Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

An international perspective on the future of systemic sclerosis research

A Publisher Correction to this article was published on 03 March 2025

This article has been updated

Abstract

Systemic sclerosis (SSc) remains a challenging and enigmatic systemic autoimmune disease, owing to its complex pathogenesis, clinical and molecular heterogeneity, and the lack of effective disease-modifying treatments. Despite a century of research in SSc, the interconnections among microvascular dysfunction, autoimmune phenomena and tissue fibrosis in SSc remain unclear. The absence of validated biomarkers and reliable animal models complicates diagnosis and treatment, contributing to high morbidity and mortality. Advances in the past 5 years, such as single-cell RNA sequencing, next-generation sequencing, spatial biology, transcriptomics, genomics, proteomics, metabolomics, microbiome profiling and artificial intelligence, offer new avenues for identifying the early pathogenetic events that, once treated, could change the clinical history of SSc. Collaborative global efforts to integrate these approaches are crucial to developing a comprehensive, mechanistic understanding and enabling personalized therapies. Challenges include disease classification, clinical heterogeneity and the establishment of robust biomarkers for disease activity and progression. Innovative clinical trial designs and patient-centred approaches are essential for developing effective treatments. Emerging therapies, including cell-based and fibroblast-targeting treatments, show promise. Global cooperation, standardized protocols and interdisciplinary research are vital for advancing SSc research and improving patient outcomes. The integration of advanced research techniques holds the potential for important breakthroughs in the diagnosis, treatment and care of individuals with SSc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steps in the pathogenesis of systemic sclerosis phenotypes.
Fig. 2: The future of research in systemic sclerosis.
Fig. 3: Overview of the pathogenesis of systemic sclerosis.
Fig. 4: Omics for disease differentiation and precision medicine in systemic sclerosis.

Similar content being viewed by others

Change history

References

  1. Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390, 1685–1699 (2017).

    Article  PubMed  Google Scholar 

  2. Volkmann, E. R., Andreasson, K. & Smith, V. Systemic sclerosis. Lancet 401, 304–318 (2023).

    Article  PubMed  Google Scholar 

  3. Elhai, M. et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 76, 1897–1905 (2017).

    Article  PubMed  Google Scholar 

  4. Park, E. H., Strand, V., Oh, Y. J., Song, Y. W. & Lee, E. B. Health-related quality of life in systemic sclerosis compared with other rheumatic diseases: a cross-sectional study. Arthritis Res. Ther. 21, 61 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Osler, W. On diffuse scleroderma: with special reference to diagnosis and to the use of thyroid-gland extract. J. Cutan. Dis. 16, 49 (1898).

    Google Scholar 

  6. Matsui, S. Pathology and pathogenesis of universal scleroderma. Mitt. Med. Fak. Univ. Zu Tokyo 31, 55 (1924).

    Google Scholar 

  7. Bi, X., Mills, T. & Wu, M. Animal models in systemic sclerosis: an update. Curr. Opin. Rheumatol. 35, 364–370 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inventiva. Inventiva announces results from phase IIb clinical trial with lanifibranor in systemic sclerosis. GlobeNewswire https://www.globenewswire.com/news-release/2019/02/18/1733864/0/en/Inventiva-Announces-Results-From-Phase-IIb-Clinical-Trial-with-Lanifibranor-in-Systemic-Sclerosis.html (18 February 2019).

  9. Roofeh, D. et al. Tocilizumab prevents progression of early systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 73, 1301–1310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khanna, D. et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 8, 963–974 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Abraham, D., Lescoat, A. & Stratton, R. Emerging diagnostic and therapeutic challenges for skin fibrosis in systemic sclerosis. Mol. Aspects Med. 96, 101252 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Milano, A. et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3, e2696 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Korman, B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl. Res. 209, 77–89 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asano, Y. The pathogenesis of systemic sclerosis: an understanding based on a common pathologic cascade across multiple organs and additional organ-specific pathologies. J. Clin. Med. 9, 2687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gabrielli, A., Avvedimento, E. V. & Krieg, T. Scleroderma. N. Engl. J. Med. 360, 1989–2003 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Dees, C., Chakraborty, D. & Distler, J. H. W. Cellular and molecular mechanisms in fibrosis. Exp. Dermatol. 30, 121–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Volkmann, E. R. & Varga, J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nat. Rev. Rheumatol. 15, 208–224 (2019).

    Article  PubMed  Google Scholar 

  20. Gronberg, C. et al. Combined inhibition of IL-1, IL-33 and IL-36 signalling by targeting IL1RAP ameliorates skin and lung fibrosis in preclinical models of systemic sclerosis. Ann. Rheum. Dis. 83, 1156–1168 (2024).

    Article  PubMed  Google Scholar 

  21. Huang, M. et al. Single-cell transcriptomes and chromatin accessibility of endothelial cells unravel transcription factors associated with dysregulated angiogenesis in systemic sclerosis. Ann. Rheum. Dis. 83, 1335–1344 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Gaydosik, A. M. et al. Single-cell transcriptome analysis identifies skin-specific T-cell responses in systemic sclerosis. Ann. Rheum. Dis. 80, 1453–1460 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, H. et al. Fibroblast subpopulations in systemic sclerosis: functional implications of individual subpopulations and correlations with clinical features. J. Invest. Dermatol. 144, 1251–1261.e13 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Teaw, S., Hinchcliff, M. & Cheng, M. A review and roadmap of the skin, lung and gut microbiota in systemic sclerosis. Rheumatology 60, 5498–5508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao, Q., Tan, W. & Bai, F. Gut microbiome and metabolomics in systemic sclerosis: feature, link and mechanisms. Front. Immunol. 15, 1475528 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, T. C., Noviani, M., Leung, Y. Y. & Low, A. H. L. The microbiome and systemic sclerosis: a review of current evidence. Best. Pract. Res. Clin. Rheumatol. 35, 101687 (2021).

    Article  PubMed  Google Scholar 

  27. Russo, E. et al. The differential crosstalk of the skin–gut microbiome axis as a new emerging actor in systemic sclerosis. Rheumatology 63, 226–234 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Volkmann, E. R. Is there a role for the microbiome in systemic sclerosis? Expert. Rev. Clin. Immunol. 19, 237–240 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Volkmann, E. R. et al. Longitudinal characterisation of the gastrointestinal tract microbiome in systemic sclerosis. Eur. Med. J. 7, 110–118 (2020).

    Article  Google Scholar 

  30. Kim, S. J. et al. Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation. iScience 25, 104669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lopez-Isac, E. et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat. Commun. 10, 4955 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Acosta-Herrera, M. et al. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann. Rheum. Dis. 78, 311–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Gourh, P. et al. HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc. Natl Acad. Sci. USA 117, 552–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Hinchcliff, M. et al. Cellular and molecular diversity in scleroderma. Semin. Immunol. 58, 101648 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Ouchene, L. et al. Toward understanding of environmental risk factors in systemic sclerosis. J. Cutan. Med. Surg. 25, 188–204 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Vijayraghavan, S. et al. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat. Commun. 15, 8889 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McMahan, Z. H. et al. Systemic sclerosis gastrointestinal dysmotility: risk factors, pathophysiology, diagnosis and management. Nat. Rev. Rheumatol. 19, 166–181 (2023).

    Article  PubMed  Google Scholar 

  38. Denton, C. P., Wells, A. U. & Coghlan, J. G. Major lung complications of systemic sclerosis. Nat. Rev. Rheumatol. 14, 511–527 (2018).

    Article  PubMed  Google Scholar 

  39. Humbert, M. et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur. Respir. J. 53, 1801887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bahi, M., Li, C., Wang, G. & Korman, B. D. Systemic sclerosis-associated pulmonary arterial hypertension: from bedside to bench and back again. Int. J. Mol. Sci. 25, 4728 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Distler, J. H. W., Riemekasten, G. & Denton, C. P. The exciting future for scleroderma: what therapeutic pathways are on the horizon? Rheum. Dis. Clin. North. Am. 49, 445–462 (2023).

    Article  PubMed  Google Scholar 

  42. Lescoat, A., Varga, J., Matucci-Cerinic, M. & Khanna, D. New promising drugs for the treatment of systemic sclerosis: pathogenic considerations, enhanced classifications, and personalized medicine. Expert. Opin. Investig. Drugs 30, 635–652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peclat, T. R., Shi, B., Varga, J. & Chini, E. N. The NADase enzyme CD38: an emerging pharmacological target for systemic sclerosis, systemic lupus erythematosus and rheumatoid arthritis. Curr. Opin. Rheumatol. 32, 488–496 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lescoat, A., Kato, H. & Varga, J. Emerging cellular and immunotherapies for systemic sclerosis: from mesenchymal stromal cells to CAR-T cells and vaccine-based approaches. Curr. Opin. Rheumatol. 35, 356–363 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Tsou, P. S., Varga, J. & O’Reilly, S. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat. Rev. Rheumatol. 17, 596–607 (2021).

    Article  PubMed  Google Scholar 

  46. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Butler, E. A. et al. Generation of a core set of items to develop classification criteria for scleroderma renal crisis using consensus methodology. Arthritis Rheumatol. 71, 964–971 (2019).

    Article  PubMed  Google Scholar 

  48. Fairley, J. L., Ross, L. & Nikpour, M. Heart involvement in systemic sclerosis: emerging concepts. Curr. Opin. Rheumatol. 36, 393–400 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Batani, V., Dagna, L. & De Luca, G. Therapeutic strategies for primary heart involvement in systemic sclerosis. Rheumatol. Immunol. Res. 5, 72–82 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Usategui, A. et al. Evidence of telomere attrition and a potential role for DNA damage in systemic sclerosis. Immun. Ageing 19, 7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi, B. et al. Senescent cells accumulate in systemic sclerosis skin. J. Invest. Dermatol. 143, 661–664 e665 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Tsou, P. S., Shi, B. & Varga, J. Role of cellular senescence in the pathogenesis of systemic sclerosis. Curr. Opin. Rheumatol. 34, 343–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adler, B. L. et al. Autoantibodies targeting telomere-associated proteins in systemic sclerosis. Ann. Rheum. Dis. 80, 912–919 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Jia, M. et al. Transcriptional changes of the aging lung. Aging Cell 22, e13969 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mebratu, Y. A. et al. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am. J. Physiol. Cell Physiol. 325, C565–C579 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Reilly, S., Tsou, P. S. & Varga, J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol. Med. 30, 1113–1125 (2024).

    Article  PubMed  Google Scholar 

  57. Xing, E., Billi, A. C. & Gudjonsson, J. E. Sex bias and autoimmune diseases. J. Invest. Dermatol. 142, 857–866 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Dou, D. R. et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 187, 733–749.e16 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yasuoka, H., Larregina, A. T., Yamaguchi, Y. & Feghali-Bostwick, C. A. Human skin culture as an ex vivo model for assessing the fibrotic effects of insulin-like growth factor binding proteins. Open. Rheumatol. J. 2, 17–22 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aida-Yasuoka, K. et al. Estradiol promotes the development of a fibrotic phenotype and is increased in the serum of patients with systemic sclerosis. Arthritis Res. Ther. 15, R10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamaguchi, Y. et al. A peptide derived from endostatin ameliorates organ fibrosis. Sci. Transl. Med. 4, 136ra171 (2012).

    Article  Google Scholar 

  62. Watanabe, T. et al. A human skin model recapitulates systemic sclerosis dermal fibrosis and identifies COL22A1 as a TGFβ early response gene that mediates fibroblast to myofibroblast transition. Genes 10, 75 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharma, S. et al. E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects. JCI Insight 6, e144935 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mlakar, L. et al. Ameliorating fibrosis in murine and human tissues with END55, an endostatin-derived fusion protein made in plants. Biomedicines 10, 2861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Valenzi, E. et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 1379–1387 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Tabib, T. et al. Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 12, 4384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clark, K. E. N. et al. Single-cell analysis reveals key differences between early-stage and late-stage systemic sclerosis skin across autoantibody subgroups. Ann. Rheum. Dis. 82, 1568–1579 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Ramos, P. S. et al. Integrative analysis of DNA methylation in discordant twins unveils distinct architectures of systemic sclerosis subsets. Clin. Epigenetics 11, 58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Malaab, M. et al. Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann. Rheum. Dis. 81, 268–277 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Baker Frost, D., da Silveira, W., Hazard, E. S., Atanelishvili, I., Wilson, R. C., Flume, J., Day, K. L., Oates, J. C., Bogatkevich, G. S., Feghali-Bostwick, C., Hardiman, G. & Ramos, P. S. Differential DNA methylation landscape in skin fibroblasts from African Americans with systemic sclerosis. Genes 12, 2 (2021).

    Article  Google Scholar 

  71. Mouawad, J. E. & Feghali-Bostwick, C. The molecular mechanisms of systemic sclerosis-associated lung fibrosis. Int. J. Mol. Sci. 24, 2963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mouawad, J. E. et al. Reduced Cathepsin L expression and secretion into the extracellular milieu contribute to lung fibrosis in systemic sclerosis. Rheumatology 62, 1306–1316 (2023).

    Article  PubMed  Google Scholar 

  73. Burbelo, P. D. et al. Autoantibodies are present before the clinical diagnosis of systemic sclerosis. PLoS ONE 14, e0214202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bellocchi, C., Chung, A. G. S. E. & Volkmann, E. R. Predicting the progression of very early systemic sclerosis: current insights. Open. Access. Rheumatol. 14, 171–186 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lescoat, A. Very early diagnosis of systemic sclerosis: deciphering the heterogeneity of systemic sclerosis in the very early stages of the disease. J. Scleroderma Relat. Disord. 8, 3–6 (2023).

    Article  PubMed  Google Scholar 

  76. Wuttge, D. M. et al. Increased serum type I interferon activity in early systemic sclerosis patients is associated with antibodies against Sjögren’s syndrome antigens and nuclear ribonucleoprotein antigens. Scand. J. Rheumatol. 42, 235–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Andraos, R. et al. Autoantibodies associated with systemic sclerosis in three autoimmune diseases imprinted by type I interferon gene dysregulation: a comparison across SLE, primary Sjögren’s syndrome and systemic sclerosis. Lupus Sci. Med. 9, e000732 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Brkic, Z. et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 75, 1567–1573 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Feghali-Bostwick, C., Medsger, T. A. Jr & Wright, T. M. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 48, 1956–1963 (2003).

    Article  PubMed  Google Scholar 

  80. Arora-Singh, R. K. et al. Autoimmune diseases and autoantibodies in the first degree relatives of patients with systemic sclerosis. J. Autoimmun. 35, 52–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Whitfield, M. L. et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc. Natl Acad. Sci. USA 100, 12319–12324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, M. et al. Clinical phenotypes of patients with systemic sclerosis with distinct molecular signatures in skin. Arthritis Care Res. 75, 1469–1480 (2023).

    Article  CAS  Google Scholar 

  83. Franks, J. M. et al. A genomic meta-analysis of clinical variables and their association with intrinsic molecular subsets in systemic sclerosis. Rheumatology 62, 19–28 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Skaug, B. et al. Large-scale analysis of longitudinal skin gene expression in systemic sclerosis reveals relationships of immune cell and fibroblast activity with skin thickness and a trend towards normalisation over time. Ann. Rheum. Dis. 81, 516–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Skaug, B. et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann. Rheum. Dis. 79, 379–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Mehta, B. K. et al. Machine-learning classification identifies patients with early systemic sclerosis as abatacept responders via CD28 pathway modulation. JCI Insight 7, e155282 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Franks, J. M. et al. A machine learning classifier for assigning individual patients with systemic sclerosis to intrinsic molecular subsets. Arthritis Rheumatol. 71, 1701–1710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Franks, J. M. et al. Machine learning predicts stem cell transplant response in severe scleroderma. Ann. Rheum. Dis. 79, 1608–1615 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Lofgren, S. et al. Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight 1, e89073 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Correia, C. et al. High-throughput quantitative histology in systemic sclerosis skin disease using computer vision. Arthritis Res. Ther. 22, 48 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahoney, J. M. et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. PLoS Comput. Biol. 11, e1004005 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Taroni, J. N. et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 9, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bhandari, R. et al. Profibrotic activation of human macrophages in systemic sclerosis. Arthritis Rheumatol. 72, 1160–1169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma, F. et al. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat. Commun. 15, 210 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  PubMed  Google Scholar 

  96. Chen, Y. & Guo, J. Multiplexed single-cell in situ protein profiling. ACS Meas. Sci. Au 2, 296–303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herrick, A. L. et al. Patterns and predictors of skin score change in early diffuse systemic sclerosis from the European Scleroderma Observational Study. Ann. Rheum. Dis. 77, 563–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Candia, J., Daya, G. N., Tanaka, T., Ferrucci, L. & Walker, K. A. Assessment of variability in the plasma 7k SomaScan proteomics assay. Sci. Rep. 12, 17147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wik, L. et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol. Cell Proteom. 20, 100168 (2021).

    Article  CAS  Google Scholar 

  100. Bjorkesten, J. et al. Stability of proteins in dried blood spot biobanks. Mol. Cell Proteom. 16, 1286–1296 (2017).

    Article  Google Scholar 

  101. Bellocchi, C. et al. Proteomic aptamer analysis reveals serum markers that characterize preclinical systemic sclerosis (SSc) patients at risk for progression toward definite SSc. Arthritis Res. Ther. 25, 15 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alvez, M. B. et al. Next generation pan-cancer blood proteome profiling using proximity extension assay. Nat. Commun. 14, 4308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ravaglia, C. & Poletti, V. Transbronchial lung cryobiopsy for the diagnosis of interstitial lung diseases. Curr. Opin. Pulm. Med. 28, 9–16 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Denton, C. P. et al. The 2024 British Society for Rheumatology guideline for management of systemic sclerosis. Rheumatology 63, 2956–2975 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  106. Merkt, W. et al. Third-generation CD19.CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann. Rheum. Dis. 83, 543–546 (2024).

    Article  PubMed  Google Scholar 

  107. Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).

    Article  PubMed  Google Scholar 

  108. Zamanian, R. T. et al. Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension: a multicenter, double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 204, 209–221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nash, R. A. et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood 110, 1388–1396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aschwanden, M. et al. Rapid improvement of nailfold capillaroscopy after intense immunosuppression for systemic sclerosis and mixed connective tissue disease. Ann. Rheum. Dis. 67, 1057–1059 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. van Laar, J. M. et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311, 2490–2498, (2014).

    Article  PubMed  Google Scholar 

  112. Sullivan, K. M. et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N. Engl. J. Med. 378, 35–47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gustafsson, K. et al. Clearing and replacing tissue-resident myeloid cells with an anti-CD45 antibody-drug conjugate. Blood Adv. 7, 6964–6973 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xue, E. et al. Cellular-based therapies in systemic sclerosis: from hematopoietic stem cell transplant to innovative approaches. Cells 11, 3346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang, H., Cheong, S., He, Y. & Lu, F. Mesenchymal stem cell-based therapy for autoimmune-related fibrotic skin diseases — systemic sclerosis and sclerodermatous graft-versus-host disease. Stem Cell Res. Ther. 14, 372 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Barde, F. et al. Induction of regulatory T cells and efficacy of low-dose interleukin-2 in systemic sclerosis: interventional open-label phase 1–phase 2a study. RMD Open 10, e003500 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Le Huu, D. et al. Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood 121, 3274–3283 (2013).

    Article  PubMed  Google Scholar 

  118. Liu, M. Effector and regulatory B-cell imbalance in systemic sclerosis: cooperation or competition? Clin. Rheumatol. 43, 2783–2789 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Morante-Palacios, O., Fondelli, F., Ballestar, E. & Martinez-Caceres, E. M. Tolerogenic dendritic cells in autoimmunity and inflammatory diseases. Trends Immunol. 42, 59–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Odell, I. D. et al. Epiregulin is a dendritic cell-derived EGFR ligand that maintains skin and lung fibrosis. Sci. Immunol. 7, eabq6691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dorst, D. N. et al. Fibroblast activation protein targeted photodynamic therapy selectively kills activated skin fibroblasts from systemic sclerosis patients and prevents tissue contraction. Int. J. Mol. Sci. 22, 12681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gur, C. et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 185, 1373–1388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Trinh-Minh, T. et al. Effect of anti-S100A4 monoclonal antibody treatment on experimental skin fibrosis and systemic sclerosis-specific transcriptional signatures in human skin. Arthritis Rheumatol. 76, 783–795 (2024).

    Article  CAS  PubMed  Google Scholar 

  124. Liang, M. et al. Attenuation of fibroblast activation and fibrosis by adropin in systemic sclerosis. Sci. Transl. Med. 16, eadd6570 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, M. et al. Self-assembled human skin equivalents model macrophage activation of cutaneous fibrogenesis in systemic sclerosis. Arthritis Rheumatol. 74, 1245–1256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang, M. et al. Systemic sclerosis dermal fibroblasts induce cutaneous fibrosis through lysyl oxidase-like 4: new evidence from three-dimensional skin-like tissues. Arthritis Rheumatol. 72, 791–801 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Denton, C. P. Challenges in systemic sclerosis trial design. Semin. Arthritis Rheum. 49, S3–S7 (2019).

    Article  PubMed  Google Scholar 

  128. Hoffmann-Vold, A. M. et al. Cohort enrichment strategies for progressive interstitial lung disease in systemic sclerosis from European scleroderma trials and research. Chest 163, 586–598 (2023).

    Article  PubMed  Google Scholar 

  129. Maurer, B. et al. Prediction of worsening of skin fibrosis in patients with diffuse cutaneous systemic sclerosis using the EUSTAR database. Ann. Rheum. Dis. 74, 1124–1131 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Khanna, D. et al. Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann. Rheum. Dis. 79, 618–625 (2020).

    Article  PubMed  Google Scholar 

  131. Chung, L. et al. Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): open-label extension of a phase 2, double-blind randomised trial. Lancet Rheumatol. 2, e743–e753 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Khanna, D. et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 72, 125–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Khanna, D. et al. The American College of Rheumatology provisional composite response index for clinical trials in early diffuse cutaneous systemic sclerosis. Arthritis Care Res. 68, 167–178 (2016).

    Article  Google Scholar 

  134. Khanna, D., Huang, S., Lin, C. J. F. & Spino, C. New composite endpoint in early diffuse cutaneous systemic sclerosis: revisiting the provisional American College of Rheumatology Composite Response Index in Systemic Sclerosis. Ann. Rheum. Dis. 80, 641–650 (2021).

    Article  PubMed  Google Scholar 

  135. Scleroderma Research Foundation. About CONQUEST. https://srfcure.org/research/conquest/about-conquest/ (2024).

  136. Morgan, N. D. et al. Clinical and serological features of systemic sclerosis in a multicenter African American cohort: analysis of the genome research in African American scleroderma patients clinical database. Medicine 96, e8980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Spiera, R. et al. Safety and efficacy of lenabasum in a phase II, randomized, placebo-controlled trial in adults with systemic sclerosis. Arthritis Rheumatol. 72, 1350–1360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Spiera, R. et al. Efficacy and safety of lenabasum, a cannabinoid type 2 receptor agonist, in a phase 3 randomized trial in diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 75, 1608–1618 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Allanore, Y. et al. A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 79, 1600–1607 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Khanna, D. et al. A 24-week, phase IIa, randomized, double-blind, placebo-controlled study of ziritaxestat in early diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 75, 1434–1444 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Ebata, S. et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): open-label extension of a double-blind, investigators-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 4, e546–e555 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Denton, C. P., Stevens, W., Kruger, N., Papadimitriou, M., Khong, F., Bradney, M., Kelly, D. & Lafyatis, R. FT011 for the treatment of systemic sclerosis. results from a phase II study. Arthritis Rheumatol. 75, 2593 (2023).

    Google Scholar 

Download references

Acknowledgements

The authors thank K. Brennan for administrative support and meeting summary. Workshop support provided by The Edith Busch Foundation and The Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche-Ancona, Italy.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to David J. Abraham, Armando Gabrielli or Thomas Krieg.

Ethics declarations

Competing interests

J.H.W.D. has consultancy relationships with AbbVie, Active Biotech, Anamar, ARXX, AstraZeneca, Bayer Pharma, Boehringer Ingelheim, Celgene, Galapagos, Genentech, GSK, Inventiva, Janssen, Novartis, Pfizer, Roche and UCB, and has received research funding from AbbVie, Anamar, Argenx, ARXX, BMS, Bayer Pharma, Boehringer Ingelheim, Cantargia, Celgene, CSL Behring, ExoTherapeutics, Galapagos, GSK, Inventiva, Kiniksa, Lassen, Novartis, Sanofi-Aventis, RedX, UCB and Zenasbio. J.H.W.D. is CEO of 4D Science and Scientific Lead of FibroCure. R.D. has received funding from and is a consultant for Aisa Pharma Inc and AstraZeneca. M.K. has received funding from and is a consultant for Boehringer Ingelheim, Mochida, Kissei, GSK, AstraZeneca, Mitsubishi Tanabe, Janssen, Biogen, Novartis, Chugai and Asahi Kasei Pharma. U.L. is the founder of Olink Proteomics and has stocks in Navinci and SampleFacts.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Lorinda Chung, who co-reviewed with Brian Lee, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, D.J., Black, C.M., Denton, C.P. et al. An international perspective on the future of systemic sclerosis research. Nat Rev Rheumatol 21, 174–187 (2025). https://doi.org/10.1038/s41584-024-01217-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-024-01217-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing