Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus

Abstract

Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi–Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi–Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.

Key points

  • Genetic defects impairing intracellular nucleic acid and protein processing and/or STING activation cause autoinflammatory interferonopathies, indicating that intracellular sensor-mediated type I interferon production exhibits disease-specific and disease-overlapping clinical features.

  • Identification of the genetic causes of monogenic systemic lupus erythematosus (SLE) reveals molecular mechanisms triggered by extranuclear nucleic that distinguish monogenic SLE from the autoinflammatory interferonopathies.

  • Monogenic inborn errors of immunity caused by NF-κB dysregulation, mitochondrial dysfunction or impaired DNA damage responses unravel sources of interferogenic nucleic acids that drive type I interferon production in the context of complex developmental and/or immune-dysregulation.

  • Treatments that block interferon signalling and interferon-stimulated genes continue to elucidate the role of type I interferon in driving systemic and organ-specific inflammation.

  • Novel drugs targeting cytoplasmic sensors in autoinflammatory interferonopathies and endosomal TLRs in paediatric-onset SLE provide new treatment opportunities for a broader spectrum of diseases with presumed interferon-mediated pathology.

  • Advances in modelling tissue and organ inflammation start to unravel the effect of disease-causing mutations on critical tissues. These insights herald a new era of precision medicine in rare monogenic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathway dysregulation in autoinflammatory type I interferonopathies and monogenic SLE.
Fig. 2: Pathomechanisms causing distinct and overlapping clinical manifestations in the interferonopathies.
Fig. 3: Pathogenesis of intracellular oligonucleotidopathies.
Fig. 4: Pathogenesis of STINGopathies.
Fig. 5: Pathogenesis of 20S proteasomopathies.
Fig. 6: Pathogenesis of monogenic SLE.
Fig. 7: Proposed grouping of IEIs with reported interferon signatures based on pathomechanisms and the presumed contribution of type I interferon.

Similar content being viewed by others

References

  1. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Crow, Y. J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci. 1238, 91–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Crow, Y. J. et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet 38, 917–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Deng, Z. et al. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 217, e20201045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Steiner, A. et al. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat. Commun. 13, 2321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lepelley, A. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. 2020;217:e20200600.

  10. Agarwal, A. K. et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87, 866–872 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garg, A. et al. An autosomal recessive syndrome of joint contractures, muscular atrophy, microcytic anemia, and panniculitis-associated lipodystrophy. J. Clin. Endocrinol. Metab. 95, E58–E63 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kitamura, A. et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Invest. 121, 4150–4160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arima, K. et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc. Natl Acad. Sci. USA 108, 14914–14919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meuwissen, M. E. et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213, 1163–1174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Duncan, C.J.A. et al. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci. Immunol. 4, eaav7501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Gruber, C. et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J. Exp. Med. 217, e20192319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Becker, L. L. et al. Interferon receptor dysfunction in a child with malignant atrophic papulosis and CNS involvement. Lancet Neurol. 21, 682–686 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Capobianchi, M. R., Uleri, E., Caglioti, C. & Dolei, A. Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor. Rev. 26, 103–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Bave, U. et al. FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J. Immunol. 171, 3296–3302 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moody, K. L., Uccellini, M. B., Avalos, A. M., Marshak-Rothstein, A. & Viglianti, G. A. Toll-like receptor-dependent immune complex activation of B cells and dendritic cells. Methods Mol. Biol. 1390, 249–272 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Yum, S., Li, M., Fang, Y. & Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl Acad. Sci. USA 118, e2100225118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidson, S. et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci. Immunol. 7, eabi6763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grouard, G., Durand, I., Filgueira, L., Banchereau, J. & Liu, Y. J. Dendritic cells capable of stimulating T cells in germinal centres. Nature 384, 364–367 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stremenova Spegarova, J. et al. A de novo TLR7 gain-of-function mutation causing severe monogenic lupus in an infant. J. Clin. Invest. 134, e179193 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  29. David, C. et al. Interface gain-of-function mutations in TLR7 cause systemic and neuro-inflammatory disease. J. Clin. Immunol. 44, 60 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 1104–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schoggins, J. W. Interferon-stimulated genes: what do they all do? Annu. Rev. Virol. 6, 567–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Durham, G. A., Williams, J. J. L., Nasim, M. T. & Palmer, T. M. Targeting SOCS proteins to control JAK-STAT signalling in disease. Trends Pharmacol. Sci. 40, 298–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Linossi, E. M. & Nicholson, S. E. Kinase inhibition, competitive binding and proteasomal degradation: resolving the molecular function of the suppressor of cytokine signaling (SOCS) proteins. Immunol. Rev. 266, 123–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Hermann, M. & Bogunovic, D. ISG15: in sickness and in health. Trends Immunol. 38, 79–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mishra, B. & Ivashkiv, L. B. Interferons and epigenetic mechanisms in training, priming and tolerance of monocytes and hematopoietic progenitors. Immunol. Rev. 323, 257–275 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gough, D. J., Messina, N. L., Clarke, C. J., Johnstone, R. W. & Levy, D. E. Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 36, 166–174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-gamma-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Leung, Y. T. et al. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 10, 191–199 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A, 296–312 (2015).

    Article  PubMed  Google Scholar 

  44. Crow, Y. J. et al. Cree encephalitis is allelic with Aicardi-Goutieres syndrome: implications for the pathogenesis of disorders of interferon α metabolism. J. Med. Genet. 40, 183–187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rice, G. I. et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uggenti, C. et al. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat. Genet. 52, 1364–1372 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Piccoli, C. et al. Late-onset Aicardi-Goutières syndrome: a characterization of presenting clinical features. Pediatr. Neurol. 115, 1–6 (2021).

    Article  PubMed  Google Scholar 

  50. Livingston, J. H. et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 51, 76–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Rice, G. I. et al. Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics 48, 166–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crow, Y. J. et al. Mutations in ADAR1, IFIH1, and RNASEH2B presenting as spastic paraplegia. Neuropediatrics 45, 386–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Garau, J. et al. Molecular genetics and interferon signature in the Italian Aicardi Goutières syndrome cohort: report of 12 new cases and literature review. J. Clin. Med. 8, 750 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramesh, V. et al. Intracerebral large artery disease in Aicardi-Goutieres syndrome implicates SAMHD1 in vascular homeostasis. Dev. Med. Child. Neurol. 52, 725–732 (2010).

    Article  PubMed  Google Scholar 

  55. Thiele, H. et al. Cerebral arterial stenoses and stroke: novel features of Aicardi-Goutieres syndrome caused by the Arg164X mutation in SAMHD1 are associated with altered cytokine expression. Hum. Mutat. 31, E1836–E1850 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xin, B. et al. Homozygous mutation in SAMHD1 gene causes cerebral vasculopathy and early onset stroke. Proc. Natl Acad. Sci. USA 108, 5372–5377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cattalini, M. et al. Exploring autoimmunity in a cohort of children with genetically confirmed Aicardi-Goutieres syndrome. J. Clin. Immunol. 36, 693–699 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Gavazzi, F. et al. Hepatic involvement in Aicardi-Goutieres syndrome. Neuropediatrics 52, 441–447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramantani, G. et al. Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutieres syndrome. Arthritis Rheum. 62, 1469–1477 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Samanta, D., Ramakrishnaiah, R., Crary, S. E., Sukumaran, S. & Burrow, T. A. Multiple autoimmune disorders in Aicardi-Goutieres syndrome. Pediatr. Neurol. 96, 37–39 (2019).

    Article  PubMed  Google Scholar 

  61. Naesens, L. et al. Mutations in RNU7-1 weaken secondary RNA structure, induce MCP-1 and CXCL10 in CSF, and result in Aicardi-Goutieres syndrome with severe end-organ involvement. J. Clin. Immunol. 42, 962–974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Akwa, Y. et al. Transgenic expression of IFN-α in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J. Immunol. 161, 5016–5026 (1998).

  63. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319–331.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, K. et al. Inverted Alu repeats: friends or foes in the human transcriptome. Exp. Mol. Med. 56, 1250–1262 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hasler, J. & Strub, K. Alu elements as regulators of gene expression. Nucleic Acids Res. 34, 5491–5497 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ahmad, S. et al. Breaching self-tolerance to alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810 e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ochoa, E. et al. Pathogenic tau-induced transposable element-derived dsRNA drives neuroinflammation. Sci. Adv. 9, eabq5423 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dorrity, T. J. et al. Long 3’UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci. Immunol. 8, eadg2979 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Baldwin, E. T. et al. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 626, 194–206 (2024).

    Article  CAS  PubMed  Google Scholar 

  72. Hedges, D. J. et al. Differential alu mobilization and polymorphism among the human and chimpanzee lineages. Genome Res. 14, 1068–1075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hormozdiari, F. et al. Rates and patterns of great ape retrotransposition. Proc. Natl Acad. Sci. USA 110, 13457–13462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Höss, M. et al. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J. 18, 3868–3875 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim, S. H., Kim, G. H., Kemp, M. G. & Choi, J. H. TREX1 degrades the 3’ end of the small DNA oligonucleotide products of nucleotide excision repair in human cells. Nucleic Acids Res. 50, 3974–3984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, P. et al. Aicardi-Goutieres syndrome protein TREX1 suppresses L1 and maintains genome integrity through exonuclease-independent ORF1p depletion. Nucleic Acids Res. 45, 4619–4631 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Richards, A. et al. C-terminal truncations in human 3’-5’ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat. Genet. 39, 1068–1070 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, K. et al. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J. Autoimmun. 90, 105–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Reijns, M. A. et al. The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. J. Biol. Chem. 286, 10530–10539 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Olivares, M., Garcia-Perez, J. L., Thomas, M. C., Heras, S. R. & Lopez, M. C. The non-LTR (long terminal repeat) retrotransposon L1Tc from Trypanosoma cruzi codes for a protein with RNase H activity. J. Biol. Chem. 277, 28025–28030 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Piskareva, O. & Schmatchenko, V. DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro. FEBS Lett. 580, 661–668 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Heuzé, J. et al. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart. EMBO J. 42, e113104 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhitai, H. et al. RNA polymerase drives ribonucleotide excision DNA repair in E. coli. Cell 186, 2425–2437 (2023).

    Article  Google Scholar 

  87. García-Muse, T. & Aguilera, A. R loops: from physiological to pathological roles. Cell 179, 604–618 (2019).

    Article  PubMed  Google Scholar 

  88. Mankan, K. et al. Cytosolic RNA:DNA hybrids activate the cGAS–STING axis. EMBO J. 33, 2937–2946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cristini, A. et al. RNase H2, mutated in Aicardi-Goutieres syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. Nat. Commun. 13, 2961 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beloglazova, N. et al. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J. Biol. Chem. 288, 8101–8110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maharana, S. et al. SAMHD1 controls innate immunity by regulating condensation of immunogenic self RNA. Mol. Cell 82, 3712–3728 e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Hu, S. et al. SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation. PLoS Genet. 11, e1005367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Grand, M. G. et al. Cerebroretinal vasculopathy. A new hereditary syndrome. Ophthalmology 95, 649–659 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Storimans, C. W., Van Schooneveld, M. J., Oosterhuis, J. A. & Bos, P. J. A new autosomal dominant vascular retinopathy syndrome. Eur. J. Ophthalmol. 1, 73–78 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Cohn, A. C., Kotschet, K., Veitch, A., Delatycki, M. B. & McCombe, M. F. Novel ophthalmological features in hereditary endotheliopathy with retinopathy, nephropathy and stroke syndrome. Clin. Exp. Ophthalmol. 33, 181–183 (2005).

    Article  PubMed  Google Scholar 

  97. Hasan, M. et al. Cytosolic nuclease TREX1 regulates oligosaccharyltransferase activity independent of nuclease activity to suppress immune activation. Immunity 43, 463–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee-Kirsch, M. A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. 85, 531–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Ravenscroft, J. C., Suri, M., Rice, G. I., Szynkiewicz, M. & Crow, Y. J. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am. J. Med. Genet. A 155A, 235–237 (2011).

    Article  PubMed  Google Scholar 

  100. Konig, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    Article  PubMed  Google Scholar 

  101. Gay, B. B. Jr & Kuhn, J. P. A syndrome of widened medullary cavities of bone, aortic calcification, abnormal dentition, and muscular weakness (the Singleton-Merten syndrome). Radiology 118, 389–395 (1976).

    Article  PubMed  Google Scholar 

  102. Riou, M. C. et al. Oral phenotype of Singleton-Merten syndrome: a systematic review illustrated with a case report. Front. Genet. 13, 875490 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bursztejn, A. C. et al. Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1: overlap between Aicardi-Goutieres and Singleton-Merten syndromes. Br. J. Dermatol. 173, 1505–1513 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. de Carvalho, L. M. et al. Musculoskeletal disease in MDA5-related type I interferonopathy: a mendelian mimic of Jaccoud’s arthropathy. Arthritis Rheumatol. 69, 2081–2091 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jang, M. A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am. J. Hum. Genet. 96, 266–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Günther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).

    Article  PubMed  Google Scholar 

  108. Melki, I. et al. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J. Allergy Clin. Immunol. 140, 543–552 e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Lin, B. et al. Case report: novel SAVI-causing variants in STING1 expand the clinical disease spectrum and suggest a refined model of STING activation. Front. Immunol. 12, 636225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin, B. et al. A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). J. Allergy Clin. Immunol. 146, 1204–1208 e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Watkin, L. B. et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47, 654–660 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Munoz, J. et al. Stimulator of interferon genes-associated vasculopathy with onset in infancy : a mimic of childhood granulomatosis with polyangiitis. JAMA Dermatol. 151, 872–877 (2015).

    Article  PubMed  Google Scholar 

  113. Omoyinmi, E. et al. Stimulator of interferon genes-associated vasculitis of infancy. Arthritis Rheumatol. 67, 808 (2015).

    Article  PubMed  Google Scholar 

  114. Chia, J. et al. Failure to thrive, interstitial lung disease, and progressive digital necrosis with onset in infancy. J. Am. Acad. Dermatol. 74, 186–189 (2016).

    Article  PubMed  Google Scholar 

  115. Munoz, J. et al. Stimulator of interferon genes-associated vasculopathy with onset in infancy: a mimic of childhood granulomatosis with polyangiitis. JAMA Dermatol. 151, 872–877 (2015).

    Article  PubMed  Google Scholar 

  116. Seo, J. et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J. Allergy Clin. Immunol. 139, 1396–1399 e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Picard, C. et al. Severe pulmonary fibrosis as the first manifestation of interferonopathy (TMEM173 mutation). Chest 150, e65–e71 (2016).

    Article  PubMed  Google Scholar 

  118. Fremond, M. L. et al. Brief report: blockade of TANK-binding kinase 1/IKKvarε inhibits mutant stimulator of interferon genes (STING)-mediated inflammatory responses in human peripheral blood mononuclear cells. Arthritis Rheumatol. 69, 1495–1501 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Jensson, B. O. et al. COPA syndrome in an Icelandic family caused by a recurrent missense mutation in COPA. BMC Med. Genet. 18, 129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Volpi, S. et al. Type I interferon pathway activation in COPA syndrome. Clin. Immunol. 187, 33–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Tsui, J. L. et al. Analysis of pulmonary features and treatment approaches in the COPA syndrome. ERJ Open Res. 4, 00017-2018 (2018).

  122. Noorelahi, R., Perez, G. & Otero, H. J. Imaging findings of Copa syndrome in a 12-year-old boy. Pediatr. Radiol. 48, 279–282 (2018).

    Article  PubMed  Google Scholar 

  123. Fremond, M. L. et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J. Allergy Clin. Immunol. Pract. 9, 803–818 e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Vece, T. J. et al. Copa syndrome: a novel autosomal dominant immune dysregulatory disease. J. Clin. Immunol. 36, 377–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Taveira-DaSilva, A. M. et al. Expanding the phenotype of COPA syndrome: a kindred with typical and atypical features. J. Med. Genet. 56, 778–782 (2018).

    Article  PubMed  Google Scholar 

  126. Lodi, L. et al. Type I interferon-related kidney disorders. Kidney Int. 101, 1142–1159 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Fremond, M. L. & Crow, Y. J. STING-mediated lung inflammation and beyond. J. Clin. Immunol. 41, 501–514 (2021).

    Article  PubMed  Google Scholar 

  128. Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tanaka, Y. & Chen, Z. J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Abe, T. & Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88, 5328–5341 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jeltema, D., Abbott, K. & Yan, N. STING trafficking as a new dimension of immune signaling. J. Exp. Med. 220, e20220990 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, B. C. et al. STEEP mediates STING ER exit and activation of signaling. Nat. Immunol. 21, 868–879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Prakriya, M. & Lewis, R. S. Store-operated calcium channels. Physiol. Rev. 95, 1383–1436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Srikanth, S. et al. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat. Immunol. 20, 152–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Hirschenberger, M. et al. ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling. Nat. Commun. 14, 6770 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ishida, M. et al. A neurodevelopmental disorder associated with an activating de novo missense variant in ARF1. Hum. Mol. Genet. 32, 1162–1174 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, Y. et al. Clathrin-associated AP-1 controls termination of STING signalling. Nature 610, 761–767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ji, Y. et al. SEL1L-HRD1 endoplasmic reticulum-associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool. Nat. Cell Biol. 25, 726–739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, B. et al. Human STING is a proton channel. Science 381, 508–514 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Domizio, J. D. et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 603, 145–151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bailey, S. L., Harvey, S., Perrino, F. W. & Hollis, T. Defects in DNA degradation revealed in crystal structures of TREX1 exonuclease mutations linked to autoimmune disease. DNA Repair. 11, 65–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Huang, L. S. et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52, 475–486.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lubawy, J., Chowański, S., Adamski, Z. & Słocińska, M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front. Zool. 19, 1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Luksch, H. et al. STING-associated lung disease in mice relies on T cells but not type I interferon. J. Allergy Clin. Immunol. 144, 254–266.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lertkiatmongkol, P., Liao, D., Mei, H., Hu, Y. & Newman, P. J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol. 23, 253–259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chatfield, S. M., Thieblemont, N. & Witko-Sarsat, V. Expanding neutrophil horizons: new concepts in inflammation. J. Innate Immun. 10, 422–431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Frisch, S. M. & MacFawn, I. P. Type I interferons and related pathways in cell senescence. Aging Cell 19, e13234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ferrington, D. A. & Gregerson, D. S. Immunoproteasomes: structure, function, and antigen presentation. Prog. Mol. Biol. Transl. Sci. 109, 75–112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, Y. et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. de Jesus, A. A. et al. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. J. Allergy Clin. Immunol. 143, 1939–1943.e8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125, 4196–4211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Poli, M. C. et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am. J. Hum. Genet. 102, 1126–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kataoka, S. et al. Successful treatment of a novel type I interferonopathy due to a de novo PSMB9 gene mutation with a Janus kinase inhibitor. J. Allergy Clin. Immunol. 148, 639–644 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. van der Made, C. I. et al. Expanding the PRAAS spectrum: de novo mutations of immunoproteasome subunit β-type 10 in six infants with SCID-Omenn syndrome.Am. J. Hum. Genet. 111, 791–804 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Alehashemi, S. et al. A de novo dominant-negative PSMB8 mutation is linked to a more severe CANDLE-like phenotype [abstract]. Arthritis Rheumatol. 74 (suppl. 9), abstract number 1936 (2022).

  160. Ansar, M. et al. Biallelic variants in PSMB1 encoding the proteasome subunit beta6 cause impairment of proteasome function, microcephaly, intellectual disability, developmental delay and short stature. Hum. Mol. Genet. 29, 1132–1143 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Kury, S. et al. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder. Am. J. Hum. Genet. 100, 352–363 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Khalil, R. et al. PSMD12 haploinsufficiency in a neurodevelopmental disorder with autistic features. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177, 736–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Isidor, B. et al. Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype. Genet. Med. 24, 179–191 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, H. et al. PSMD12 promotes the activation of the MEK-ERK pathway by upregulating KIF15 to promote the malignant progression of liver cancer. Cancer Biol. Ther. 23, 1–11 (2022).

    PubMed  PubMed Central  Google Scholar 

  165. Deb, W. et al. PSMD11 loss-of-function variants correlate with a neurobehavioral phenotype, obesity, and increased interferon response. Am. J. Hum. Genet. 11, 1352–1369 (2024).

    Article  Google Scholar 

  166. Aharoni, S. et al. PSMC1 variant causes a novel neurological syndrome. Clin. Genet. 102, 324–332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kroll-Hermi, A. et al. Proteasome subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. EMBO Mol. Med. 12, e11861 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Küry, S. et al. Unveiling the crucial neuronal role of the proteasomal ATPase subunit gene PSMC5 in neurodevelopmental proteasomopathies. Preprint at medRxiv https://doi.org/10.1101/2024.01.13.24301174 (2024).

  169. Kanazawa, N. Nakajo-Nishimura syndrome: an autoinflammatory disorder showing pernio-like rashes and progressive partial lipodystrophy. Allergol. Int. 61, 197–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Buchbinder, D., Montealegre Sanchez, G. A., Goldbach-Mansky, R., Brunner, H. & Shulman, A. I. Rash, fever, and pulmonary hypertension in a 6-year-old female. Arthritis Care Res. 70, 785–790 (2018).

    Article  Google Scholar 

  171. Sanchez, G. A. M. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128, 3041–3052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Al-Mayouf, S. M. et al. Monogenic interferonopathies: phenotypic and genotypic findings of CANDLE syndrome and its overlap with C1q deficient SLE. Int. J. Rheum. Dis. 21, 208–213 (2018).

    Article  PubMed  Google Scholar 

  173. Torrelo, A. et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J. Am. Acad. Dermatol. 62, 489–495 (2010).

    Article  PubMed  Google Scholar 

  174. Yamazaki-Nakashimada, M. A. et al. Systemic autoimmunity in a patient with CANDLE syndrome. J. Investig. Allergol. Clin. Immunol. 29, 75–76 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gamez-Diaz, L. et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J. Allergy Clin. Immunol. 137, 223–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Kanazawa, N. et al. Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nat. Commun. 12, 6819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Papendorf, J. J., Kruger, E. & Ebstein, F. Proteostasis perturbations and their roles in causing sterile inflammation and autoinflammatory diseases. Cells 11, 1422 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Goldberg, A. L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Yim, W. W. & Mizushima, N. Lysosome biology in autophagy. Cell Discov. 6, 6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Suraweera, A., Munch, C., Hanssum, A. & Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48, 242–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kloetzel, P. M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Rock, K. L., York, I. A., Saric, T. & Goldberg, A. L. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 80, 1–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Griffin, T. A. et al. Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-γ)-inducible subunits. J. Exp. Med. 187, 97–104 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kingsbury, D. J., Griffin, T. A. & Colbert, R. A. Novel propeptide function in 20S proteasome assembly influences β subunit composition. J. Biol. Chem. 275, 24156–24162 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Papendorf, J. J. et al. Identification of eight novel proteasome variants in five unrelated cases of proteasome-associated autoinflammatory syndromes (PRAAS). Front. Immunol. 14, 1190104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 10, 104–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Kuehn, L. & Dahlmann, B. Proteasome activator PA28 and its interaction with 20S proteasomes. Arch. Biochem. Biophys. 329, 87–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  188. Di Cola, D. Human erythrocyte contains a factor that stimulates the peptidase activities of multicatalytic proteinase complex. Ital. J. Biochem. 41, 213–224 (1992).

    PubMed  Google Scholar 

  189. Pepelnjak, M. et al. Systematic identification of 20S proteasome substrates. Mol. Syst. Biol. 20, 403–427 (2024).

    PubMed  PubMed Central  Google Scholar 

  190. Baugh, J. M. & Pilipenko, E. V. 20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3. Mol. Cell. 16, 575–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Steffen, J., Seeger, M., Koch, A. & Kruger, E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 40, 147–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Zhao, C. et al. Multiple roles of the stress sensor GCN2 in immune cells. Int. J. Mol. Sci. 24, 4285 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Jaud, M. et al. Translational regulations in response to endoplasmic reticulum stress in cancers. Cells 9, 540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Willemsen, N., Arigoni, I., Studencka-Turski, M., Kruger, E. & Bartelt, A. Proteasome dysfunction disrupts adipogenesis and induces inflammation via ATF3. Mol. Metab. 62, 101518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bardag-Gorce, F. et al. Mallory bodies formed in proteasome-depleted hepatocytes: an immunohistochemical study. Exp. Mol. Pathol. 70, 7–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Ebstein, F. et al. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci. Transl. Med. 15, eabo3189 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sun, C. et al. An abundance of free regulatory (19S) proteasome particles regulates neuronal synapses. Science 380, eadf2018 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Kim, J. W. et al. Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 44, 314–323 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Zhu, G. et al. Type I interferonopathy due to a homozygous loss-of-inhibitory function mutation in STAT2. J. Clin. Immunol. 43, 808–818 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Alsohime, F. et al. JAK inhibitor therapy in a child with inherited USP18 deficiency. N. Engl. J. Med. 382, 256–265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Martin-Fernandez, M. et al. Systemic Type I IFN inflammation in human ISG15 deficiency leads to necrotizing skin lesions. Cell Rep. 31, 107633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bogunovic, D. et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337, 1684–1688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Martin-Fernandez, M. et al. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J. Exp. Med. 219, e20211273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lisnevskaia, L., Murphy, G. & Isenberg, D. Systemic lupus erythematosus. Lancet 384, 1878–1888 (2014).

    Article  PubMed  Google Scholar 

  205. Justiz Vaillant, A. A., Goyal, A., Varacallo, M. Systemic Lupus Erythematosus (StatPearls, 2023).

  206. Belot, A. et al. Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatol. 2, e99–e109 (2020).

    Article  PubMed  Google Scholar 

  207. Caielli, S., Wan, Z. & Pascual, V. Systemic lupus erythematosus pathogenesis: interferon and beyond. Annu. Rev. Immunol. 41, 533–560 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Pisetsky, D. S. & Lipsky, P. E. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 16, 565–579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Pac Kisaarslan, A. et al. Refractory and fatal presentation of severe autoimmune hemolytic anemia in a child with the DNASE1L3 mutation complicated with an additional DOCK8 variant. J. Pediatr. Hematol. Oncol. 43, e452–e456 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Tusseau, M. et al. DNASE1L3 deficiency, new phenotypes, and evidence for a transient type I IFN signaling. J. Clin. Immunol. 42, 1310–1320 (2022).

    Article  CAS  PubMed  Google Scholar 

  212. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Almitairi, J. O. M. et al. Structure of the C1r-C1s interaction of the C1 complex of complement activation. Proc. Natl Acad. Sci. USA 115, 768–773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ramirez-Ortiz, Z. G. et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat. Immunol. 14, 917–926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wicker-Planquart, C. et al. Molecular and cellular interactions of scavenger receptor SR-F1 with complement C1q provide insights into its role in the clearance of apoptotic cells. Front. Immunol. 11, 544 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Santocki M, Kolaczkowska E. On neutrophil extracellular trap (NET) removal: what we know thus far and why so little. Cells 9, 2079 (2020).

  217. Klickstein, L. B., Barbashov, S. F., Liu, T., Jack, R. M. & Nicholson-Weller, A. Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7, 345–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  218. Whaley, K., Ahmed, A. E. Control of immune complexes by the classical pathway. Behring Inst. Mitt. 111–120 (1989).

  219. Santer, D. M., Wiedeman, A. E., Teal, T. H., Ghosh, P. & Elkon, K. B. Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes. J. Immunol. 188, 902–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Spivia, W., Magno, P. S., Le, P. & Fraser, D. A. Complement protein C1q promotes macrophage anti-inflammatory M2-like polarization during the clearance of atherogenic lipoproteins. Inflamm. Res. 63, 885–893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Fraser, D. A. et al. C1q and MBL, components of the innate immune system, influence monocyte cytokine expression. J. Leukoc. Biol. 80, 107–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  223. Martin, M. & Blom, A. M. Complement in removal of the dead — balancing inflammation. Immunol. Rev. 274, 218–232 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Serpas, L. et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc. Natl Acad. Sci. USA 116, 641–649 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Soni, C. et al. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity 52, 1022–1038.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Trouw, L. A. et al. Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J. Clin. Invest. 114, 679–688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Stojan, G. & Petri, M. Anti-C1q in systemic lupus erythematosus. Lupus 25, 873–877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hartl, J. et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J. Exp. Med. 218, e20201138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Siegert, C. E. et al. Autoantibodies against C1q: view on clinical relevance and pathogenic role. Clin. Exp. Immunol. 116, 4–8 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Trendelenburg, M. Autoantibodies against complement component C1q in systemic lupus erythematosus. Clin. Transl. Immunol. 10, e1279 (2021).

    Article  CAS  Google Scholar 

  232. Gomez-Banuelos, E. et al. Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus. Nat. Commun. 14, 1388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Wolf, C. et al. UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci. Immunol. 9, eadi9769 (2024).

  234. Xie, C. et al. De novo PACSIN1 gene variant found in childhood lupus and a role for PACSIN1/TRAF4 complex in toll-like receptor 7 activation. Arthritis Rheumatol. 75, 1058–1071 (2023).

    Article  CAS  PubMed  Google Scholar 

  235. Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  236. Jensen, S. & Thomsen, A. R. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 86, 2900–2910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Mishra, H. et al. Disrupted degradative sorting of TLR7 is associated with human lupus. Sci. Immunol. 9, eadi9575 (2024).

    Article  CAS  PubMed  Google Scholar 

  238. Al-Azab, M. et al. Genetic variants in UNC93B1 predispose to childhood-onset systemic lupus erythematosus. Nat. Immunol. 25, 969–980 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. David, C. et al. Gain-of-function human UNC93B1 variants cause systemic lupus erythematosus and chilblain lupus. J. Exp. Med. 221, e20232066 (2024).

  240. Rael, V. E. et al. Large-scale mutational analysis identifies UNC93B1 variants that drive TLR-mediated autoimmunity in mice and humans. J. Exp. Med. 221, e20232005 (2024).

  241. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  242. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Li, S., Yao, J. C., Li, J. T., Schmidt, A. P. & Link, D. C. TLR7/8 agonist treatment induces an increase in bone marrow resident dendritic cells and hematopoietic progenitor expansion and mobilization. Exp. Hematol. 96, 35–43.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lood, C., Arve, S., Ledbetter, J. & Elkon, K. B. TLR7/8 activation in neutrophils impairs immune complex phagocytosis through shedding of FcgRIIA. J. Exp. Med. 214, 2103–2119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Belot, A. et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 65, 2161–2171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. He, Y. et al. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance. J. Exp. Med. 219, e20211004 (2022).

  247. Miyamoto, A. et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. Nature 416, 865–869 (2002).

    Article  CAS  PubMed  Google Scholar 

  248. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Blanco, P., Palucka, A. K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294, 1540–1543 (2001).

    Article  CAS  PubMed  Google Scholar 

  250. Lazzaretto, B. & Fadeel, B. Intra- and extracellular degradation of neutrophil extracellular traps by macrophages and dendritic cells. J. Immunol. 203, 2276–2290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Becker, Y. et al. Anti-mitochondrial autoantibodies in systemic lupus erythematosus and their association with disease manifestations. Sci. Rep. 9, 4530 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Caielli, S. et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 184, 4464–4479.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Newman, L. E. & Shadel, G. S. Mitochondrial DNA release in innate immune signaling. Annu. Rev. Biochem. 92, 299–332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hooftman, A. et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 615, 490–498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zecchini, V. et al. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature 615, 499–506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Briggs, T. A. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 43, 127–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  260. Chan, M. P. et al. DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat. Commun. 6, 5853 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Hong, Y. et al. Janus kinase inhibition for autoinflammation in patients with DNASE2 deficiency. J. Allergy Clin. Immunol. 145, 701–705.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Basu, S. et al. A young boy with rash, arthritis, and developmental delay: monogenic lupus due to DNASE2 gene defect. Int. J. Rheum. Dis. 26, 2599–2602 (2023).

    Article  CAS  PubMed  Google Scholar 

  263. Del Bel, K. L. et al. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J. Allergy Clin. Immunol. 139, 2016–2020.e5 (2017).

    Article  PubMed  Google Scholar 

  264. Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Uzel, G. et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J. Allergy Clin. Immunol. 131, 1611–1623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Lee, P. Y. et al. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J. Allergy Clin. Immunol. 146, 1194–1200.e1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Xue, C. et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal. Transduct. Target. Ther. 8, 204 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Chen, L. et al. Comparison of disease phenotypes and mechanistic insight on causal variants in patients with DADA2. J. Allergy Clin. Immunol. 152, 771–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  269. Dhanwani, R. et al. Cellular sensing of extracellular purine nucleosides triggers an innate IFN-β response. Sci. Adv. 6, eaba3688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Malle, L. et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c+ B cells. Nature 615, 305–314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Malewicz, M. et al. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair. Genes. Dev. 25, 2031–2040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Gul, E. et al. Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency. J. Allergy Clin. Immunol. 142, 246–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  273. Klein, B. & Gunther, C. Type I interferon induction in cutaneous DNA damage syndromes. Front. Immunol. 12, 715723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Starokadomskyy, P. et al. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat. Immunol. 17, 495–504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Meyts, I. & Casanova, J. L. A human inborn error connects the alpha’s. Nat. Immunol. 17, 472–474 (2016).

    Article  CAS  PubMed  Google Scholar 

  276. Hussain, M. et al. Skin abnormalities in disorders with DNA repair defects, premature aging, and mitochondrial dysfunction. J. Invest. Dermatol. 141, 968–975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Lopriore, P., Gomes, F., Montano, V., Siciliano, G. & Mancuso, M. Mitochondrial epilepsy, a challenge for neurologists. Int. J. Mol. Sci. 23, 13216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Lepelley, A. et al. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J. Exp. Med. 218, e20201560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Crow, Y. J. & Stetson, D. B. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22, 471–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  280. Meffre, E., & O’Connor, K. C. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol. Rev. 292, 90–101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Oikonomou, V. et al. The role of interferon-γ in autoimmune polyendocrine syndrome type 1. N. Engl. J. Med. 390, 1873–1884 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Zanussi, J. T. et al. Clinical diagnoses associated with a positive antinuclear antibody test in patients with and without autoimmune disease. BMC Rheumatol. 7, 24 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Orme, M. E., Voreck, A., Aksouh, R., Ramsey-Goldman, R. & Schreurs, M. W. J. Systematic review of anti-dsDNA testing for systemic lupus erythematosus: a meta-analysis of the diagnostic test specificity of an anti-dsDNA fluorescence enzyme immunoassay. Autoimmun. Rev. 20, 102943 (2021).

    Article  CAS  PubMed  Google Scholar 

  284. Sakakibara, S. et al. Clonal evolution and antigen recognition of anti-nuclear antibodies in acute systemic lupus erythematosus. Sci. Rep. 7, 16428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Santacruz, J. C. et al. A practical perspective of the hematologic manifestations of systemic lupus erythematosus. Cureus 14, e22938 (2022).

    PubMed  PubMed Central  Google Scholar 

  286. Kanagal-Shamanna, R., Beck, D. B. & Calvo, K. R. Clonal hematopoiesis, inflammation, and hematologic malignancy. Annu. Rev. Pathol. 19, 479–506 (2024).

    Article  CAS  PubMed  Google Scholar 

  287. Gallo, G. R., Caulin-Glaser, T. & Lamm, M. E. Charge of circulating immune complexes as a factor in glomerular basement membrane localization in mice. J. Clin. Invest. 67, 1305–1313 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Du, H., Chen, M., Zhang, Y., Zhao, M. H. & Wang, H. Y. Cross-reaction of anti-DNA autoantibodies with membrane proteins of human glomerular mesangial cells in sera from patients with lupus nephritis. Clin. Exp. Immunol. 145, 21–27 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Paul, E. et al. Pathogenic anti-DNA antibodies in SLE: idiotypic families and genetic origins. Int. Rev. Immunol. 5, 295–313 (1990).

    Article  CAS  PubMed  Google Scholar 

  290. Sasaki, T. et al. Heterogeneity of immune complex-derived anti-DNA antibodies associated with lupus nephritis. Kidney Int. 39, 746–753 (1991).

    Article  CAS  PubMed  Google Scholar 

  291. Davies, K. A. et al. Clearance pathways of soluble immune complexes in the pig. Insights into the adaptive nature of antigen clearance in humans. J. Immunol. 155, 5760–5768 (1995).

    Article  CAS  PubMed  Google Scholar 

  292. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  293. Deocharan, B., Qing, X., Lichauco, J. & Putterman, C. α-Actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J. Immunol. 168, 3072–3078 (2002).

    Article  CAS  PubMed  Google Scholar 

  294. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 42, 599–608 (1999).

  295. DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  296. Molero-Luis, M. et al. Cerebrospinal fluid neopterin as a biomarker of neuroinflammatory diseases. Sci. Rep. 10, 18291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Choi, E. K., Gatenby, P. A., Bateman, J. F. & Cole, W. G. Antibodies to type II collagen in SLE: a role in the pathogenesis of deforming arthritis? Immunol. Cell Biol. 68, 27–31 (1990).

    Article  CAS  PubMed  Google Scholar 

  298. Santiago, M. B. Jaccoud-type lupus arthropathy. Lupus 31, 398–406 (2022).

    Article  CAS  PubMed  Google Scholar 

  299. Kim, H., Sanchez, G. A. & Goldbach-Mansky, R. Insights from mendelian interferonopathies: comparison of CANDLE, SAVI with AGS, monogenic lupus. J. Mol. Med. 94, 1111–1127 (2016).

    Article  CAS  PubMed  Google Scholar 

  300. Northcott, M. et al. Type 1 interferon status in systemic lupus erythematosus: a longitudinal analysis. Lupus Sci. Med. 9, e000625 (2022).

  301. Rodero, M. P. et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J. Exp. Med. 214, 1547–1555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Vanderver, A. et al. Janus kinase inhibition in the Aicardi-Goutieres syndrome. N. Engl. J. Med. 383, 986–989 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Rice, G. I. et al. Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12, 1159–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Rice, G. I. et al. Assessment of type I interferon signaling in pediatric inflammatory disease. J. Clin. Immunol. 37, 123–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  305. Huijser, E. et al. Serum interferon-α2 measured by single-molecule array associates with systemic disease manifestations in Sjogren’s syndrome. Rheumatology 61, 2156–2166 (2022).

    Article  CAS  PubMed  Google Scholar 

  306. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

  308. Kim, H. et al. Development of a validated interferon score using nanostring technology. J. Interferon Cytokine Res. 38, 171–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. de Jesus, A. A. et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130, 1669–1682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Viengkhou, B. & Hofer, M. J. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front. Immunol. 14, 1110593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Zhang, W., Xiao, D., Mao, Q. & Xia, H. Role of neuroinflammation in neurodegeneration development. Signal. Transduct. Target. Ther. 8, 267 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Cetin Gedik, K. et al. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Ann. Rheum. Dis. 81, 601–613 (2022).

    Article  PubMed  Google Scholar 

  314. Meesilpavikkai, K. et al. Efficacy of baricitinib in the treatment of chilblains associated with Aicardi-Goutieres syndrome, a type I interferonopathy. Arthritis Rheumatol. 71, 829–831 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Zimmermann, N. et al. Assessment of clinical response to Janus kinase inhibition in patients with familial chilblain lupus and TREX1 mutation. JAMA Dermatol. 155, 342–346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Boyadzhiev, M. et al. Disease course and treatment effects of a JAK inhibitor in a patient with CANDLE syndrome. Pediatr. Rheumatol. Online J. 17, 19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Patel, P. N. et al. Successful treatment of chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome with tofacitinib. Pediatr. Dermatol. 38, 528–529 (2021).

    Article  PubMed  Google Scholar 

  318. Rice, G. I. et al. Reverse-transcriptase inhibitors in the Aicardi-Goutieres syndrome. N. Engl. J. Med. 379, 2275–2277 (2018).

    Article  PubMed  Google Scholar 

  319. Gatz, S. A. et al. MCM3AP and POMP mutations cause a DNA-repair and DNA-damage-signaling defect in an immunodeficient child. Hum. Mutat. 37, 257–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  320. Meinhardt, A. et al. Curative treatment of POMP-related autoinflammation and immune dysregulation (PRAID) by hematopoietic stem cell transplantation. J. Clin. Immunol. 41, 1664–1667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  321. Martinez, C. et al. HSCT corrects primary immunodeficiency and immune dysregulation in patients with POMP-related autoinflammatory disease. Blood 138, 1896–1901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Verhoeven, D. et al. Hematopoietic stem cell transplantation in a patient with proteasome-associated autoinflammatory syndrome (PRAAS). J. Allergy Clin. Immunol. 149, 1120–1127 e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  323. Riggs, J. M. et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci. Med. 5, e000261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Doroudchi, A. & Butte, M. First reported use of anifrolumab to treat a monogenic interferonopathy (DNASE2 loss of function). Clin. Immunol. 250, 109593 (2023).

    Article  Google Scholar 

  325. Mansilla-Polo, M. et al. Successful treatment of stimulator of interferon genes-associated vasculopathy of infantile onset SAVI syndrome with anifrolumab. JAMA Dermatol. 160, 899–901 (2024).

  326. Alehashemi, S. B. A. et al. Anifrolumab normalizes the type I interferon signature in a cohort of patients with type I interferonopathies [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract number 2477 (2023).

  327. Thawani, A. et al. Template and target-site recognition by human LINE-1 in retrotransposition. Nature 626, 186–193 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this Review were supported by the Intramural Research Program of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Raphaela Goldbach-Mansky.

Ethics declarations

Competing interests

R.G.M. has a government funded Cooperative Research and Development Agreement that supports translational research with STING inhibitors. S.A. and A.A.D.J. have no relevant competing interests to report.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Alexandre Belot, who co-reviewed with Anne-Laure Mathieu; Min Ae Lee-Kirsch; Ryuta Nishikomori, who co-reviewed with Kazushi Izawa; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Autosomal-dominant mutation

A mutation that is present on one allele (copy) of a given gene.

Autosomal-recessive mutation

A mutation that is present on both alleles (copies) of a given gene.

Biallelic variants

Variants that occur in both copies of a gene; these variants can be homozygous or compound heterozygous.

Chilblain-like lesions

Skin lesions that mimic chilblains or pernio lesions, which are erythematous violaceous lesions, typically macules, papules, or nodules that develop in response to exposure to cold environments and affect mainly the acral areas, particularly toes and fingers.

Deleterious frameshift mutation

A damaging or pathogenic mutation caused by the insertion or deletion of nucleotide bases in numbers that are not multiples of three that disrupt the expected translated amino acid sequence.

Deleterious null mutation

A damaging or pathogenic mutation that leads to the gene not being transcribed into RNA and/or translated into a functional protein product; null mutation is also known as amorphic mutation.

Digenic mutations

Mutations that occur in two genes to manifest a particular phenotype or disease.

Dominant negative mutation

A heterozygous mutation that results in a protein that interferes with the normal function of the wild type protein.

Heterozygous missense mutation

A single nucleotide change in one allele that results in a different amino acid being encoded at a particular position in the resulting protein.

Hypomorphic X-linked mutation

A mutation on a gene on the X chromosome that results in a partial loss of gene function because of a reduction in the expression of RNA or protein, or by a reduction in the functional performance of the gene product; a hypomorphic mutation is also known as a leaky mutation.

Inborn errors of immunity

A group of rare genetically defined immunological disorders with increased susceptibility to immunodeficiency and infections, autoinflammation, autoimmunity, allergy and/or predisposition to lymphomas and other malignancies, mostly because of damaging germline variants in single genes.

Interferogenic

An element or molecule, such as nucleic acids, which triggers an interferon response or induces the expression of interferon stimulated genes.

Interferon score

The quantification of an interferon signature by the sum of z-scores of specific interferon-stimulated gene expression measured by RT–qPCR, NanoString or RNA-sequencing.

Nonsense mutations

Single-nucleotide changes that result in a stop codon rather than in a codon specifying an amino acid, thus leading to the production of a shortened protein.

Pseudo-TORCH syndromes

An inherited neurological disorder with clinical and neuroradiological features that mimic intrauterine toxoplasmosis, others (syphilis, hepatitis B), rubella, cytomegalovirus, herpes simplex (TORCH) infections in the absence of evidence of infection.

Warm antibodies

Autoantibodies that are active only at body temperatures of 37 °C or higher and attach to and prematurely destroy red blood cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldbach-Mansky, R., Alehashemi, S. & de Jesus, A.A. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 21, 22–45 (2025). https://doi.org/10.1038/s41584-024-01184-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-024-01184-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing