Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A path towards personalized medicine for autoinflammatory and related diseases

Abstract

The human genome project led to the advancement of genetic technologies and genomic medicine for a variety of human diseases, including monogenic autoimmune and autoinflammatory diseases. As a result, the genome of an individual can now be rapidly sequenced at a low cost, and this technology is beginning to change the practice of rheumatology. In this Perspective, we describe how new sequencing technologies combined with careful clinical phenotyping have led to the discovery of rare rheumatic diseases and their corresponding disease-causing mutations. Additionally, we explore ways in which single-gene mutations, including somatic mutations, are creating opportunities to develop personalized medicines. To illustrate this idea, we focus on diseases affecting the TREX1–cGAS–STING pathway, which is associated with monogenic autoinflammatory diseases and vasculopathies. For many of the affected patients and families, there is an urgent, unmet need for the development of personalized therapies. New innovations related to small molecular inhibitors and gene therapies have the potential to benefit these families, and might help drive further innovations that could prove useful for patients with more common forms of autoimmunity and autoinflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of DNA sequencing technology.
Fig. 2: Rare rheumatic diseases and the TREX1–cGAS–STING pathway.
Fig. 3: The discovery of RVCL and subsequent search for a cure.

Similar content being viewed by others

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. The Human Genome Project (genome.gov). https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost (2022).

  3. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grand, M. G. et al. Cerebroretinal vasculopathy. A new hereditary syndrome. Ophthalmology 95, 649–659 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Stam, A. H. et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 139, 2909–2922 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kothari, P. H. et al. TREX1 is expressed by microglia in normal human brain and increases in regions affected by ischemia. Brain Pathol. 28, 806–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richards, A. et al. C-terminal truncations in human 3’-5’ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat. Genet. 39, 1068–1070 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. de Jesus, A. A. et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130, 1669–1682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Crow, Y. J. et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Rice, G. et al. Clinical and molecular phenotype of Aicardi-Goutieres syndrome. Am. J. Hum. Genet. 81, 713–725 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mazur, D. J. & Perrino, F. W. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3’→5’ exonucleases. J. Biol. Chem. 274, 19655–19660 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hasan, M. et al. Cytosolic nuclease TREX1 regulates oligosaccharyltransferase activity independent of nuclease activity to suppress immune activation. Immunity 43, 463–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02723448 (2020).

  18. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04611880 (2022).

  19. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crowl, J. T., Gray, E. E., Pestal, K., Volkman, H. E. & Stetson, D. B. Intracellular nucleic acid detection in autoimmunity. Annu. Rev. Immunol. 35, 313–336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Warner, J. D. et al. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. 214, 3279–3292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Motwani, M. et al. Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models. Proc. Natl Acad. Sci. USA 116, 7941–7950 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouis, D. et al. Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. J. Allergy Clin. Immunol. 143, 712–725.e715 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez, G. A. M. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128, 3041–3052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frémond, M. L. et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J. Allergy Clin. Immunol. Pract. 9, 803–818.e811 (2021).

    Article  PubMed  Google Scholar 

  26. Volpi, S. et al. Efficacy and adverse events during Janus kinase inhibitor treatment of SAVI syndrome. J. Clin. Immunol. 39, 476–485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luksch, H. et al. STING-associated lung disease in mice relies on T cells but not type I interferon. J. Allergy Clin. Immunol. 144, 254–266.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watkin, L. B. et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47, 654–660 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steiner, A. et al. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat. Commun. 13, 2321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng, Z. et al. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 217, e20201045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lepelley, A. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. 217, e20200600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mukai, K. et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nat. Commun. 12, 61 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsui, J. L. et al. Analysis of pulmonary features and treatment approaches in the COPA syndrome. ERJ Open Res. 4, 00017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cabrera-Pérez, J. S. et al. A Zebra at the rodeo: dyspnea, hematuria, and a family history of arthritis. Arthritis Care Res. 74, 165–170 (2020).

    Article  Google Scholar 

  35. Kitching, A. R. et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 6, 71 (2020).

    Article  PubMed  Google Scholar 

  36. Staels, F. et al. Adult-onset ANCA-associated vasculitis in SAVI: extension of the phenotypic spectrum, case report and review of the literature. Front. Immunol. 11, 575219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chu, T. T. et al. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596, 570–575 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jesus, A. A. & Goldbach-Mansky, R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med. 65, 223–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stehlik, C. & Reed, J. C. The PYRIN connection: novel players in innate immunity and inflammation. J. Exp. Med. 200, 551–558 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04972188 (2021).

  44. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao, K. M., Motwani, M., Tedder, T., Marshak-Rothstein, A. & Fitzgerald, K. A. Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNγ-dependent mortality in STING gain-of-function mice. Proc. Natl Acad. Sci. USA 119, e2202327119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stinson, W. A. et al. The IFN-γ receptor promotes immune dysregulation and disease in STING gain-of-function mice. JCI Insight 7, e155250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sakai, T. et al. DNase-active TREX1 frame-shift mutants induce serologic autoimmunity in mice. J. Autoimmun. 81, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lama, L. et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat. Commun. 10, 2261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hong, Z. et al. STING inhibitors target the cyclic dinucleotide binding pocket. Proc. Natl Acad. Sci. USA 118, e2105465118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, J. et al. Novel CRBN-recruiting proteolysis-targeting chimeras as degraders of stimulator of interferon genes with in vivo anti-inflammatory efficacy. J. Med. Chem. 65, 6593–6611 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Roberson for helpful discussions about genome sequencing technology.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jonathan J. Miner or Katherine A. Fitzgerald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks S. Masters and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miner, J.J., Fitzgerald, K.A. A path towards personalized medicine for autoinflammatory and related diseases. Nat Rev Rheumatol 19, 182–189 (2023). https://doi.org/10.1038/s41584-022-00904-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-022-00904-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research