Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Somatic mutations in autoinflammatory and autoimmune disease

This article has been updated

Abstract

Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.

Key points

  • Somatic mutations, even at low allele fractions, can have a role in the pathogenesis of monogenic and complex rheumatological diseases, in both early-onset and late-onset conditions.

  • Somatic mutagenesis and clonal expansions are dynamic processes and a change in clinical phenotype might warrant repeated genetic testing.

  • Identification of somatic mutations has major implications for genetic counselling.

  • The identification of pathogenic somatic mutations in patients with immune-mediated disease can inform treatment decisions.

  • As new methodologies and resources for somatic variant detection and interpretation are emerging, they will be instrumental for reshaping disease taxonomy in rheumatology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of possible origins, distributions and transmission of variants.
Fig. 2: Evolution and outcomes of clonal expansions due to somatic mutagenesis.
Fig. 3: Methodologies for the detection of somatic mutations.

Similar content being viewed by others

Change history

  • 25 October 2024

    In the version of the article initially published, the surname of co-reviewer Mikko Myllymäki was misspelt as Myllmyaki and has now been corrected in the HTML and PDF versions of the article.

References

  1. Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Glez, V. et al. A six-attribute classification of genetic mosaicism. Genet. Med. 22, 1743–1757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sanchez-Contreras, M. et al. The multi-tissue landscape of somatic mtDNA mutations indicates tissue-specific accumulation and removal in aging. Elife 12, e83395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Danzig, J., Li, D., Jan de Beur, S. & Levine, M. A. High-throughput molecular analysis of pseudohypoparathyroidism 1b patients reveals novel genetic and epigenetic defects. J. Clin. Endocrinol. Metab. 106, e4603–e4620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Duffy, K. A., Hathaway, E. R., Klein, S. D., Ganguly, A. & Kalish, J. M. Epigenetic mosaicism and cell burden in Beckwith-Wiedemann syndrome due to loss of methylation at imprinting control region 2. Cold Spring Harb. Mol. Case Stud. 7, a006115 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Puck, J. M. & Straus, S. E. Somatic mutations — not just for cancer anymore. N. Engl. J. Med. 351, 1388–1390 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Mustjoki, S. & Young, N. S. Somatic mutations in “Benign” disease. N. Engl. J. Med. 384, 2039–2052 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Failla, G. The aging process and cancerogenesis. Ann. N. Y. Acad. Sci. 71, 1124–1140 (1958).

    Article  CAS  PubMed  Google Scholar 

  9. Franco, I., Revechon, G. & Eriksson, M. Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell 21, e13613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jonkman, M. F. et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88, 543–551 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Revy, P., Kannengiesser, C. & Fischer, A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat. Rev. Genet. 20, 582–598 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Miyazawa, H. & Wada, T. Reversion mosaicism in primary immunodeficiency diseases. Front. Immunol. 12, 783022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e612 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Nieto, P. E., Morrison, A. J. & Fraser, H. B. The somatic mutation landscape of the human body. Genome Biol. 20, 298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rockweiler, N. B. et al. The origins and functional effects of postzygotic mutations throughout the human life span. Science 380, eabn7113 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. & Obbard, D. J. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol. Lett. 7, 216–226 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e1021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, R. et al. A body map of somatic mutagenesis in morphologically normal human tissues. Nature 597, 398–403 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Hoang, M. L. et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc. Natl Acad. Sci. USA 113, 9846–9851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J. H. et al. Analysis of low-level somatic mosaicism reveals stage and tissue-specific mutational features in human development. PLoS Genet. 18, e1010404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pascarella, G. et al. Recombination of repeat elements generates somatic complexity in human genomes. Cell 185, 3025–3040.e3026 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Gorbunova, V. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43–53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alexandrov, L. B. & Stratton, M. R. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 24, 52–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Makova, K. D. & Hardison, R. C. The effects of chromatin organization on variation in mutation rates in the genome. Nat. Rev. Genet. 16, 213–223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carrot-Zhang, J. et al. Genetic ancestry contributes to somatic mutations in lung cancers from admixed Latin American populations. Cancer Discov. 11, 591–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Jonsson, H. et al. Differences between germline genomes of monozygotic twins. Nat. Genet. 53, 27–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367, 1449–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, Z. et al. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 186, 1968–1984.e1920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Campisi, J. Aging and cancer cell biology, 2008. Aging Cell 7, 281–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kay, J., Thadhani, E., Samson, L. & Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair. 83, 102673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaiswal, M., LaRusso, N. F., Burgart, L. J. & Gores, G. J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 60, 184–190 (2000).

    CAS  PubMed  Google Scholar 

  47. Mechtcheriakova, D., Svoboda, M., Meshcheryakova, A. & Jensen-Jarolim, E. Activation-induced cytidine deaminase (AID) linking immunity, chronic inflammation, and cancer. Cancer Immunol. Immunother. 61, 1591–1598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Avagyan, S. et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 374, 768–772 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Avagyan, S. & Zon, L. I. Clonal hematopoiesis and inflammation — the perpetual cycle. Trends Cell Biol. 33, 695–707 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stacey, S. N. et al. Genetics and epidemiology of mutational barcode-defined clonal hematopoiesis. Nat. Genet. 55, 2149–2159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buscarlet, M. et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130, 753–762 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Belizaire, R., Wong, W. J., Robinette, M. L. & Ebert, B. L. Clonal haematopoiesis and dysregulation of the immune system. Nat. Rev. Immunol. 23, 595–610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frick, M. et al. Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 37, 375–385 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Gibson, C. J. et al. Donor clonal hematopoiesis and recipient outcomes after transplantation. J. Clin. Oncol. 40, 189–201 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Agrawal, M. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinette, M. L. et al. Association of somatic TET2 mutations with giant cell arteritis. Arthritis Rheumatol. 76, 438–443 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Arends, C. M. et al. Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica 105, e264–e267 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ricard, L. et al. Clonal haematopoiesis is increased in early onset in systemic sclerosis. Rheumatology 59, 3499–3504 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Rossi, M. et al. Clinical relevance of clonal hematopoiesis in persons aged ≥80 years. Blood 138, 2093–2105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hecker, J. S. et al. CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood 138, 1727–1732 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Burnet, M. Somatic mutation and chronic disease. Br. Med. J. 1, 338–342 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burnet, F. M. Auto-Immunity and Auto-Immune Disease; A Survey for Physician or Biologist. (Davis, 1972).

  69. Goodnow, C. C. Multistep pathogenesis of autoimmune disease. Cell 130, 25–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Kakiuchi, N. et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684.e611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Johansen, F. E. et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190, 915–922 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar, P. et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44, 659–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olafsson, S. et al. Effects of psoriasis and psoralen exposure on the somatic mutation landscape of the skin. Nat. Genet. 55, 1892–1900 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Singh, M. et al. Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody. Cell 180, 878–894.e819 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Savola, P. et al. Somatic STAT3 mutations in Felty syndrome: an implication for a common pathogenesis with large granular lymphocyte leukemia. Haematologica 103, 304–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Law, S. M., Akizuki, S., Morinobu, A. & Ohmura, K. A case of refractory systemic lupus erythematosus with monocytosis exhibiting somatic KRAS mutation. Inflamm. Regen. 42, 10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferrada, M. A. et al. Somatic mutations in UBA1 define a distinct subset of relapsing polychondritis patients with VEXAS. Arthritis Rheumatol. 73, 1886–1895 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Koskela, H. L. et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366, 1905–1913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Savola, P. et al. Somatic mutations in clonally expanded cytotoxic T lymphocytes in patients with newly diagnosed rheumatoid arthritis. Nat. Commun. 8, 15869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oliveira, J. B. et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA 104, 8953–8958 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takagi, M. et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood 117, 2887–2890 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Neven, Q. et al. Clinical spectrum of ras-associated autoimmune leukoproliferative disorder (RALD). J. Clin. Immunol. 41, 51–58 (2021).

    Article  PubMed  Google Scholar 

  87. Wang, W. et al. RAS-associated Autoimmune Leukoproliferative disease (RALD) manifested with early-onset SLE-like syndrome: a case series of RALD in Chinese children. Pediatr. Rheumatol. Online J. 17, 55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Singh, M. et al. Expanded T cell clones with lymphoma driver somatic mutations in refractory celiac disease. Preprint at medRxiv https://doi.org/10.1101/2024.03.17.24304320 (2024).

  89. Soderquist, C. R. et al. Immunophenotypic spectrum and genomic landscape of refractory celiac disease type II. Am. J. Surg. Pathol. 45, 905–916 (2021).

    Article  PubMed  Google Scholar 

  90. Lundgren, S. et al. Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia. Leukemia 35, 1365–1379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Valori, M. et al. High prevalence of low-allele-fraction somatic mutations in STAT3 in peripheral blood CD8+ cells in multiple sclerosis patients and controls. PLoS ONE 17, e0278245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Van Horebeek, L., Dedoncker, N., Dubois, B. & Goris, A. Frequent somatic mosaicism in T lymphocyte subsets in individuals with and without multiple sclerosis. Front. Immunol. 13, 993178 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lundgren, S. et al. Somatic mutations associate with clonal expansion of CD8+ T cells. Sci. Adv. 10, eadj0787 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. von Beck, K., von Beck, T., Ferrell, P. B. Jr., Bick, A. G. & Kishtagari, A. Lymphoid clonal hematopoiesis: implications for malignancy, immunity, and treatment. Blood Cancer J. 13, 5 (2023).

    Article  Google Scholar 

  95. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Holzelova, E. et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med. 351, 1409–1418 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Wolach, B., Scharf, Y., Gavrieli, R., de Boer, M. & Roos, D. Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB. Blood 105, 61–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Saito, M. et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 52, 3579–3585 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. de Inocencio, J. et al. Somatic NOD2 mosaicism in Blau syndrome. J. Allergy Clin. Immunol. 136, 484–487.e482 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rowczenio, D. M. et al. Brief report: association of tumor necrosis factor receptor-associated periodic syndrome with gonosomal mosaicism of a novel 24-nucleotide TNFRSF1A deletion. Arthritis Rheumatol. 68, 2044–2049 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Niemela, J. E. et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 117, 2883–2886 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gutierrez-Rodrigues, F. et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood 142, 244–259 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dowdell, K. C. et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 115, 5164–5169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Neven, B. et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 118, 4798–4807 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 63, 3625–3632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lasiglie, D. et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J. Rheumatol. 44, 1667–1673 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Labrousse, M. et al. Mosaicism in autoinflammatory diseases: cryopyrin-associated periodic syndromes (CAPS) and beyond. A systematic review. Crit. Rev. Clin. Lab. Sci. 55, 432–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Mensa-Vilaro, A. et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143, 359–368 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Kant, B. et al. Gene mosaicism screening using single-molecule molecular inversion probes in routine diagnostics for systemic autoinflammatory diseases. J. Mol. Diagn. 21, 943–950 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Beck, D. B. et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA 329, 318–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Corty, R. W. et al. VEXAS-defining UBA1 somatic variants in 245,368 diverse individuals in the NIH All Of Us cohort. Arthritis Rheumatol. 76, 942–948 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Magerus-Chatinet, A. et al. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J. Clin. Invest. 121, 106–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Pelle, O. et al. Combined germline and somatic human FADD mutations cause autoimmune lymphoproliferative syndrome. J. Allergy Clin. Immunol. 153, 203–215 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Kubo, A. et al. Clonal expansion of second-hit cells with somatic recombinations or C>T transitions form porokeratosis in MVD or MVK mutant heterozygotes. J. Invest. Dermatol. 139, 2458–2466.e2459 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Snellings, D. A. et al. Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in bi-allelic loss of ENG or ACVRL1. Am. J. Hum. Genet. 105, 894–906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shiota, M. et al. Somatic mosaicism for a NRAS mutation associates with disparate clinical features in RAS-associated leukoproliferative disease: a report of two cases. J. Clin. Immunol. 35, 454–458 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Rowczenio, D. M. et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front. Immunol. 8, 1410 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ionescu, D. et al. First description of late-onset autoinflammatory disease due to somatic NLRC4 mosaicism. Arthritis Rheumatol. 74, 692–699 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, J. et al. Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease. Ann. Rheum. Dis. 81, 1173–1178 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Lopez-Nevado, M. et al. Next generation sequencing for detecting somatic FAS mutations in patients with autoimmune lymphoproliferative syndrome. Front. Immunol. 12, 656356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Baroja-Mazo, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Wu, Z. et al. Early activation of inflammatory pathways in UBA1-mutated hematopoietic stem and progenitor cells in VEXAS. Cell Rep. Med. 4, 101160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Louvrier, C. et al. NLRP3-associated autoinflammatory diseases: phenotypic and molecular characteristics of germline versus somatic mutations. J. Allergy Clin. Immunol. 145, 1254–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Nakagawa, K. et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 74, 603–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Georgin-Lavialle, S. et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br. J. Dermatol. 186, 564–574 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Ferrada, M. A. et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood 140, 1496–1506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hwang, S. M. et al. Are clonal cells circulating in the peripheral blood of myelodysplastic syndrome?: quantitative comparison between bone marrow and peripheral blood by targeted gene sequencing and fluorescence in situ hybridization. Leuk. Res. 71, 92–94 (2018).

    Article  PubMed  Google Scholar 

  128. Mensa-Vilaro, A. et al. Brief report: first identification of intrafamilial recurrence of Blau syndrome due to gonosomal NOD2 mosaicism. Arthritis Rheumatol. 68, 1039–1044 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Poulter, J. A. et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood 137, 3676–3681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hage-Sleiman, M. et al. Dominance of an UBA1 mutant clone over a CALR mutant clone: from essential thrombocytemia to VEXAS. Haematologica 106, 3245–3248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Al-Hakim, A. et al. Recovery of bone marrow function in VEXAS syndrome-potential role for romiplostim. Hemasphere 7, e934 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. De Langhe, E. et al. TET2-driver and NLRC4-passenger variants in adult-onset autoinflammation. N. Engl. J. Med. 388, 1626–1629 (2023).

    Article  PubMed  Google Scholar 

  133. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Martinez-Jimenez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 53, 1348–1359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Magerus, A., Bercher-Brayer, C. & Rieux-Laucat, F. The genetic landscape of the FAS pathway deficiencies. Biomed. J. 44, 388–399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Materna-Kiryluk, A. et al. Mosaic IL6ST variant inducing constitutive GP130 cytokine receptor signaling as a cause of neonatal onset immunodeficiency with autoinflammation and dysmorphy. Hum. Mol. Genet. 30, 226–233 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Rebouissou, S. et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457, 200–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Schmitz, R. et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med. 206, 981–989 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Karri, U., Harasimowicz, M., Carpio Tumba, M. & Schwartz, D. M. The complexity of being A20: from biological functions to genetic associations. J. Clin. Immunol. 44, 76 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Diamond, E. L. et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 6, 154–165 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Wesner, N. et al. Inflammatory disorders associated with trisomy 8-myelodysplastic syndromes: French retrospective case-control study. Eur. J. Haematol. 102, 63–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Liu, Z. et al. Clinical features and prognosis of patients with gastrointestinal Behcet’s disease-like syndrome and myelodysplastic syndrome with and without trisomy 8. Semin. Arthritis Rheum. 55, 152039 (2022).

    Article  PubMed  Google Scholar 

  146. Koguchi-Yoshioka, H. et al. Behcet’s disease-like symptoms associated with myelodysplastic syndrome with trisomy 8: a case report and review of the literature. Acta Derm. Venereol. 94, 355–356 (2014).

    Article  PubMed  Google Scholar 

  147. Esatoglu, S. N. et al. A reappraisal of the association between Behcet’s disease, myelodysplastic syndrome and the presence of trisomy 8: a systematic literature review. Clin. Exp. Rheumatol. 33, S145–S151 (2015).

    PubMed  Google Scholar 

  148. Fu, Y. et al. Trisomy 8 associated clonal cytopenia featured with acquired auto-inflammation and its response to JAK inhibitors. Front. Med. 9, 895965 (2022).

    Article  Google Scholar 

  149. Suntharalingham, J. P. et al. Emerging phenotypes linked to variants in SAMD9 and MIRAGE syndrome. Front. Endocrinol. 13, 953707 (2022).

    Article  Google Scholar 

  150. Weeks, L. D. et al. Age-related diseases of inflammation in myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 139, 1246–1250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Watad, A. et al. Somatic mutations and the risk of undifferentiated autoinflammatory disease in MDS: an under-recognized but prognostically important complication. Front. Immunol. 12, 610019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kurita, D. et al. Severe RAS-associated lymphoproliferative disease case with increasing αβ double-negative T cells with atypical features. J. Clin. Immunol. 43, 1992–1996 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Calvo, K. R. et al. JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood 125, 2753–2758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lanzarotti, N. et al. RAS-associated lymphoproliferative disease evolves into severe juvenile myelo-monocytic leukemia. Blood 123, 1960–1963 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Bende, R. J. et al. Salivary gland mucosa-associated lymphoid tissue-type lymphoma from Sjogren’s syndrome patients in the majority express rheumatoid factors affinity-selected for IgG. Arthritis Rheumatol. 72, 1330–1340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, M. M. et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 19, 4–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jennings, L. J. et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 19, 341–365 (2017).

    Article  PubMed  Google Scholar 

  158. Wang, Y. et al. Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biol. 22, 92 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vlasschaert, C. et al. A practical approach to curate clonal hematopoiesis of indeterminate potential in human genetic data sets. Blood 141, 2214–2223 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wojcik, M. H. et al. Genome sequencing for diagnosing rare diseases. N. Engl. J. Med. 390, 1985–1997 (2024).

    Article  CAS  PubMed  Google Scholar 

  162. Vu, T. N. et al. Cell-level somatic mutation detection from single-cell RNA sequencing. Bioinformatics 35, 4679–4687 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saito, M. et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 111, 2132–2141 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Wu, L. R., Chen, S. X., Wu, Y., Patel, A. A. & Zhang, D. Y. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification. Nat. Biomed. Eng. 1, 714–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Maslov, A. Y. et al. Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing. Sci. Adv. 8, eabm3259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ueda, S. et al. A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy. Proc. Natl Acad. Sci. USA 119, e2123241119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, M. H. et al. DNA mismatch and damage patterns revealed by single-molecule sequencing. Nature 630, 752–761 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ju, Y. S. et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 543, 714–718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Huang, A. Y. et al. MosaicHunter: accurate detection of postzygotic single-nucleotide mosaicism through next-generation sequencing of unpaired, trio, and paired samples. Nucleic Acids Res. 45, e76 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dou, Y. et al. Accurate detection of mosaic variants in sequencing data without matched controls. Nat. Biotechnol. 38, 314–319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yang, X. et al. Control-independent mosaic single nucleotide variant detection with DeepMosaic. Nat. Biotechnol. 41, 870–877 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ha, Y. J. et al. Comprehensive benchmarking and guidelines of mosaic variant calling strategies. Nat. Methods 20, 2058–2067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sun, S., Wang, Y., Maslov, A. Y., Dong, X. & Vijg, J. SomaMutDB: a database of somatic mutations in normal human tissues. Nucleic Acids Res. 50, D1100–D1108 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Garrison, M. A. et al. Genomic data resources of the Brain Somatic Mosaicism Network for neuropsychiatric diseases. Sci. Data 10, 813 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Comont, T. et al. Azacitidine for patients with Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry. Br. J. Haematol. 196, 969–974 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Barrett, M., Hand, C. K., Shanahan, F., Murphy, T. & O’Toole, P. W. Mutagenesis by microbe: the role of the microbiota in shaping the cancer genome. Trends Cancer 6, 277–287 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Matsumoto, Y. et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat. Med. 13, 470–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Mass, E. et al. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549, 389–393 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rahmberg, A. R. et al. Ongoing production of tissue-resident macrophages from hematopoietic stem cells in healthy adult macaques. Blood Adv. 8, 523–537 (2023).

    Article  PubMed Central  Google Scholar 

  183. Zhou, Q. et al. Brief report: cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol. 67, 2482–2486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Itamiya, T. et al. Efficacy of canakinumab on AA amyloidosis in late-onset NLRP3-associated autoinflammatory disease with an I574F somatic mosaic mutation. Clin. Rheumatol. 41, 2233–2237 (2022).

    Article  PubMed  Google Scholar 

  185. Kawasaki, Y. et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 69, 447–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Liang, J. et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr. Dev. Pathol. 20, 498–505 (2017).

    Article  PubMed  Google Scholar 

  187. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Terre, A., Magnotti, F., Piot, J. M., Boursier, G. & Georgin-Lavialle, S. Pyrin-associated autoinflammatory disease with p.Thr577Ala MEFV somatic mutation. Eur. J. Intern. Med. 120, 139–141 (2024).

    Article  CAS  PubMed  Google Scholar 

  190. Assrawi, E. et al. Mosaic variants in TNFRSF1A: an emerging cause of tumour necrosis factor receptor-associated periodic syndrome. Rheumatology 62, 473–479 (2022).

    Article  PubMed  Google Scholar 

  191. Kontzias, A. et al. Somatic mosaicism in adult-onset TNF receptor-associated periodic syndrome (TRAPS). Mol. Genet. Genom. Med. 7, e791 (2019).

    Article  Google Scholar 

  192. Lin, Y. et al. Chinese family with Blau syndrome: mutated NOD2 allele transmitted from the father with de novo somatic and germ line mosaicism. J. Dermatol. 47, e395 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Del Bel, K. L. et al. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J. Allergy Clin. Immunol. 139, 2016–2020.e2015 (2017).

    Article  PubMed  Google Scholar 

  195. Takeichi, T. et al. Autoinflammatory keratinization disease with hepatitis and autism reveals roles for JAK1 kinase hyperactivity in autoinflammation. Front. Immunol. 12, 737747 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Flex, E. et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J. Exp. Med. 205, 751–758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hsu, A. P. et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J. Allergy Clin. Immunol. 131, 1586–1593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ma, C. A. et al. Somatic STAT5b gain-of-function mutations in early onset nonclonal eosinophilia, urticaria, dermatitis, and diarrhea. Blood 129, 650–653 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rajala, H. L. et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 121, 4541–4550 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nicolae, A. et al. Frequent STAT5B mutations in γδ hepatosplenic T-cell lymphomas. Leukemia 28, 2244–2248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Aluri, J. et al. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137, 2450–2462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood 92, 3018–3024 (1998).

    Article  CAS  PubMed  Google Scholar 

  203. Bolze, A. et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am. J. Hum. Genet. 87, 873–881 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. McMillan, E. A. et al. Chemistry-first approach for nomination of personalized treatment in lung cancer. Cell 173, 864–878.e829 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Riller, Q. & Rieux-Laucat, F. RASopathies: from germline mutations to somatic and multigenic diseases. Biomed. J. 44, 422–432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Yu, L. et al. De novo somatic mosaicism of CYBB caused by intronic LINE-1 element insertion resulting in chronic granulomatous disease. J. Clin. Immunol. 43, 88–100 (2023).

    Article  CAS  PubMed  Google Scholar 

  207. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  CAS  PubMed  Google Scholar 

  208. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Hagl, B. et al. Somatic alterations compromised molecular diagnosis of DOCK8 hyper-IgE syndrome caused by a novel intronic splice site mutation. Sci. Rep. 8, 16719 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Blazquez-Moreno, A. et al. Analysis of the recovery of CD247 expression in a PID patient: insights into the spontaneous repair of defective genes. Blood 130, 1205–1208 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Hoshino, A. et al. Modification of cellular and humoral immunity by somatically reverted T cells in X-linked lymphoproliferative syndrome type 1. J. Allergy Clin. Immunol. 143, 421–424.e411 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Ban, S. A. et al. Combined immunodeficiency evolving into predominant CD4+ lymphopenia caused by somatic chimerism in JAK3. J. Clin. Immunol. 34, 941–953 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wada, T. et al. Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings. J. Clin. Invest. 111, 1389–1397 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Busque, L. et al. Nonrandom X-inactivation patterns in normal females: ionization ratios vary with age. Blood 88, 59–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  215. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang, L. et al. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc. Natl Acad. Sci. USA 116, 9014–9019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Machado, H. E. et al. Diverse mutational landscapes in human lymphocytes. Nature 608, 724–732 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors of this Review were in part supported by the Intramural Research Program of the National Institutes of Health (NIH), National Human Genome Research Institute. D.B.B is supported by the NIH (R00AR078205) and the Arthritis National Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. S.T., F.C. and D.B.B. wrote the article.

Corresponding authors

Correspondence to Sofia Torreggiani or David B. Beck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Satu Mustjoki, who co-reviewed with Mikko Myllymäki; Frederic Rieux Laucat; Joanne Reed; and Marco Gattorno for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allele bias

The preferential amplification or detection of one allele over another.

Gonadal mosaicism

A condition in which post-zygotic variants occur exclusively in germinal cells, typically without any phenotype in the carrier, but with the potential to lead to disease owing to apparent de novo germline mutations in the offspring.

Gonosomal mosaicism

A condition in which post-zygotic variants occur in a combination of somatic and germinal cells; carriers of gonosomal mosaicism could have a phenotype or not depending on the variant, and the fraction and type of mutant cells, and can transmit their variant to their offspring as a germline variant.

Mutation burden

The number of mutations present in the investigated genome, often expressed as the number of mutations per megabase.

Revertant mosaicism

A condition in which the effect of a germline disease-causing variant is corrected by a second spontaneous mutation event in a somatic cell, conferring a selective advantage to the revertant clone and leading to its expansion.

Somatic mosaicism

A condition in which post-zygotic mutations occur exclusively in somatic cells with possible phenotypic consequences in the carrier, but no potential to be transmitted to the offspring.

Variant allele fraction

The proportion of reads supporting the variant allele relative to the total number of reads at that genomic location.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torreggiani, S., Castellan, F.S., Aksentijevich, I. et al. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 20, 683–698 (2024). https://doi.org/10.1038/s41584-024-01168-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-024-01168-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing