Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigen-driven T cell responses in rheumatic diseases: insights from T cell receptor repertoire studies

Abstract

Advances in T cell receptor (TCR) profiling techniques have substantially improved our ability to investigate T cell responses to antigens that are presented on HLA class I and class II molecules and associations between autoimmune T cells and rheumatic diseases. Early-stage studies in axial spondyloarthritis (axSpA) identified disease-associated T cell clonotypes, benefiting from the relative genetic homogeneity of the disease. However, both the genetic and the T cell immunological landscape are more complex in other rheumatic diseases. The diversity or redundancy in the TCR repertoire, epitope spreading over disease duration, genetic heterogeneity of HLA genes or other loci, and the diversity of epitopes contributing to disease pathogenesis and persistent inflammation are all likely to contribute to this complexity. TCR profiling holds promise for identifying key antigenic drivers and phenotypic T cell states that sustain autoimmunity in rheumatic diseases. Here, we review key findings from TCR repertoire studies in axSpA and other chronic inflammatory rheumatic diseases including psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus and Sjögren syndrome. We explore how TCR profiling technologies, if applied to better controlled studies focused on early disease stages and genetically homogeneous subsets, can facilitate disease monitoring and the development of therapeutics targeting autoimmune T cells, their cognate antigens, or their underlying biology.

Key points

  • Next-generation sequencing has enabled development of comprehensive and accurate T cell receptor profiling, allowing studies to search for expanded T cell clonotypes suggestive of shared antigenic drivers.

  • Using these approaches, expanded CD8 T cell clonotypes bearing highly similar T cell receptor (TCR) β-chains and α-chains have been identified in a high proportion of patients with ankylosing spondylitis, and this information has been used to identify expanded T cell clonotypes potentially involved in the pathogenesis of the disease.

  • TCR repertoire studies in other rheumatic diseases, including psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus and Sjögren syndrome, have not found consistently expanded T cell clonotypes, although evidence of T cell expansions including at sites of inflammation have been reported.

  • Further studies focusing on early disease and more clinically, genetically and immunologically homogeneous cohorts might provide more informative to identify expanded aetiopathogenic T cell clonotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of a diverse T cell receptor repertoire.
Fig. 2: TCR profiling methodologies and strategic study flow design to address the vast complexity of autoimmune TCR and antigenic repertoires in order to reach findings of clinical potential.
Fig. 3: Main factors influencing T cell receptor repertoire in common major HLA-associated rheumatic diseases.

Similar content being viewed by others

References

  1. Garrido-Mesa, J. & Brown, M. A. T cell repertoire profiling and the mechanism by which HLA-B27 causes ankylosing spondylitis. Curr. Rheumatol. Rep. 24, 398–410 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    CAS  PubMed  Google Scholar 

  3. Bassing, C. H., Swat, W. & Alt, F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).

    CAS  PubMed  Google Scholar 

  4. Turner, S. J., Doherty, P. C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).

    CAS  PubMed  Google Scholar 

  5. Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012).

    CAS  PubMed  Google Scholar 

  6. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Warren, R. L. et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 21, 790–797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, H., Ye, C., Ji, G. & Han, J. Determinants of public T cell responses. Cell Res. 22, 33–42 (2012).

    PubMed  PubMed Central  Google Scholar 

  9. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wardemann, H. & Busse, C. E. Novel approaches to analyze immunoglobulin repertoires. Trends Immunol. 38, 471–482 (2017).

    CAS  PubMed  Google Scholar 

  11. Woodsworth, D. J., Castellarin, M. & Holt, R. A. Sequence analysis of T-cell repertoires in health and disease. Genome Med. 5, 98 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Brown, S. D., Raeburn, L. A. & Holt, R. A. Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med. 7, 125 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Greiff, V., Miho, E., Menzel, U. & Reddy, S. T. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol. 36, 738–749 (2015).

    CAS  PubMed  Google Scholar 

  14. Miho, E. et al. Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front. Immunol. 9, 224 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Henry, V. J., Bandrowski, A. E., Pepin, A. S., Gonzalez, B. J. & Desfeux, A. OMICtools: an informative directory for multi-omic data analysis. Database 2014, bau069 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Barwell, L. J., Isaac, N. J. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Miles, J. J., Douek, D. C. & Price, D. A. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol. Cell Biol. 89, 375–387 (2011).

    CAS  PubMed  Google Scholar 

  18. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ostmeyer, J., Christley, S., Toby, I. T. & Cowell, L. G. Biophysicochemical motifs in T-cell receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue. Cancer Res. 79, 1671–1680 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis, M. M. & Boyd, S. D. Recent progress in the analysis of αβT cell and B cell receptor repertoires. Curr. Opin. Immunol. 59, 109–114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, S. M. et al. Analysis of the paired TCR α- and β-chains of single human T cells. PLoS ONE 7, e37338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Proserpio, V. & Mahata, B. Single-cell technologies to study the immune system. Immunology 147, 133–140 (2016).

    CAS  PubMed  Google Scholar 

  25. Robinson, W. P. et al. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum. 32, 1135–1141 (1989).

    CAS  PubMed  Google Scholar 

  26. Brown, M. A. et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 55, 268–270 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang, S. C., Momburg, F., Bhutani, N. & Goldberg, A. L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl Acad. Sci. USA 102, 17107–17112 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 6, 7146 (2015).

    PubMed  Google Scholar 

  30. Colbert, R. A. The immunobiology of HLA-B27: variations on a theme. Curr. Mol. Med. 4, 21–30 (2004).

    CAS  PubMed  Google Scholar 

  31. Hermann, E., Yu, D. T., Meyer zum Buschenfelde, K. H. & Fleischer, B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342, 646–650 (1993).

    CAS  PubMed  Google Scholar 

  32. Duchmann, R. et al. HLA-B27-restricted cytotoxic T lymphocyte responses to arthritogenic enterobacteria or self-antigens are dominated by closely related TCRBV gene segments. A study in patients with reactive arthritis. Scand. J. Immunol. 43, 101–108 (1996).

    CAS  PubMed  Google Scholar 

  33. Dulphy, N. et al. Common intra-articular T cell expansions in patients with reactive arthritis: identical beta-chain junctional sequences and cytotoxicity toward HLA-B27. J. Immunol. 162, 3830–3839 (1999). First report of the AS-associated TRBV9-J2S3 CDR3 motif.

    CAS  PubMed  Google Scholar 

  34. May, E. et al. Conserved TCR β chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen. Tissue Antigens 60, 299–308 (2002).

    CAS  PubMed  Google Scholar 

  35. Faham, M. et al. Discovery of T cell receptor β motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis. Arthritis Rheumatol. 69, 774–784 (2017). Largest TCR profiling study in AS using NGS-based methods, HLA-B27 typing and controls including patients with non-AS rheumatic disease.

    CAS  PubMed  Google Scholar 

  36. Komech, E. A. et al. CD8+ T cells with characteristic T cell receptor beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients. Rheumatology 57, 1097–1104 (2018).

    CAS  PubMed  Google Scholar 

  37. Zheng, M. et al. TCR repertoire and CDR3 motif analyses depict the role of αβ T cells in ankylosing spondylitis. EBioMedicine 47, 414–426 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Hanson et al. T-cell receptor immunosequencing reveals altered repertoire diversity and disease-associated clonal expansions in ankylosing spondylitis patients. Arthritis Rheumatol. 72, 1289–1302 (2020). This study provides a comprehensive description of TCR repertoire alterations in AS, including both CD8 and CD4 T cell clonotype associations, showing that this is not just a feature of HLA-B27 carriage but rather of HLA-B27-associated axSpA.

    CAS  PubMed  Google Scholar 

  39. Komech, E. A. et al. TCR repertoire profiling revealed antigen-driven CD8+ T cell clonal groups shared in synovial fluid of patients with spondyloarthritis. Front. Immunol. 13, 973243 (2022). This study reports TCR associations with HLA-B38+ PsA and HLA-B27+ SpA, including the first report of AS-associated expansions among patients with PsA.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    CAS  PubMed  Google Scholar 

  41. Yang, X. et al. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 612, 771–777 (2022). This breakthrough study identifies the paired TCRαβ sequences of AS-associated TRBV9 clonotypes in AS and acute anterior uveitis and performs a yeast display peptide screening to identify potential antigenic peptides and their protein sources.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Deschler, K. et al. Antigen-specific immune reactions by expanded CD8+ T cell clones from HLA-B*27-positive patients with spondyloarthritis. J. Autoimmun. 133, 102901 (2022).

    CAS  PubMed  Google Scholar 

  43. Paley, M. A. et al. Mucosal signatures of pathogenic T cells in HLA-B*27+ anterior uveitis and axial spondyloarthritis. JCI Insight 9, e174776 (2024). This study describes phenotypic signatures among AS-associated clonotypes reacting to one of the identified antigenic peptides, YeiH, using scRNA sequencing and peptide–HLA tetramer technologies for targeted TCR screening and antigenic validation.

    PubMed  PubMed Central  Google Scholar 

  44. Robinson, P. C., Wordsworth, B. P., Reveille, J. D. & Brown, M. A. Axial spondyloarthritis: a new disease entity, not necessarily early ankylosing spondylitis. Ann. Rheum. Dis. 72, 162–164 (2013).

    CAS  PubMed  Google Scholar 

  45. van der Linden, S., Akkoc, N., Brown, M. A., Robinson, P. C. & Khan, M. A. The ASAS criteria for axial spondyloarthritis: strengths, weaknesses, and proposals for a way forward. Curr. Rheumatol. Rep. 17, 62 (2015).

    PubMed  Google Scholar 

  46. Barkham, N., Marzo-Ortega, H., McGonagle, D. & Emery, P. How to diagnose axial spondyloarthropathy early. Ann. rheumatic Dis. 63, 471–472 (2004).

    CAS  Google Scholar 

  47. Winchester, R. & FitzGerald, O. MHC class I associations beyond HLA-B27: the peptide binding hypothesis of psoriatic arthritis and its implications for disease pathogenesis. Curr. Opin. Rheumatol. 32, 330–336 (2020).

    CAS  PubMed  Google Scholar 

  48. Batko, B. Exploring the diverse immune and genetic landscape of psoriatic arthritis. J. Clin. Med. 10, 5926 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consirtium 2 A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Google Scholar 

  50. Costello, P., Bresnihan, B., O’Farrelly, C. & FitzGerald, O. Predominance of CD8+ T lymphocytes in psoriatic arthritis. J. Rheumatol. 26, 1117–1124 (1999).

    CAS  PubMed  Google Scholar 

  51. Costello, P. J. et al. Psoriatic arthritis joint fluids are characterized by CD8 and CD4 T cell clonal expansions appear antigen driven. J. Immunol. 166, 2878–2886 (2001).

    CAS  PubMed  Google Scholar 

  52. Tassiulas, I., Duncan, S. R., Centola, M., Theofilopoulos, A. N. & Boumpas, D. T. Clonal characteristics of T cell infiltrates in skin and synovium of patients with psoriatic arthritis. Hum. Immunol. 60, 479–491 (1999).

    CAS  PubMed  Google Scholar 

  53. Borgato, L. et al. The T cell receptor repertoire in psoriatic synovitis is restricted and T lymphocytes expressing the same TCR are present in joint and skin lesions. J. Rheumatol. 29, 1914–1919 (2002).

    CAS  PubMed  Google Scholar 

  54. Sigmundsdottir, H. et al. Circulating T cells of patients with active psoriasis respond to streptococcal M-peptides sharing sequences with human epidermal keratins. Scand. J. Immunol. 45, 688–697 (1997).

    CAS  PubMed  Google Scholar 

  55. Curran, S. A. et al. Nucleotide sequencing of psoriatic arthritis tissue before and during methotrexate administration reveals a complex inflammatory T cell infiltrate with very few clones exhibiting features that suggest they drive the inflammatory process by recognizing autoantigens. J. Immunol. 172, 1935–1944 (2004).

    CAS  PubMed  Google Scholar 

  56. Goldstein, I. et al. Synovial VLA-1+ T cells display an oligoclonal and partly distinct repertoire in rheumatoid and psoriatic arthritis. Clin. Immunol. 128, 75–84 (2008).

    CAS  PubMed  Google Scholar 

  57. Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Povoleri, G. A. M. et al. Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets. Cell Rep. 42, 112514 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Helliwell, P. S., Mease, P. J., FitzGerald, O., Taylor, W. J. & van der Heijde, D. Peripheral spondyloarthritis and psoriatic arthritis; overlaps and distinctions: a report from the GRAPPA 2012 annual meeting. J. Rheumatol. 40, 1446–1449 (2013).

    PubMed  Google Scholar 

  62. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. De Vita, S. et al. Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: evidence for a pathogenetic role of B cells. Arthritis Rheum. 46, 2029–2033 (2002).

    PubMed  Google Scholar 

  64. VanderBorght, A., Geusens, P., Vandevyver, C., Raus, J. & Stinissen, P. Skewed T-cell receptor variable gene usage in the synovium of early and chronic rheumatoid arthritis patients and persistence of clonally expanded T cells in a chronic patient. Rheumatology 39, 1189–1201 (2000).

    CAS  PubMed  Google Scholar 

  65. Lim, A. et al. Spread of clonal T-cell expansions in rheumatoid arthritis patients. Hum. Immunol. 48, 77–83 (1996).

    CAS  PubMed  Google Scholar 

  66. Striebich, C. C., Falta, M. T., Wang, Y., Bill, J. & Kotzin, B. L. Selective accumulation of related CD4+ T cell clones in the synovial fluid of patients with rheumatoid arthritis. J. Immunol. 161, 4428–4436 (1998).

    CAS  PubMed  Google Scholar 

  67. Stastny, P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).

    CAS  PubMed  Google Scholar 

  68. Ikeda, Y. et al. High frequencies of identical T cell clonotypes in synovial tissues of rheumatoid arthritis patients suggest the occurrence of common antigen-driven immune responses. Arthritis Rheum. 39, 446–453 (1996).

    CAS  PubMed  Google Scholar 

  69. Alam, A. et al. Persistence of dominant T cell clones in synovial tissues during rheumatoid arthritis. J. Immunol. 156, 3480–3485 (1996).

    CAS  PubMed  Google Scholar 

  70. Kato, T. et al. T cell clonality in synovial fluid of a patient with rheumatoid arthritis: persistent but fluctuant oligoclonal T cell expansions. J. Immunol. 159, 5143–5149 (1997).

    CAS  PubMed  Google Scholar 

  71. Cantaert, T. et al. Alterations of the synovial T cell repertoire in anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheum. 60, 1944–1956 (2009).

    CAS  PubMed  Google Scholar 

  72. Klarenbeek, P. L. et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann. Rheum. Dis. 71, 1088–1093 (2012). This study compares patients with early and late disease RA, reporting the dynamics of TCR.

    CAS  PubMed  Google Scholar 

  73. Mizushima, N. et al. HLA-dependent peripheral T cell receptor (TCR) repertoire formation and its modification by rheumatoid arthritis (RA). Clin. Exp. Immunol. 110, 428–433 (1997). Besides using low-resolution techniques, the authors used an interesting familiar study design that could facilitate the identification of repertoire findings specific to RA development.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Paliard, X. et al. Evidence for the effects of a superantigen in rheumatoid arthritis. Science 253, 325–329 (1991).

    CAS  PubMed  Google Scholar 

  75. Howell, M. D. et al. Limited T-cell receptor beta-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 88, 10921–10925 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, W. et al. Skewed T-cell receptor BV14 and BV16 expression and shared CDR3 sequence and common sequence motifs in synovial T cells of rheumatoid arthritis. Genes. Immun. 6, 248–261 (2005).

    CAS  PubMed  Google Scholar 

  77. Jenkins, R. N., Nikaein, A., Zimmermann, A., Meek, K. & Lipsky, P. E. T cell receptor V beta gene bias in rheumatoid arthritis. J. Clin. Invest. 92, 2688–2701 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Waase, I., Kayser, C., Carlson, P. J., Goronzy, J. J. & Weyand, C. M. Oligoclonal T cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. Arthritis Rheum. 39, 904–913 (1996).

    CAS  PubMed  Google Scholar 

  79. Stamenkovic, I. et al. Clonal dominance among T-lymphocyte infiltrates in arthritis. Proc. Natl Acad. Sci. USA 85, 1179–1183 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Alam, A. et al. T-cell receptor variable region of the beta-chain gene use in peripheral blood and multiple synovial membranes during rheumatoid arthritis. Hum. Immunol. 42, 331–339 (1995).

    CAS  PubMed  Google Scholar 

  81. Schmidt, D., Martens, P. B., Weyand, C. M. & Goronzy, J. J. The repertoire of CD4+ CD28− T cells in rheumatoid arthritis. Mol. Med. 2, 608–618 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Grom, A. A. et al. Dominant T-cell-receptor beta chain variable region V beta 14+ clones in juvenile rheumatoid arthritis. Proc. Natl Acad. Sci. USA 90, 11104–11108 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Davey, M. P., Burgoine, G. A. & Woody, C. N. TCRB clonotypes are present in CD4+ T cell populations prepared directly from rheumatoid synovium. Hum. Immunol. 55, 11–21 (1997).

    CAS  PubMed  Google Scholar 

  84. Bröker, B. M. et al. Biased T cell receptor V gene usage in rheumatoid arthritis. Oligoclonal expansion of T cells expressing V alpha 2 genes in synovial fluid but not in peripheral blood. Arthritis Rheum. 36, 1234–1243 (1993).

    PubMed  Google Scholar 

  85. Sakkas, L. I., Chen, P. F. & Platsoucas, C. D. T-cell antigen receptors in rheumatoid arthritis. Immunol. Res. 13, 117–138 (1994).

    CAS  PubMed  Google Scholar 

  86. Spreafico, R. et al. A circulating reservoir of pathogenic-like CD4+ T cells shares a genetic and phenotypic signature with the inflamed synovial micro-environment. Ann. Rheum. Dis. 75, 459–465 (2016).

    CAS  PubMed  Google Scholar 

  87. Chini, L. et al. Evidence of clonotypic pattern of T-cell repertoire in synovial fluid of children with juvenile rheumatoid arthritis at the onset of the disease. Scand. J. Immunol. 56, 512–517 (2002).

    CAS  PubMed  Google Scholar 

  88. Liu, X. et al. T cell receptor β repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis. Ann. Rheum. Dis. 78, 1070–1078 (2019). Largest TCR profiling study in rheumatic conditions, including large cohorts of patients with RA and SLE and reporting specific and overlapping autoimmune signatures.

    CAS  PubMed  Google Scholar 

  89. Chang, C. M. et al. Characterization of T-cell receptor repertoire in patients with rheumatoid arthritis receiving biologic therapies. Dis. Markers 2019, 2364943 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Di Sante, G. et al. Collagen specific T-cell repertoire and HLA-DR alleles: biomarkers of active refractory rheumatoid arthritis. EBioMedicine 2, 2037–2045 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Imberti, L. et al. Reduced T-cell repertoire restrictions in abatacept-treated rheumatoid arthritis patients. J. Transl. Med. 13, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Sakurai, K. et al. HLA-DRB1 shared epitope alleles and disease activity are correlated with reduced T cell receptor repertoire diversity in CD4+ T cells in rheumatoid arthritis. J. Rheumatol. 45, 905–914 (2018).

    CAS  PubMed  Google Scholar 

  93. Jiang, X. et al. Comprehensive TCR repertoire analysis of CD4+ T-cell subsets in rheumatoid arthritis. J. Autoimmunity 109, 102432 (2020). This study evaluates TCR repertoire targeted to defined phenotypic populations, allowing identification of the immune subtypes expanded and potentially involved in RA autoimmunity.

    CAS  Google Scholar 

  94. Zheng, Z. et al. Database of synovial T cell repertoire of rheumatoid arthritis patients identifies cross-reactive potential against pathogens including unencountered SARS-CoV-2. Ann. Rheum. Dis. 82, 438–440 (2023).

    CAS  PubMed  Google Scholar 

  95. Ishigaki, K. et al. Quantitative and qualitative characterization of expanded CD4+ T cell clones in rheumatoid arthritis patients. Sci. Rep. 5, 12937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Argyriou, A. et al. Single cell sequencing identifies clonally expanded synovial CD4+ TPH cells expressing GPR56 in rheumatoid arthritis. Nat. Commun. 13, 4046 (2022). This study identifies expansion of TPH cells in synovial fluid of patients with RA and expression of phenotypic markers of interest.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. von Delwig, A., Locke, J., Robinson, J. H. & Ng, W. F. Response of Th17 cells to a citrullinated arthritogenic aggrecan peptide in patients with rheumatoid arthritis. Arthritis Rheum. 62, 143–149 (2010).

    Google Scholar 

  98. Zhou, J. et al. Skewness of TCR Vβ of peripheral blood and synovial fluid of patients with rheumatoid arthritis. J. Immunoass. Immunochem. 35, 207–219 (2014).

    CAS  Google Scholar 

  99. Wagner, U. et al. Clonally expanded CD4+CD28null T cells in rheumatoid arthritis use distinct combinations of T cell receptor BV and BJ elements. Eur. J. Immunol. 33, 79–84 (2003).

    CAS  PubMed  Google Scholar 

  100. Musters, A. et al. In rheumatoid arthritis, synovitis at different inflammatory sites is dominated by shared but patient-specific T cell clones. J. Immunol. 201, 417–422 (2018). By studying paired blood and tissue samples, this study highlights the relevance of study tissue infiltrating lymphocytes in improving capture of immunological disturbances.

    CAS  PubMed  Google Scholar 

  101. Lamacchia, C. et al. Detection of circulating highly expanded T-cell clones in at-risk individuals for rheumatoid arthritis before the clinical onset of the disease. Rheumatology 60, 3451–3460 (2021).

    CAS  PubMed  Google Scholar 

  102. Dunlap, G. et al. Clonal associations between lymphocyte subsets and functional states in rheumatoid arthritis synovium. Nat. Commun. 15, 4991 (2024). Applying scRNA-seq to paired blood and tissue samples, this interesting study pinpoints numerous immune subsets potentially involved in antigenic responses in RA through evaluation of their clonotypic expansions and activation profile.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hingorani, R. et al. Oligoclonality of V beta 3 TCR chains in the CD8+ T cell population of rheumatoid arthritis patients. J. Immunol. 156, 852–858 (1996).

    CAS  PubMed  Google Scholar 

  104. Hall, F. C., Thomson, K., Procter, J., McMichael, A. J. & Wordsworth, B. P. TCR beta spectratyping in RA: evidence of clonal expansions in peripheral blood lymphocytes. Ann. Rheum. Dis. 57, 319–322 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, E. C. et al. CD8high+ (CD57+) T cells in patients with rheumatoid arthritis. Arthritis Rheum. 40, 237–248 (1997).

    CAS  PubMed  Google Scholar 

  106. Jung, J. et al. Synovial fluid CD69+CD8+ T cells with tissue-resident phenotype mediate perforin-dependent citrullination in rheumatoid arthritis. Clin. Transl. Immunol. 9, e1140 (2020).

    CAS  Google Scholar 

  107. Matulis, G. et al. Innate-like control of human iNKT cell autoreactivity via the hypervariable CDR3β loop. PLoS Biol. 8, e1000402 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Mansour, S. et al. Structural and functional changes of the invariant NKT clonal repertoire in early rheumatoid arthritis. J. Immunol. 195, 5582–5591 (2015).

    CAS  PubMed  Google Scholar 

  109. Kojo, S., Adachi, Y., Keino, H., Taniguchi, M. & Sumida, T. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 44, 1127–1138 (2001).

    CAS  PubMed  Google Scholar 

  110. Tudhope, S. J. et al. Profound invariant natural killer T-cell deficiency in inflammatory arthritis. Ann. Rheum. Dis. 69, 1873–1879 (2010).

    CAS  PubMed  Google Scholar 

  111. Linsen, L. et al. Peripheral blood but not synovial fluid natural killer T cells are biased towards a Th1-like phenotype in rheumatoid arthritis. Arthritis Res. Ther. 7, R493–R502 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sakuragi, T. et al. Autoreactivity of peripheral helper T cells in the joints of rheumatoid arthritis. J. Immunol. 206, 2045–2051 (2021).

    CAS  PubMed  Google Scholar 

  114. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    CAS  PubMed  Google Scholar 

  115. Catrina, A. I., Svensson, C. I., Malmström, V., Schett, G. & Klareskog, L. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 79–86 (2017).

    CAS  PubMed  Google Scholar 

  116. Turcinov, S. et al. Diversity and clonality of T cell receptor repertoire and antigen specificities in small joints of early rheumatoid arthritis. Arthritis Rheumatol. 75, 673–684 (2023).

    CAS  PubMed  Google Scholar 

  117. Fazou, C., Yang, H., McMichael, A. J. & Callan, M. F. Epitope specificity of clonally expanded populations of CD8+ T cells found within the joints of patients with inflammatory arthritis. Arthritis Rheum. 44, 2038–2045 (2001).

    CAS  PubMed  Google Scholar 

  118. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Datta, S. K., Kaliyaperumal, A., Mohan, C. & Desai-Mehta, A. T helper cells driving pathogenic anti-DNA autoantibody production in lupus: nucleosomal epitopes and CD40 ligand signals. Lupus 6, 333–336 (1997).

    CAS  PubMed  Google Scholar 

  120. Desai-Mehta, A., Mao, C., Rajagopalan, S., Robinson, T. & Datta, S. K. Structure and specificity of T cell receptors expressed by potentially pathogenic anti-DNA autoantibody-inducing T cells in human lupus. J. Clin. Invest. 95, 531–541 (1995). This report highlights TCR sequences and reactivity of cell lines and CD4+ T cells with anti-double-stranded DNA antibody-inducing capacity against SLE-relevant nuclear proteins, supporting the hypothesis of cross-reactivity between humoral and cellular immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kita, Y. et al. T cell receptor clonotypes in skin lesions from patients with systemic lupus erythematosus. J. Invest. Dermatol. 110, 41–46 (1998).

    CAS  PubMed  Google Scholar 

  122. Luo, W. et al. Analysis of the interindividual conservation of T cell receptor α- and β-chain variable regions gene in the peripheral blood of patients with systemic lupus erythematosus. Clin. Exp. Immunol. 154, 316–324 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kolowos, W. et al. Detection of restricted junctional diversity of peripheral T cells in SLE patients by spectratyping. Lupus 6, 701–707 (1997).

    CAS  PubMed  Google Scholar 

  124. Olive, C., Gatenby, P. A. & Serjeantson, S. W. Restricted junctional diversity of T cell receptor δ gene rearrangements expressed in systemic lupus erythematosus (SLE) patients. Clin. Exp. Immunol. 97, 430–438 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Murata, H. et al. T cell receptor repertoire of T cells in the kidneys of patients with lupus nephritis. Arthritis Rheum. 46, 2141–2147 (2002).

    CAS  PubMed  Google Scholar 

  126. Winchester, R. et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. 64, 1589–1600 (2012). This study identified expanded CD8+ and CD4+ T cells in renal tissue of patients with SLE.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mato, T. et al. Correlation of clonal T cell expansion with disease activity in systemic lupus erythematosus. Int. Immunol. 9, 547–554 (1997).

    CAS  PubMed  Google Scholar 

  128. Holbrook, M. R., Tighe, P. J. & Powell, R. J. Restrictions of T cell receptor β chain repertoire in the peripheral blood of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 55, 627–631 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Alexander, T. et al. Foxp3+ Helios+ regulatory T cells are expanded in active systemic lupus erythematosus. Ann. Rheum. Dis. 72, 1549–1558 (2013).

    CAS  PubMed  Google Scholar 

  130. Costa, N. et al. Broadened T-cell repertoire diversity in ivIg-treated SLE patients is also related to the individual status of regulatory T-cells. J. Clin. Immunol. 33, 349–360 (2013).

    CAS  PubMed  Google Scholar 

  131. Thapa, D. R. et al. Longitudinal analysis of peripheral blood T cell receptor diversity in patients with systemic lupus erythematosus by next-generation sequencing. Arthritis Res. Ther. 17, 132 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Yu, J. et al. Case report for recurrent and new-onset SLE patients treated by high-dose glucocorticoid therapy: characteristics of peripheral TCR beta chain CDR3 repertoires. Medicine 96, e9022 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Ye, X. et al. High-throughput sequencing-based analysis of T cell repertoire in lupus nephritis. Front. Immunol. 11, 1618 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jakez-Ocampo, J. et al. Vβ T cell receptor (TCR) genes in circulating cells of patients with systemic lupus erythematosus and their healthy relatives [Spanish]. Gac. Med. Mex. 154, 74–79 (2018).

    PubMed  Google Scholar 

  135. Sui, W. et al. Composition and variation analysis of the TCR β-chain CDR3 repertoire in systemic lupus erythematosus using high-throughput sequencing. Mol. Immunol. 67, 455–464 (2015).

    CAS  PubMed  Google Scholar 

  136. Tzifi, F. et al. Flow cytometric analysis of the CD4+ TCR Vβ repertoire in the peripheral blood of children with type 1 diabetes mellitus, systemic lupus erythematosus and age-matched healthy controls. BMC Immunol. 14, 33 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Kato, T. et al. Analysis of accumulated T cell clonotypes in patients with systemic lupus erythematosus. Arthritis Rheum. 43, 2712–2721 (2000).

    CAS  PubMed  Google Scholar 

  138. Massengill, S. F., Goodenow, M. M. & Sleasman, J. W. SLE nephritis is associated with an oligoclonal expansion of intrarenal T cells. Am. J. Kidney Dis. 31, 418–426 (1998).

    CAS  PubMed  Google Scholar 

  139. Kolowos, W. et al. CD4 positive peripheral T cells from patients with systemic lupus erythematosus (SLE) are clonally expanded. Lupus 10, 321–331 (2001). This study suggests that the presence of acidic amino acid residues within clonally expanded CD4 T cells mediates recognition of charged epitopes such as those present in nucleosomes, relevant to SLE pathology.

    CAS  PubMed  Google Scholar 

  140. Mohan, C., Adams, S., Stanik, V. & Datta, S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177, 1367–1381 (1993).

    CAS  PubMed  Google Scholar 

  141. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022). This scRNA-seq study in a large cohort of patients with SLE identifies expanded cytotoxic CD8 T cells with potential implication in the pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Blanco, P. et al. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 52, 201–211 (2005).

    CAS  PubMed  Google Scholar 

  143. Bosma, A., Abdel-Gadir, A., Isenberg, D. A., Jury, E. C. & Mauri, C. Lipid-antigen presentation by CD1d+ B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36, 477–490 (2012).

    CAS  PubMed  Google Scholar 

  144. Rajagopalan, S., Zordan, T., Tsokos, G. C. & Datta, S. K. Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD48 T helper cell lines that express the γδ T-cell antigen receptor. Proc. Natl Acad. Sci. USA 87, 7020–7024 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Yin, S. et al. Hyperactivation and in situ recruitment of inflammatory Vδ2 T cells contributes to disease pathogenesis in systemic lupus erythematosus. Sci. Rep. 5, 14432 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jonsson, M. V., Skarstein, K., Jonsson, R. & Brun, J. G. Serological implications of germinal center-like structures in primary Sjögren’s syndrome. J. Rheumatol. 34, 2044–2049 (2007).

    PubMed  Google Scholar 

  147. Manoussakis, M. N., Tzioufas, A. G., Pange, P. J. & Moutsopoulos, H. M. Serological profiles in subgroups of patients with Sjögren’s syndrome. Scand. J. Rheumatol. Suppl. 61, 89–92 (1986).

    CAS  PubMed  Google Scholar 

  148. Smith, M. D. et al. Selective expression of V beta families by T cells in the blood and salivary gland infiltrate of patients with primary Sjögren’s syndrome. J. Rheumatol. 21, 1832–1837 (1994).

    CAS  PubMed  Google Scholar 

  149. Kay, R. A. et al. An abnormal T cell repertoire in hypergammaglobulinaemic primary Sjögren’s syndrome. Clin. Exp. Immunol. 85, 262–264 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mizushima, N., Kohsaka, H., Tsubota, K., Saito, I. & Miyasaka, N. Diverse T cell receptor beta gene usage by infiltrating T cells in the lacrimal glands of Sjögren’s syndrome. Clin. Exp. Immunol. 101, 33–38 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Matsumoto, I. et al. Common T cell receptor clonotype in lacrimal glands and labial salivary glands from patients with Sjögren’s syndrome. J. Clin. Invest. 97, 1969–1977 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Sasaki, M. et al. Accumulation of common T cell clonotypes in the salivary glands of patients with human T lymphotropic virus type I-associated and idiopathic Sjögren’s syndrome. J. Immunol. 164, 2823–2831 (2000).

    CAS  PubMed  Google Scholar 

  153. Ohyama, Y. et al. T-cell receptor Vα and Vβ gene use by infiltrating T cells in labial glands of patients with Sjögren’s syndrome. Oral. Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 79, 730–737 (1995).

    CAS  PubMed  Google Scholar 

  154. Sumida, T. et al. TCR in Fas-sensitive T cells from labial salivary glands of patients with Sjögren’s syndrome. J. Immunol. 158, 1020–1025 (1997).

    CAS  PubMed  Google Scholar 

  155. Ajjan, R. A. et al. Analysis of the T-cell receptor Valpha repertoire and cytokine gene expression in Sjögren’s syndrome. Br. J. Rheumatol. 37, 179–185 (1998).

    CAS  PubMed  Google Scholar 

  156. Sumida, T. et al. T cell receptor repertoire of infiltrating T cells in lips of Sjögren’s syndrome patients. J. Clin. Invest. 89, 681–685 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sumida, T. et al. T cell receptor V alpha repertoire of infiltrating T cells in labial salivary glands from patients with Sjögren’s syndrome. J. Rheumatol. 21, 1655–1661 (1994).

    CAS  PubMed  Google Scholar 

  158. Murata, H. et al. Limited TCR repertoire of infiltrating T cells in the kidneys of Sjögren’s syndrome patients with interstitial nephritis. J. Immunol. 155, 4084–4089 (1995).

    CAS  PubMed  Google Scholar 

  159. Matsumoto, I. et al. Single cell analysis of T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. Int. J. Mol. Med. 4, 519–527 (1999).

    CAS  PubMed  Google Scholar 

  160. Lu, C. et al. Clinical significance of T cell receptor repertoire in primary Sjogren’s syndrome. EBioMedicine 84, 104252 (2022). This is a well-controlled study of a large cohort of patients with pSS evaluating the circulating TCR repertoire at three different time points throughout the disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Joachims, M. L. et al. Single-cell analysis of glandular T cell receptors in Sjögren’s syndrome. JCI Insight 1, e85609 (2016). This scRNA-seq study identifies tissue enrichment of potentially pathogenic CD4+ clonotypes, including some HLA-DR3/DQ2 associations, and in correlation with glandular dysfunction.

    PubMed  PubMed Central  Google Scholar 

  162. Voigt, A. et al. Unique glandular ex-vivo Th1 and Th17 receptor motifs in Sjögren’s syndrome patients using single-cell analysis. Clin. Immunol. 192, 58–67 (2018). This single-cell TCR sequencing study identifies shared CDR3 motifs among TH1 and TH17 cells from salivary gland tissue-infiltrating cells in pSS.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rowe, J. H. et al. Abnormalities of T-cell receptor repertoire in CD4+ regulatory and conventional T cells in patients with RAG mutations: implications for autoimmunity. J. Allergy Clin. Immunol. 140, 1739–1743.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ni, P. P., Solomon, B., Hsieh, C. S., Allen, P. M. & Morris, G. P. The ability to rearrange dual TCRs enhances positive selection, leading to increased allo- and autoreactive T cell repertoires. J. Immunol. 193, 1778–1786 (2014).

    CAS  PubMed  Google Scholar 

  165. Hou, X. et al. Analysis of gene expression and TCR/B cell receptor profiling of immune cells in primary Sjögren’s syndrome by single-cell sequencing. J. Immunol. 209, 238–249 (2022).

    CAS  PubMed  Google Scholar 

  166. Hong, X. et al. Single-cell RNA sequencing reveals the expansion of cytotoxic CD4+ T lymphocytes and a landscape of immune cells in primary Sjögren’s syndrome. Front. Immunol. 11, 594658 (2020).

    CAS  PubMed  Google Scholar 

  167. Xanthou, G. et al. CD4 cytotoxic and dendritic cells in the immunopathologic lesion of Sjögren’s syndrome. Clin. Exp. Immunol. 118, 154–163 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tasaki, S. et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann. Rheum. Dis. 76, 1458–1466 (2017).

    CAS  PubMed  Google Scholar 

  169. McHeyzer-Williams, M. G., Altman, J. D. & Davis, M. M. Enumeration and characterization of memory cells in the TH compartment. Immunol. Rev. 150, 5–21 (1996).

    CAS  PubMed  Google Scholar 

  170. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    CAS  PubMed  Google Scholar 

  171. Ornatsky, O., Baranov, V. I., Bandura, D. R., Tanner, S. D. & Dick, J. Multiple cellular antigen detection by ICP-MS. J. Immunol. Methods 308, 68–76 (2006).

    CAS  PubMed  Google Scholar 

  172. Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016).

    CAS  PubMed  Google Scholar 

  173. Sumida, T., Namekawa, T., Maeda, T. & Nishioka, K. New T-cell epitope of Ro/SS-A 52 kDa protein in labial salivary glands from patients with Sjögren’s syndrome. Lancet 348, 1667 (1996).

    CAS  PubMed  Google Scholar 

  174. Namekawa, T. et al. Identification of Ro(SSA) 52 kDa reactive T cells in labial salivary glands from patients with Sjögren’s syndrome. J. Rheumatol. 22, 2092–2099 (1995). This initial study identifies tissue-infiltrating T cells reactive against the Ro(SSA) protein in Sjögren syndrome with conserved CDR3 sequences.

    CAS  PubMed  Google Scholar 

  175. Abe, S. et al. M3 muscarinic acetylcholine receptor-reactive Th17 cells in primary Sjögren’s syndrome. JCI Insight 5, e135982 (2020). This recent study used ELIspot technology to detect M3R-reactive TH17 cell in pSS, highlighting this as a potential autoimmune target.

    PubMed  PubMed Central  Google Scholar 

  176. Okubo, M. et al. Detection and epitope analysis of autoantigen-reactive T cells to the U1-small nuclear ribonucleoprotein A protein in autoimmune disease patients. J. Immunol. 151, 1108–1115 (1993).

    CAS  PubMed  Google Scholar 

  177. Holyst, M. M., Hill, D. L., Hoch, S. O. & Hoffman, R. W. Analysis of human T cell and B cell responses against U small nuclear ribonucleoprotein 70-kd, B, and D polypeptides among patients with systemic lupus erythematosus and mixed connective tissue disease. Arthritis Rheum. 40, 1493–1503 (1997).

    CAS  PubMed  Google Scholar 

  178. Song, J. et al. Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI Insight 6, e145217 (2021). This study uses a combination antigen-binding or reactivity techniques for detecting citrullinated tenascin-C-specific CD4 T cells in patients with RA, reporting a TH2/TH17 phenotype.

    PubMed  PubMed Central  Google Scholar 

  179. Sharma, R. K. et al. Biased TCR gene usage in citrullinated tenascin C specific T-cells in rheumatoid arthritis. Sci. Rep. 11, 24512 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. de Jong, H. et al. Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis. 69, 255–262 (2010). A large cohort of patients with RA or osteoarthritis, or heathy controls, were evaluated to validate the reactivity against cartilage proteoglycan aggrecan epitopes as an autoimmune trigger of joint inflammation, finding cross-reactivity with a bacterial protein.

    PubMed  Google Scholar 

  181. Chemin, K. et al. A novel HLA-DRB1*10:01-restricted T cell epitope from citrullinated type II collagen relevant to rheumatoid arthritis. Arthritis Rheumatol. 68, 1124–1135 (2016).

    CAS  PubMed  Google Scholar 

  182. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Loh, T. J. et al. The molecular basis underlying T cell specificity towards citrullinated epitopes presented by HLA-DR4. Nat. Commun. 15, 6201 (2024). This study uses tetramer peptide–HLA technology to investigate TCR reactivity against citrullinated peptides presented by the HLA-DR4, explaining the preferential usage of TRAV-26-1 gene segment recombination.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Scally, S. W. et al. Molecular basis for increased susceptibility of Indigenous North Americans to seropositive rheumatoid arthritis. Ann. Rheum. Dis. 76, 1915–1923 (2017).

    CAS  PubMed  Google Scholar 

  186. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    CAS  PubMed  Google Scholar 

  187. Gutierrez-Arcelus, M., Rich, S. S. & Raychaudhuri, S. Autoimmune diseases – connecting risk alleles with molecular traits of the immune system. Nat. Rev. Genet. 17, 160–174 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Nagafuchi, Y. et al. Control of naive and effector CD4 T cell receptor repertoires by rheumatoid-arthritis-risk HLA alleles. J. Autoimmun. 133, 102907 (2022).

    CAS  PubMed  Google Scholar 

  190. Rubtsova, K., Marrack, P. & Rubtsov, A. V. Sexual dimorphism in autoimmunity. J. Clin. Invest. 125, 2187–2193 (2015).

    PubMed  PubMed Central  Google Scholar 

  191. Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124.e3 (2016).

    PubMed  PubMed Central  Google Scholar 

  192. Hughes, T. et al. Analysis of autosomal genes reveals gene–sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 694–699 (2012).

    CAS  PubMed  Google Scholar 

  193. Schneider-Hohendorf, T. et al. Sex bias in MHC I-associated shaping of the adaptive immune system. Proc. Natl Acad. Sci. USA 115, 2168–2173 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Rossetti, M. et al. TCR repertoire sequencing identifies synovial Treg cell clonotypes in the bloodstream during active inflammation in human arthritis. Ann. Rheum. Dis. 76, 435–441 (2017).

    CAS  PubMed  Google Scholar 

  195. Petrelli, A. et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J. Clin. Invest. 128, 4669–4681 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Henderson, L. A. et al. Next-generation sequencing reveals restriction and clonotypic expansion of Treg cells in juvenile idiopathic arthritis. Arthritis Rheumatol. 68, 1758–1768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Fischer, D. C., Opalka, B., Hoffmann, A., Mayr, W. & Haubeck, H. D. Limited heterogeneity of rearranged T cell receptor Vα and Vβ transcripts in synovial fluid T cells in early stages of rheumatoid arthritis. Arthritis Rheum. 39, 454–462 (1996).

    CAS  PubMed  Google Scholar 

  198. Elewaut, D., De Keyser, F., Van den Bosch, F., Verbruggen, G. & Veys, E. M. Broadening of the T cell receptor spectrum among rheumatoid arthritis synovial cell-lines in relation to disease duration. Clin. Exp. Rheumatol. 18, 201–207 (2000).

    CAS  PubMed  Google Scholar 

  199. Goronzy, J. J. et al. Dominant clonotypes in the repertoire of peripheral CD4+ T cells in rheumatoid arthritis. J. Clin. Invest. 94, 2068–2076 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ercolini, A. M. & Miller, S. D. The role of infections in autoimmune disease. Clin. Exp. Immunol. 155, 1–15 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Yin, J. et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann. Rheum. Dis. 79, 132–140 (2020).

    CAS  PubMed  Google Scholar 

  202. Scher, J. U., Littman, D. R. & Abramson, S. B. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheumatol. 68, 35–45 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Prasad, S., Starck, S. R. & Shastri, N. Presentation of cryptic peptides by MHC class I is enhanced by inflammatory stimuli. J. Immunol. 197, 2981–2991 (2016).

    CAS  PubMed  Google Scholar 

  204. Doyle, H. A. & Mamula, M. J. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr. Opin. Immunol. 24, 112–118 (2012).

    CAS  PubMed  Google Scholar 

  205. Pruijn, G. J., Wiik, A. & van Venrooij, W. J. The use of citrullinated peptides and proteins for the diagnosis of rheumatoid arthritis. Arthritis Res. Ther. 12, 203 (2010).

    PubMed  PubMed Central  Google Scholar 

  206. Lim, J. J. et al. The shared susceptibility epitope of HLA-DR4 binds citrullinated self-antigens and the TCR. Sci. Immunol. 6, eabe0896 (2021).

    CAS  PubMed  Google Scholar 

  207. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl. Med. 8, 369ra176 (2016).

    PubMed  PubMed Central  Google Scholar 

  209. Maggi, J. et al. Isolation of HLA-DR-naturally presented peptides identifies T-cell epitopes for rheumatoid arthritis. Ann. Rheum. Dis. 81, 1096–1105 (2022).

    PubMed  Google Scholar 

  210. Wang, R. et al. Clonally expanded CD38hi cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis. Sci. Immunol. 8, eadd1591 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Kim, S. T. et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 13, 1970 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Schmitt, H. et al. Siglec-H protects from virus-triggered severe systemic autoimmunity. J. Exp. Med. 213, 1627–1644 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kono, D. H. et al. Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc. Natl Acad. Sci. USA 106, 12061–12066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Britanova, O. V. et al. Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis. Nat. Med. 29, 2731–2736 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Yang, P. et al. Application of T-cell receptor repertoire as a novel monitor in dynamic tracking and assessment: a cohort-study based on RA patients. J. Cell Mol. Med. 26, 6042–6055 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Bell, G. M. et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann. Rheum. Dis. 76, 227–234 (2017).

    CAS  PubMed  Google Scholar 

  217. Sonigra, A. et al. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight 7, e160964 (2022).

    PubMed  PubMed Central  Google Scholar 

  218. Kenna, T. J., Thomas, R. & Steptoe, R. J. Steady-state dendritic cells expressing cognate antigen terminate memory CD8+ T-cell responses. Blood 111, 2091–2100 (2008).

    CAS  PubMed  Google Scholar 

  219. Kenna, T. J. et al. Targeting antigen to diverse APCs inactivates memory CD8+ T cells without eliciting tissue-destructive effector function. J. Immunol. 184, 598–606 (2010).

    CAS  PubMed  Google Scholar 

  220. Liu, J., Zhang, X. & Cao, X. Dendritic cells in systemic lupus erythematosus: from pathogenesis to therapeutic applications. J. Autoimmunity 132, 102856 (2022).

    CAS  Google Scholar 

  221. Horwitz, D. A., Bickerton, S. & La Cava, A. Strategies to use nanoparticles to generate CD4 and CD8 regulatory T cells for the treatment of SLE and other autoimmune diseases. Front. Immunol. 12, 681062 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Wright, G. P. et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc. Natl Acad. Sci. USA 106, 19078–19083 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Delves, P. J., Martin, S. J., Burton, D. R. & Roitt, I. M. Roitt’s Essential Immunology 13th edn (Wiley, 2017).

  224. Bank, I. The role of gamma delta T cells in autoimmune rheumatic diseases. Cells 9, 462 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Eckle, S. B. et al. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J. Biol. Chem. 290, 30204–30211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Mortier, C., Govindarajan, S., Venken, K. & Elewaut, D. It takes “guts” to cause joint inflammation: role of innate-like T cells. Front. Immunol. 9, 1489 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jose Garrido-Mesa or Matthew A. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks George Tsokos, Eric Gracey, Joerg Ermann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido-Mesa, J., Brown, M.A. Antigen-driven T cell responses in rheumatic diseases: insights from T cell receptor repertoire studies. Nat Rev Rheumatol 21, 157–173 (2025). https://doi.org/10.1038/s41584-025-01218-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01218-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing