. 39, 1710–1715 (2024).

    Article  PubMed  Google Scholar 

  108. Wüllner, U. et al. The heterogeneity of Parkinson’s disease. J. Neural Transm. 130, 827–838 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. McGlinchey, E. et al. Biomarkers of neurodegeneration across the Global South. Lancet Healthy Longev. 5, 100616 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Marras, C. et al. Transitioning from subtyping to precision medicine in Parkinson’s disease: a purpose-driven approach. Mov. Disord. 39, 462–471 (2024).

    Article  PubMed  Google Scholar 

  111. Tanaka, M. Parkinson’s disease: bridging gaps, building biomarkers, and reimagining clinical translation. Cells https://doi.org/10.3390/cells14151161 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tanguy, A., Jönsson, L. & Ishihara, L. Inventory of real world data sources in Parkinson’s disease. BMC Neurol. 17, 213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Taylor, H. et al. UK Biobank — a unique resource for discovery and translation research on genetics and neurologic disease. Neurol. Genet. 11, e200226 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Leal, T. P. et al. Genotype–phenotype association study conducted on LARGE-PD reveals novel loci associated with Parkinson’s disease. Preprint at medRxiv https://doi.org/10.1101/2025.07.18.25331793 (2025).

  115. Gottesman, J. et al. Fox Insight at 5 years — a cohort of 54,000 participants contributing longitudinal patient-reported outcome, genetic, and microbiome data relating to Parkinson’s disease. Sci. Data 11, 615 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Oh, J. H. et al. Whole-genome sequencing reveals an association between small genomic deletions and an increased risk of developing Parkinson’s disease. Exp. Mol. Med. 55, 555–564 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Lv, J. J., Li, X. Y. & Yang, C. H. Urinary metal levels and their association with Parkinson’s disease risk: insights from NHANES 2013–2020. Front. Public Health 13, 1439325 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Alvarellos, M. et al. Democratizing clinical-genomic data: how federated platforms can promote benefits sharing in genomics. Front. Genet. 13, 1045450 (2022).

    Article  PubMed  Google Scholar 

  119. Pandit, M. et al. Prioritizing racial representation in treating people with Parkinson’s disease: an assessment of racial inclusion among Parkinson’s disease clinical trials between 1999–2022. Neurology 100, 2732 (2023).

    Article  Google Scholar 

  120. Schneider, M. G. et al. Minority enrollment in Parkinson’s disease clinical trials. Parkinsonism Relat. Disord. 15, 258–262 (2009).

    Article  PubMed  Google Scholar 

  121. Di Luca, D. G. et al. Enrollment of participants from marginalized racial and ethnic groups: a comparative assessment of the STEADY-PD III and SURE-PD3 trials. Neurol. Clin. Pract. 13, e200113 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tsai, C. C. et al. Representational disparities in the enrollment of Parkinson’s disease clinical trials. Mov. Disord. Clin. Pract. 12, 878–881 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Moorthy, V. et al. Improving the clinical trial environment and infrastructure: moving from global resolution to action. Lancet Glob. Health 13, e608–e610 (2025).

    Article  PubMed  CAS  Google Scholar 

  124. Vaswani, P. A., Tropea, T. F. & Dahodwala, N. Overcoming barriers to Parkinson disease trial participation: increasing diversity and novel designs for recruitment and retention. Neurotherapeutics 17, 1724–1735 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hasson Charles, R. M., Sosa, E., Patel, M. & Erhunmwunsee, L. Health disparities in recruitment and enrollment in research. Thorac. Surg. Clin. 32, 75–82 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Fox Trial Finder. Parkinson’s Disease. The Michael J. Fox Foundation for Parkinson’s Research https://www.michaeljfox.org/trial-finder (accessed 21 October 2025).

  127. Gerstenberger, J., Bauer, A., Helmschrodt, C., Richter, A. & Richter, F. The novel adaptive rotating beam test unmasks sensorimotor impairments in a transgenic mouse model of Parkinson’s disease. Behav. Brain Res. 304, 102–110 (2016).

    Article  PubMed  Google Scholar 

  128. Shutinoski, B. et al. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aas9292 (2019).

    Article  PubMed  Google Scholar 

  129. Lee, J. et al. Sex-specific neuroprotection by inhibition of the Y-chromosome gene, in experimental Parkinson’s disease. Proc. Natl Acad. Sci. USA 116, 16577–16582 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hansen, C. et al. A novel α-synuclein–GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of α-synuclein–GFP. Neurobiol. Dis. 56, 145–155 (2013).

    Article  PubMed  CAS  Google Scholar 

  131. Roshanbin, S. et al. Age-related increase of alpha-synuclein oligomers is associated with motor disturbances in L61 transgenic mice. Neurobiol. Aging 101, 207–220 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Iwaki, H. et al. Differences in the presentation and progression of Parkinson’s disease by sex. Mov. Disord. 36, 106–117 (2021).

    Article  PubMed  Google Scholar 

  133. Saul, M. C., Philip, V. M. & Reinholdt, L. G. Center for Systems Neurogenetics of Addiction & Chesler, E. J. High-diversity mouse populations for complex traits. Trends Genet. 35, 501–514 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ghosh, S., Nehme, R. & Barrett, L. E. Greater genetic diversity is needed in human pluripotent stem cell models. Nat. Commun. 13, 7301 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bloomfield, G. S. et al. Training and capacity building in LMIC for research in heart and lung diseases: The NHLBI–UnitedHealth Global Health Centers of Excellence program. Glob. Heart 11, 17–25 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Petersen, O. H. Inequality of research funding between different countries and regions is a serious problem for global science. Function 2, zqab060 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Marconi, G. A., Teixeira-Dos-Santos, D. & Schuh, A. F. S. Recent advances in the genetics of Parkinson’s disease in underrepresented populations. Curr. Opin. Neurol. 38, 349–354 (2025).

    Article  PubMed  Google Scholar 

  139. The Edmond J. Safra Fellowship in Movement Disorders. The Michael J. Fox Foundation https://www.michaeljfox.org/edmond-j-safra-fellowship-movement-disorders (accessed 27 September 2025).

  140. Siddiqi, B. & Koemeter-Cox, A. A call to action: promoting diversity, equity, and inclusion in Parkinson’s research and care. J. Parkinsons Dis. 11, 905–908 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Our commitment to diversity, equity & inclusion. Parkinson’s Foundation https://www.parkinson.org/about-us/vision-mission/diversity-equity-inclusion (accessed 27 September 2025).

  142. Li, S. et al. Cost-effectiveness analysis of insecticide ban aimed at preventing Parkinson’s disease in central California. Sci. Total Environ. 912, 168913 (2024).

    Article  PubMed  CAS  Google Scholar 

  143. Committee on Energy and Commerce. Dr. Emmanuel Bilirakis National Plan to End Parkinson’s Act: Report (to accompany H.R. 2365) (United States Congress House, 2023).

  144. Wasay, M., Grisold, W., Wijeratne, T., Struhal, W. & Younis, S. World Federation of Neurology. The future of brain health advocacy: recommendations of the 2023 World Congress of Neurology advocacy panel. J. Neurol. Sci. 458, 122914 (2024).

    Article  PubMed  Google Scholar 

  145. Visiting trainee grants. International Parkinson and Movement Disorder Society https://www.movementdisorders.org/MDS/About/MDS-Programs/Visiting-Trainee-Grants.htm (accessed 12 October 2025).

  146. Walker, R. et al. Transforming Parkinson’s Care in Africa (TraPCAf): protocol for a multimethodology National Institute for Health and Care Research Global Health Research Group project. BMC Neurol. 23, 373 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Fogarty Extramural Programs. Fogarty International Center https://www.fic.nih.gov/Programs (accessed 12 October 2025).

  148. Aamodt, W. W., Willis, A. W. & Dahodwala, N. Racial and ethnic disparities in Parkinson disease: a call to action. Neurol. Clin. Pract. 13, e200138 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Flanagin, A., Frey, T. & Christiansen, S. L. AMA Manual of Style Committee. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA 326, 621–627 (2021).

    Article  PubMed  Google Scholar 

  150. Lin, J. et al. Keeping an eye on Parkinson’s disease: color vision and outer retinal thickness as simple and non-invasive biomarkers. J. Neurol. 272, 351 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yu, Q. J. et al. Parkinson disease with constipation: clinical features and relevant factors. Sci. Rep. 8, 567 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Altundag, A. et al. Cross-culturally modified University of Pennsylvania Smell Identification Test for a Turkish population. Am. J. Rhinol. Allergy 29, e138–e141 (2015).

    Article  PubMed  Google Scholar 

  153. Bušková, J. et al. Validation of the REM sleep behavior disorder screening questionnaire in the Czech population. BMC Neurol. 19, 110 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rivera Mindt, M. et al. The Alzheimer’s Disease Neuroimaging Initiative-4 (ADNI-4) Engagement Core: a culturally informed, community-engaged research (CI-CER) model to advance brain health equity. Alzheimers Dement. 20, 8279–8293 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Parkinson’s disease and related disorders. Accelerating Medicines Partnership https://amp-pd.org/ (accessed 27 April 2025).

  156. Horvat, L., Horey, D., Romios, P. & Kis-Rigo, J. Cultural competence education for health professionals. Cochrane Database Syst. Rev. 2014, CD009405 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Skinner, H. G. et al. Using community-based participatory research principles to develop more understandable recruitment and informed consent documents in genomic research. PLoS ONE 10, e0125466 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. May, T. et al. Community-based participatory research and its potential role in supporting diversity in genomic science. J. Health Care Poor Underserved 32, 1208–1224 (2021).

    Article  PubMed  Google Scholar 

  159. Chahine, L. M. et al. The Black and African American Connections to Parkinson’s Disease (BLAAC PD) study protocol. BMC Neurol. 24, 403 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Woodland, L., Blignault, I., O’Callaghan, C. & Harris-Roxas, B. A framework for preferred practices in conducting culturally competent health research in a multicultural society. Health Res. Policy Syst. 19, 24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zeissler, M. L. et al. Patient and public involvement and engagement in the development of a platform clinical trial for Parkinson’s disease: an evaluation protocol. J. Parkinsons Dis. 14, 809–821 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sanchez, A. V. et al. Designing the fostering inclusivity in research engagement for underrepresented populations in Parkinson’s disease study. Contemp. Clin. Trials 115, 106713 (2022).

    Article  PubMed  Google Scholar 

  163. Franzen, S. R. P., Chandler, C. & Lang, T. Health research capacity development in low and middle income countries: reality or rhetoric? A systematic meta-narrative review of the qualitative literature. BMJ Open 7, e012332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rizig, M. et al. The International Parkinson Disease Genomics Consortium Africa. Lancet Neurol. 20, 335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kishore, A. et al. Deciphering the genetic architecture of Parkinson’s disease in India. Preprint at medRxiv https://doi.org/10.1101/2025.02.17.25322132 (2025).

  166. Central Asian and Transcaucasian Parkinson’s Disease Consortium & Kaiyrzhanov, R. A biobank for Parkinson’s disease and atypical parkinsonism in central Asian and Transcaucasian regions. Lancet Neurol. 23, 859–860 (2024).

    Article  PubMed  Google Scholar 

  167. Mohamed, W. et al. The AfrAbia+plus Parkinson’s disease genomic consortium. Lancet Neurol. 23, 140–141 (2024).

    Article  PubMed  Google Scholar 

  168. Lourenco, M. V., Borelli, W. V., Duran-Aniotz, C., Zimmer, E. R. & de Castro, S. S. Promoting diversity and overcoming publication barriers in Latin American neuroscience and Alzheimer’s disease research: a call to action. Alzheimers Dement. 9, e12378 (2023).

    Google Scholar 

  169. Miyasaki, J. M., Lim, T. T. & Bhidayasiri, R. Editorial: Inclusion, equity, diversity and social justice in movement disorders research. Parkinsonism Relat. Disord. 85, 114–116 (2021).

    Article  PubMed  Google Scholar 

  170. Hopewell, S. et al. CONSORT 2025 statement: updated guideline for reporting randomised trials. Br. Med. J. 389, e081123 (2025).

    Article  Google Scholar 

  171. Majid, H. et al. Publication dynamics: what can be done to eliminate barriers to publishing full manuscripts by the postgraduate trainees of a low-middle income country? BMC Res. Notes 15, 249 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Diversity, equity and inclusion in neurology. Nat. Rev. Neurol. 20, 199 (2024).

  173. Amplifying under-represented perspectives. Nat. Commun. 13, 1834 (2022).

  174. Schutte, A. E. & Abdool Karim, Q. Reimagining global hypertension research: from helicopter science to meaningful partnerships. Hypertension 80, 2239–2242 (2023).

    Article  PubMed  CAS  Google Scholar 

  175. Montreal Statement. The World Conferences on Research Integrity Foundation https://www.wcrif.org/guidance/montreal-statement (accessed 3 May 2025).

  176. Global Code of Conduct https://dev.globalcodeofconduct.org/ (accessed 3 May 2025).

  177. Weinreb, C. & Sun, D. S. To dismantle structural racism in science, scientists need to learn how it works. Neuropsychopharmacology 48, 579–582 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Banaji, M. R., Fiske, S. T. & Massey, D. S. Systemic racism: individuals and interactions, institutions and society. Cogn. Res. Princ. Implic. 6, 82 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wonkam, A. et al. “Black Lives Matter and Black Research Matters”: the African Society of Human Genetics’ call to halt racism in science. Mol. Biol. Cell. https://doi.org/10.1091/mbc.E22-04-0122 (2022).

  180. Omodan, B. I. Building reciprocal relationships through decolonial practices in academic research. Cogent Soc. Sci. https://doi.org/10.1080/23311886.2024.2443558 (2025).

    Article  Google Scholar 

  181. Adam, A. et al. Decolonizing global health research: experiences from the women in health and their economic, equity and livelihood statuses during emergency preparedness and response (WHEELER) study. Front. Public Health 13, 1578964 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.F.S.S. is a research productivity fellow of the Brazilian National Council for Scientific and Technological Development (CNPq) and received support for research from CNPq and the MJFF. D.T.S. received support from the International Parkinson and Movement Disorder Society for a 1 year research fellowship at the Cleveland Clinic.

Author information

Authors and Affiliations

Authors

Contributions

D.T.d.S. and A.F.S.S. researched data for the article. All authors contributed substantially to discussion of the content. D.T.d.S. and A.F.S.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Artur F. S. Schuh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Veronica Bruno, Agustín Ibáñez, Norlinah Ibrahim, Nitish Kamble and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira-dos-Santos, D., Tan, AH., Okubadejo, N. et al. Bridging global diversity gaps in Parkinson disease research. Nat Rev Neurol (2026). https://doi.org/10.1038/s41582-026-01183-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41582-026-01183-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research