Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hyperuricaemia and gout in the Pacific

Subjects

Abstract

Gout is the most common form of inflammatory arthritis in adults worldwide. There has been a steady increase in prevalence, which varies across different geographic areas and is high in the Indigenous (First Nations) peoples of the Pacific region. Palaeo-archaeological studies demonstrate that gout was present in the Pacific region prior to European colonization, which is suggestive of genetic predisposition. Genetic risk factors, including population-specific genetic variants and genetic variants shared across populations, particularly those influencing urate transporters, have been identified in Indigenous peoples of the Pacific that partly explain the earlier age of onset of gout. Indigenous peoples of the Pacific experience severe gout, with frequent flares, high hospitalization rates and tophaceous gout, all aggravated by socio-cultural factors. Despite a specific need for effective gout management, Indigenous peoples of the Pacific are under-represented in gout research and inequities in care continue. Indigenous peoples-led, holistic gout management programmes are systematically and urgently required in this region, where gout is a major public health issue. Importantly, a foundation of cultural safety is necessary to underpin such programmes.

Key points

  • Indigenous peoples of the Pacific, particularly those of Polynesian descent, have a high prevalence of hyperuricaemia and gout.

  • The genetic basis of gout in Indigenous peoples of the Pacific is a composite of risk alleles shared between populations and population-specific risk alleles.

  • Gout in Indigenous peoples of the Pacific is severe, associated with family history and is experienced at a relatively young age.

  • Cardiometabolic and renal comorbidities are common in people with gout throughout the Pacific region, and their management and prevention are also required.

  • Health inequities continue to affect gout care for Indigenous peoples of the Pacific region.

  • Territorial, holistic health programmes are systematically and urgently required in this region, particularly to improve access to urate-lowering therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the Pacific region with the known national prevalences of hyperuricaemia and gout.

Similar content being viewed by others

References

  1. Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380–390 (2020).

    Article  PubMed  Google Scholar 

  2. GBD 2021 Gout Collaborators. Global, regional, and national burden of gout, 1990-2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 6, e507–e517 (2024).

    Article  Google Scholar 

  3. Dalbeth, N., Gosling, A. L., Gaffo, A. & Abhishek, A. Gout. Lancet 397, 1843–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Stamp, L. K., Christensen, R. & Morillon, M. B. Serum urate as a surrogate outcome for gout flares: where do we stand today? Gout Urate Cryst. Depos. Dis. 2, 70–76 (2024).

    Article  Google Scholar 

  5. Pascart, T. & Lioté, F. Gout: state of the art after a decade of developments. Rheumatology 58, 27–44 (2019).

    CAS  PubMed  Google Scholar 

  6. Muntiu, M., Joosten, L. A. B. & Crişan, T. O. Gout basic research: 2023 in review. Gout Urate Cryst. Depos. Dis. 2, 220–235 (2024).

    Article  Google Scholar 

  7. Singh, J. A. & Gaffo, A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum. 50, S11–S16 (2020).

    Article  PubMed  Google Scholar 

  8. Andrés, M. Gout and cardiovascular disease: mechanisms, risk estimations, and the impact of therapies. Gout Urate Cryst. Depos. Dis. 1, 152–166 (2023).

    Article  Google Scholar 

  9. Urquiaga, M. & Gaffo, A. L. Year in review: gout clinical research. Gout Urate Cryst. Depos. Dis. 1, 37–48 (2023).

    Article  Google Scholar 

  10. Choi, H. K., McCormick, N. & Yokose, C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat. Rev. Rheumatol. 18, 97–111 (2022).

    Article  PubMed  Google Scholar 

  11. Cipolletta, E. et al. Association between gout flare and subsequent cardiovascular events among patients with gout. JAMA 328, 440–450 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doherty, M. et al. Gout: why is this curable disease so seldom cured? Ann. Rheum. Dis. 71, 1765–1770 (2012).

    Article  PubMed  Google Scholar 

  13. Te Kampe, R. et al. Outcomes of care among patients with gout in Europe: a cross-sectional survey. J. Rheumatol. 49, 312–319 (2022).

    Article  Google Scholar 

  14. Scheepers, L. E. J. M. et al. Medication adherence among patients with gout: a systematic review and meta-analysis. Semin. Arthritis Rheum. 47, 689–702 (2018).

    Article  PubMed  Google Scholar 

  15. Lee, S. J. et al. Perceptions of disease and health-related quality of life among patients with gout. Rheumatology 48, 582–586 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rai, S. K. et al. The economic burden of gout: a systematic review. Semin. Arthritis Rheum. 45, 75–80 (2015).

    Article  PubMed  Google Scholar 

  17. Stewart, S. et al. The experience of a gout flare: a meta-synthesis of qualitative studies. Semin. Arthritis Rheum. 50, 805–811 (2020).

    Article  PubMed  Google Scholar 

  18. Shields, G. E. & Beard, S. M. A systematic review of the economic and humanistic burden of gout. Pharmacoeconomics 33, 1029–1047 (2015).

    Article  PubMed  Google Scholar 

  19. Roddy, E., Zhang, W. & Doherty, M. Is gout associated with reduced quality of life? A case-control study. Rheumatology 46, 1441–1444 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Bardin, T. et al. Prevalence of gout in the adult population of France. Arthritis Care Res. 68, 261–266 (2016).

    Article  Google Scholar 

  21. Yokose, C. et al. Trends in prevalence of gout among US Asian Adults, 2011-2018. JAMA Netw. Open. 6, e239501 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuo, C.-F. et al. Epidemiology and management of gout in Taiwan: a nationwide population study. Arthritis Res. Ther. 17, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pascart, T. et al. The gout epidemic in French Polynesia: a modelling study of data from the Ma’i u’u epidemiological survey. Lancet Glob. Health 12, e685–e696 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Healey, L. A. & Jones, K. W. Hyperuricemia in American Samoans. Arthritis Rheum. 14, 283–285 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Zimmet, P. Z., Whitehouse, S., Jackson, L. & Thoma, K. High prevalence of hyperuricaemia and gout in an urbanised Micronesian population. Br. Med. J. 1, 1237–1239 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibson, T., Waterworth, R., Hatfield, P., Robinson, G. & Bremner, K. Hyperuricaemia, gout and kidney function in New Zealand Maori men. Br. J. Rheumatol. 23, 276–282 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Prior, I. A., Rose, B. S., Harvey, H. P. & Davidson, F. Hyperuricaemia, gout, and diabetic abnormality in Polynesian people. Lancet 1, 333–338 (1966).

    Article  CAS  PubMed  Google Scholar 

  28. Prior, I. A. & Rose, B. S. Uric acid, gout and public health in the South Pacific. N. Z. Med. J. 65, 295–300 (1966).

    CAS  PubMed  Google Scholar 

  29. Prior, L. Epidemiology of Rheumatic disorders in the Pacific with particular emphasis on hyperuricaemia and gout. Semin. Arthritis Rheum. 11, 213–229 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Lennane, G. A. Q., Rose, B. S. & Isdale, I. C. Gout in the Maori. Ann. Rheum. Dis. 19, 120–125 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuomilehto, J. et al. Plasma uric acid level and its association with diabetes mellitus and some biologic parameters in a biracial population of Fiji. Am. J. Epidemiol. 127, 321–336 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Adams, W. H., Harper, J. A., Heotis, P. M. & Jamner, A. H. Hyperuricemia in the inhabitants of the Marshall Islands. Arthritis Rheum. 27, 713–716 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Burch, T. A., O’Brien, W. M., Need, R. & Kurland, L. T. Hyperuricaemia and gout in the Mariana Islands. Ann. Rheum. Dis. 25, 114–116 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rose, B. S. Gout in Maoris. Semin. Arthritis Rheum. 5, 121–145 (1975).

    Article  CAS  PubMed  Google Scholar 

  35. Brauer, G. W. & Prior, I. A. A prospective study of gout in New Zealand Maoris. Ann. Rheum. Dis. 37, 466–472 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klemp, P., Stansfield, S. A., Castle, B. & Robertson, M. C. Gout is on the increase in New Zealand. Ann. Rheum. Dis. 56, 22–26 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stamp, L. K. et al. Hyperuricaemia and gout in New Zealand rural and urban Māori and non-Māori communities. Intern. Med. J. 43, 678–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Gout. Te Tāhū Hauora Health Quality & Safety Commission. https://www.hqsc.govt.nz/our-data/atlas-of-healthcare-variation/gout/ (accessed 2025).

  39. Winnard, D. et al. National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology 51, 901–909 (2012).

    Article  PubMed  Google Scholar 

  40. Jackson, G. et al. Potential unmet need for gout diagnosis and treatment: capture–recapture analysis of a national administrative dataset. Rheumatology 51, 1820–1824 (2012).

    Article  PubMed  Google Scholar 

  41. Bardin, T., Magnat, E., Clerson, P., Richette, P. & Rouchon, B. Epidemiology of gout and hyperuricemia in New Caledonia. Jt. Bone Spine 89, 105286 (2022).

    Article  CAS  Google Scholar 

  42. Richette, P. et al. Identification of patients with gout: elaboration of a questionnaire for epidemiological studies. Ann. Rheum. Dis. 74, 1684 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Thompson, M. D. Insights in public health: hyperuricemia and gout in Hawai’i. Hawaii J. Med. Public Health 77, 121–124 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Chang, C. et al. Gout in native Hawaiian Patients in Hawai’i: clinical characteristics and disparities. Arthritis Care Res. 76, 712–719 (2024).

    Article  Google Scholar 

  45. Paulino, Y. C. et al. Conducting genetic epidemiology research on hyperuricaemia and gout in an indigenous community in Guam — a feasibility study. BMC Public Health 25, 484 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Serra-Mallol, C. et al. Eating well’ in Pacific Islands countries and territories: a qualitative and normative approach to food cultures in New Caledonia. Appetite 163, 105192 (2021).

    Article  PubMed  Google Scholar 

  47. Davila, F., Burkhart, S. & O’Connell, T. State of food and nutrition security in the Pacific. in: Dansie, A., Alleway, H. K. & Böer, B. (eds) The Water, Energy, and Food Security Nexus in Asia and the Pacific: The Pacific. 85–106 (Springer International Publishing, 2024).

  48. Prior, I. A., Welby, T. J., Ostbye, T., Salmond, C. E. & Stokes, Y. M. Migration and gout: the Tokelau Island migrant study. Br. Med. J. Clin. Res. Ed. 295, 457–461 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reed, D., Labarthe, D. & Stallones, R. Epidemiologic studies of serum uric acid levels among Micronesians. Arthritis Rheum. 15, 381–390 (1972).

    Article  CAS  PubMed  Google Scholar 

  50. Jeremy, R. & Rhodes, F. A. Studies of serum urate levels in New Guineans living in different environments. Med. J. Aust. 1, 897–899 (1971).

    Article  CAS  PubMed  Google Scholar 

  51. Jackson, L. et al. Hyperuricaemia and gout in Western Samoans. J. Chronic Dis. 34, 65–75 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Helget, L. N. & Mikuls, T. R. Environmental triggers of hyperuricemia and gout. Rheum. Dis. Clin. North. Am. 48, 891 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stewart, S. et al. Development of gout in people with asymptomatic hyperuricemia: study protocol for a 5-year prospective cohort. BMJ Open. 14, e090415 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ling, N. Y., Halcrow, S. E. & Buckley, H. R. Gout in paleopathology: a review with some etiological considerations. Gout Urate Cryst. Depos. Dis. 1, 217–233 (2023).

    Article  Google Scholar 

  55. Buckley, H. R., Tayles, N., Halcrow, S. E., Robb, K. & Fyfe, R. The people of Wairau Bar: a re-examination. J. Pac. Archaeol. 1, 1–20 (2010).

    Google Scholar 

  56. Buckley, H. R. Possible gouty arthritis in lapita‐associated skeletons from Teouma, Efate Island, Central Vanuatu. Curr. Anthropol. 48, 741–749 (2007).

    Article  Google Scholar 

  57. Rothschild, B. M. & Heathcote, G. M. Characterization of gout in a skeletal population sample: presumptive diagnosis in a Micronesian population. Am. J. Phys. Anthropol. 98, 519–525 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Douglas, M. T., Pietrusewsky, M. & Ikehara-Quebral, R. M. Skeletal biology of Apurguan: a precontact Chamorro site on Guam. Am. J. Phys. Anthropol. 104, 291–313 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki, T. Paleopathological and paleoepidemiological investigation of human skeletal remains of early Hawaiians from Mokapu Site, Oahu Island, Hawaii. Jpn. Rev. 83, 128 (1993).

    Google Scholar 

  60. Dittmar, J. M. et al. Gout and ‘Podagra’ in medieval Cambridge, England. Int. J. Paleopathol. 33, 170–181 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rothschild, B. M., Coppa, A. & Petrone, P. P. ‘Like a virgin’: absence of rheumatoid arthritis and treponematosis, good sanitation and only rare gout in Italy prior to the 15th century. Reumatismo 56, 61–66 (2004).

    CAS  PubMed  Google Scholar 

  62. Major, T. J., Topless, R. K., Dalbeth, N. & Merriman, T. R. Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. BMJ 363, k3951 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Leask, M. P. et al. The pathogenesis of gout: molecular insights from genetic, epigenomic and transcriptomic studies. Nat. Rev. Rheumatol. 20, 510–523 (2024).

    Article  PubMed  Google Scholar 

  64. Major, T. J. et al. A genome-wide association analysis reveals new pathogenic pathways in gout. Nat. Genet. 56, 2392–2406 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Butler, F., Alghubayshi, A. & Roman, Y. The epidemiology and genetics of hyperuricemia and gout across major racial groups: a literature review and population genetics secondary database analysis. J. Pers. Med. 11, 231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Krishnan, E., Lessov-Schlaggar, C. N., Krasnow, R. E. & Swan, G. E. Nature versus nurture in gout: a twin study. Am. J. Med. 125, 499–504 (2012).

    Article  PubMed  Google Scholar 

  67. Nian, Y.-L. & You, C.-G. Susceptibility genes of hyperuricemia and gout. Hereditas 159, 30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sumpter, N. A. et al. Association of gout polygenic risk score with age at disease onset and tophaceous disease in European and Polynesian men with gout. Arthritis Rheumatol. Hoboken NJ 75, 816–825 (2023).

    Article  Google Scholar 

  69. Zaidi, F. et al. Systematic genetic analysis of early-onset gout: ABCG2 is the only associated locus. Rheumatol. Oxf. Engl. 59, 2544–2549 (2020).

    Article  CAS  Google Scholar 

  70. He, W., Phipps-Green, A., Stamp, L. K., Merriman, T. R. & Dalbeth, N. Population-specific association between ABCG2 variants and tophaceous disease in people with gout. Arthritis Res. Ther. 19, 43 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wrigley, R. et al. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res. Ther. 22, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ioannidis, A. G. et al. Paths and timings of the peopling of Polynesia inferred from genomic networks. Nature 597, 522–526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gosling, A. L. & Matisoo-Smith, E. A. The evolutionary history and human settlement of Australia and the Pacific. Curr. Opin. Genet. Dev. 53, 53–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Arauna, L. R. et al. The genomic landscape of contemporary western Remote Oceanians. Curr. Biol. CB 32, 4565–4575.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Taonui, R. Whakapapa – genealogy. What is whakapapa? Te Ara, the Encyclopedia of New Zealand; http://www.TeAra.govt.nz/en/whakapapa-genealogy/page-1 (accessed 2025).

  76. Gosling, A. L., Buckley, H. R., Matisoo-Smith, E. & Merriman, T. R. Pacific populations, metabolic disease and ‘Just-So Stories’: a critique of the ‘Thrifty Genotype’ hypothesis in Oceania. Ann. Hum. Genet. 79, 470–480 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Lipson, M. et al. Reconstructing Austronesian population history in Island Southeast Asia. Nat. Commun. 5, 4689 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Choin, J. et al. Genomic insights into population history and biological adaptation in Oceania. Nature 592, 583–589 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Emde, A.-K. et al. Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations. BMC Genomics 22, 666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tanner, C. et al. Population-specific resequencing associates the ATP-binding cassette subfamily C member 4 gene with gout in New Zealand Māori and Pacific men. Arthritis Rheumatol. Hoboken NJ 69, 1461–1469 (2017).

    Article  CAS  Google Scholar 

  81. Narang, R. K. et al. Population-specific factors associated with fractional excretion of uric acid. Arthritis Res. Ther. 21, 234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hollis-Moffatt, J. E. et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Māori, Pacific Island, and Caucasian case-control sample sets. Arthritis Rheum. 60, 3485–3492 (2009).

    Article  PubMed  Google Scholar 

  83. Dalbeth, N. et al. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load. Ann. Rheum. Dis. 72, 1868–1873 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Batt, C. et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 73, 2101–2106 (2014).

    Article  PubMed  Google Scholar 

  85. Flynn, T. J. et al. Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis Res. Ther. 15, R220 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Klück, V. et al. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann. Rheum. Dis. 79, 536–544 (2020).

    Article  PubMed  Google Scholar 

  87. Ji, A. et al. Aotearoa New Zealand Māori and Pacific population-amplified gout risk variants: CLNK is a separate risk gene at the SLC2A9 locus. J. Rheumatol. 48, 1736–1744 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, K. et al. A Polynesian-specific copy number variant encompassing the MICA gene associates with gout. Hum. Mol. Genet. 31, 3757–3768 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bardin, T. et al. Early-onset gout and rare deficient variants of the lactate dehydrogenase D gene. Rheumatology 62, 3978–3983 (2023).

    Article  PubMed  Google Scholar 

  90. Ha Pham, T. T. et al. Allopurinol-induced severe cutaneous adverse reactions in Vietnamese: the role of HLA alleles and other risk factors. Pharmacogenomics 23, 303–313 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Chiu, M. L. S. et al. Association between HLA-B*58:01 allele and severe cutaneous adverse reactions with allopurinol in Han Chinese in Hong Kong. Br. J. Dermatol. 167, 44–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Stamp, L. K., Day, R. O. & Yun, J. Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat. Rev. Rheumatol. 12, 235–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Roberts, R. L. et al. Frequency of CYP2C9 polymorphisms in Polynesian people and potential relevance to management of gout with benzbromarone. Jt. Bone Spine 81, 160–163 (2014).

    Article  CAS  Google Scholar 

  94. Gottesman, O. et al. The Electronic Medical Records and Genomics (eMERGE) network: past, present, and future. Genet. Med. 15, 761–771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Te Karu, L., Dalbeth, N. & Stamp, L. K. Inequities in people with gout: a focus on Māori (Indigenous People) of Aotearoa New Zealand. Ther. Adv. Musculoskelet. Dis. 13, 1759720X211028007 (2021).

    Article  Google Scholar 

  96. Phipps-Green, A. J. et al. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Māori, case and control sample sets. Hum. Mol. Genet. 19, 4813–4819 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Pascart, T., Ducoulombier, V. & Jauffret, C. Early-onset gout. Jt. Bone Spine 91, 105704 (2024).

    Article  CAS  Google Scholar 

  98. Oehler, E. & Pascart, T. Severe tophaceous gout with radiograph examination of diffused calcified soft tissue tophi. J. Rheumatol. 42, 1259–1260 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. McLean, L. Tophaceous pseudotumors in Polynesian patients with gout. J. Rheumatol. 31, 1866–1868 (2004).

    PubMed  Google Scholar 

  100. Dalbeth, N. et al. The experience and impact of gout in Māori and Pacific people: a prospective observational study. Clin. Rheumatol. 32, 247–251 (2013).

    Article  PubMed  Google Scholar 

  101. Dalbeth, N. et al. Gout in Aotearoa New Zealand: the equity crisis continues in plain sight. N. Z. Med. J. 131, 8–12 (2018).

    PubMed  Google Scholar 

  102. Robinson, P. C., Merriman, T. R., Herbison, P. & Highton, J. Hospital admissions associated with gout and their comorbidities in New Zealand and England 1999–2009. Rheumatology 52, 118–126 (2013).

    Article  PubMed  Google Scholar 

  103. Te Karu, L., Bryant, L. & Elley, C. R. Maori experiences and perceptions of gout and its treatment: a kaupapa Maori qualitative study. J. Prim. Health Care 5, 214–222 (2013).

    Article  Google Scholar 

  104. Clarson, L. E. et al. Increased cardiovascular mortality associated with gout: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 22, 335–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Te Karu, L., Harwood, M., Arroll, B., Bryant, L. & Kenealy, T. The inequity of access to health: a case study of patients with gout in one general practice. N. Z. Med. J. 134, 51–58 (2021).

    PubMed  Google Scholar 

  106. Cai, K. et al. Association between gout and cardiovascular outcomes in adults with no history of cardiovascular disease: large data linkage study in New Zealand. BMJ Med. 1, e000081 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tane, T., Selak, V., Eggleton, K. & Harwood, M. Drivers of access to cardiovascular health care for rural Indigenous Peoples: a scoping review. Rural. Remote. Health 24, 8674 (2024).

    PubMed  Google Scholar 

  108. Moon, K. W. et al. Risk factors for acute kidney injury by non-steroidal anti-inflammatory drugs in patients with hyperuricaemia. Rheumatology 50, 2278–2282 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. FitzGerald, J. D. et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol. 72, 879–895 (2020).

    Article  PubMed  Google Scholar 

  110. Latourte, A. et al. 2020 Recommendations from the French Society of Rheumatology for the management of gout: management of acute flares. Jt. Bone Spine 87, 387–393 (2020).

    Article  CAS  Google Scholar 

  111. Richette, P. et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 76, 29–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Bardin, T. & Richette, P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 15, 123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rech, J.-S. et al. AA amyloidosis of unknown origin in New-Caledonia with focus on the association with gout: a consecutive case series of 20 patients. Amyloid 29, 68–69 (2022).

    Article  PubMed  Google Scholar 

  114. Te Karu, L., Kenealy, T., Bryant, L., Arroll, B. & Harwood, M. The long shadow of inequity for Māori with gout. MAI J. 9, 152–165 (2020).

  115. Gosling, A. L., Matisoo-Smith, E. & Merriman, T. R. Gout in Māori. Rheumatology 53, 773–774 (2014).

    Article  PubMed  Google Scholar 

  116. Roussey, A. Culture Polynésienne et Maladies Chroniques: une Étude Qualitative des Déterminants de Santé Culturels dans la Prise en Charge des Maladies Chroniques. MD thesis, Univ. Nantes (2018).

  117. Boivin, R., Pascart, T. & Oehler, E. Goutte de la personne âgée: comment l’éduquer en Polynésie française? Gérontologie Société 46174, 21–38 (2024).

    Article  Google Scholar 

  118. LeBaron von Baeyer, S. et al. Nothing about us without us: sharing results with communities that provide genomic data. Cell 87, 5483–5489 (2024).

  119. Arnold, J., Harris, R. & Graham, K. Pharmac Te Pātaka Whaioranga: Gout insights — Impact on Māori; https://pharmac.govt.nz/about/access-equity/medicine-access-equity-monitoring-and-outcomes-framework/gout-insights-impact-on-maori (Pharmac, 2021).

  120. Pascart, T. et al. 2020 recommendations from the French Society of Rheumatology for the management of gout: urate-lowering therapy. Joint Bone Spine 87, 395–404 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Dahanayake, C., Jordan, K. M. & Roddy, E. Crystal Clear? The 2022 NICE guideline for the diagnosis and management of gout. Gout Urate Cryst. Depos. Dis. 1, 7–10 (2023).

    Article  Google Scholar 

  122. Dalbeth, N., Te Karu, L. & Stamp, L. K. Gout and its management. Intern. Med. J. 54, 716–723 (2024).

    Article  CAS  PubMed  Google Scholar 

  123. Pascart, T., Oehler, E. & Flipo, R.-M. Gout in French Polynesia: a survey of common practices. Joint Bone Spine 81, 374–375 (2014).

    Article  PubMed  Google Scholar 

  124. Arnold, J., Harris, R., Masina, L. A. & Graham, K. Pacific Peoples Health - Gout Data Insights; https://pharmac.govt.nz/assets/2022-04-11-PacificPeoples-Health-Gout-Data-Insights.pdf (Pharmac, 2022).

  125. Fanning, N. C. et al. Association of rare and common genetic variants in MOCOS with inadequate response to allopurinol. Rheumatology 63, 3025–3032 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wright, D. F. B. et al. The development and evaluation of dose-prediction tools for allopurinol therapy (Easy-Allo tools). Br. J. Clin. Pharmacol. 90, 1268–1279 (2024).

    Article  CAS  PubMed  Google Scholar 

  127. Wallace, M. C. et al. Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology 57, 656–660 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Hishe, H. Z. et al. The impact of genetic variability in urate transporters on oxypurinol pharmacokinetics. Clin. Transl. Sci. 16, 422–428 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Te Karu, L., Harwood, M., Bryant, L., Kenealy, T. & Arroll, B. Compounding inequity: a qualitative study of gout management in an urban marae clinic in Auckland. J. Prim. Health Care 13, 27–35 (2021).

    Article  Google Scholar 

  130. Lawrence, A. et al. Facilitating equitable prevention and management of gout for Māori in Northland, New Zealand, through a collaborative primary care approach. J. Prim. Health Care 11, 117–127 (2019).

    Article  PubMed  Google Scholar 

  131. Andrews, S., Gasparini, J. & Henderson, G. Evaluation of Gout Stop and Owning My Gout Management Programmes: Final Report for Arthritis New Zealand and Its Partners (Synergia Limited, 2020).

  132. Doherty, M. et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus usual care for gout: a randomised controlled trial. Lancet 392, 1403–1412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Fuller, A., Jenkins, W., Doherty, M. & Abhishek, A. Nurse-led care is preferred over GP-led care of gout and improves gout outcomes: results of Nottingham Gout Treatment Trial follow-up study. Rheumatology 59, 575–579 (2020).

    PubMed  Google Scholar 

  134. Kawakami, K. L. et al. The lives of native Hawaiian elders and their experiences with healthcare: a qualitative analysis. Front. Public Health 10, 787215 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Neville, S. et al. Barriers to older Pacific peoples’ participation in the health-care system in Aotearoa New Zealand. J. Prim. Health Care 14, 124–129 (2022).

    Article  PubMed  Google Scholar 

  136. Roman, Y. M. Moving the needle in gout management: the role of culture, diet, genetics, and personalized patient care practices. Nutrients 14, 3590 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Curtis, E. et al. Why cultural safety rather than cultural competency is required to achieve health equity: a literature review and recommended definition. Int. J. Equity Health 18, 174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ofanoa, M. et al. Design and implementation of a Pacific intervention to increase uptake of urate-lowering therapy for gout: a study protocol. Int. J. Equity Health 20, 262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ministry of Health. Ola Manuia: Pacific Health and Wellbeing Action Plan 2020-2025 (2020).

  140. Te Karu, L. Guest editorial: restoration of the health system must not neglect medicines — but who has the power of reform? J. Prim. Health Care 13, 96–101 (2021).

    Article  Google Scholar 

  141. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Curtis, E. et al. Indigenous adaptation of a model for understanding the determinants of ethnic health inequities. Discov. Soc. Sci. Health 3, 10 (2023).

    Article  Google Scholar 

  143. García-Pérez, R. et al. The landscape of expression and alternative splicing variation across human traits. Cell Genomics 3, 100244 (2023).

    Article  PubMed  Google Scholar 

  144. Abolins-Thompson, H. et al. Culturally responsive strategies and practical considerations for live tissue studies in Māori participant cohorts. Front. Res. Metr. Anal. 9, 1468400 (2024). 

    Article  PubMed  PubMed Central  Google Scholar 

  145. Beaton, A. et al. Engaging Māori in biobanking and genomic research: a model for biobanks to guide culturally informed governance, operational, and community engagement activities. Genet. Med. 19, 345–351 (2017).

    Article  PubMed  Google Scholar 

  146. Moors, J. et al. A Polynesian-specific missense CETP variant alters the lipid profile. HGG Adv. 4, 100204 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Rasheed, H. et al. Association of the lipoprotein receptor-related protein 2 gene with gout and non-additive interaction with alcohol consumption. Arthritis Res. Ther. 15, R177 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  148. University of Illinois. Summer Internship for INdigenous Peoples in Genomics; https://sing.igb.illinois.edu/ (2020).

  149. University of Utah Health. Haumana ’O Pasifika Program; https://uofuhealth.utah.edu/haumana-o-pasifika-program (2023).

  150. Genomics Aotearoa. Ruatau https://www.genomics-aotearoa.org.nz/our-work/te-ao-maori-projects/ruatau.

  151. Bardill, J. et al. Advancing the ethics of paleogenomics. Science 360, 384–385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Koea, J. B. Indigenous trauma: a New Zealand perspective. Injury 39, S11–S18 (2008).

    Article  PubMed  Google Scholar 

  153. Thom, R. R. M. & Grimes, A. Land loss and the intergenerational transmission of wellbeing: the experience of iwi in Aotearoa New Zealand. Soc. Sci. Med. 1982 296, 114804 (2022).

    Google Scholar 

  154. Anderson, I. et al. Indigenous and tribal peoples’ health (The Lancet-Lowitja Institute Global Collaboration): a population study. Lancet 388, 131–157 (2016).

    Article  PubMed  Google Scholar 

  155. Paradies, Y. Colonisation, racism and indigenous health. J. Popul. Res. 33, 83–96 (2016).

    Article  Google Scholar 

  156. Moewaka Barnes, H. & McCreanor, T. Colonisation, hauora and whenua in Aotearoa. J. R. Soc. N. Z. 49, 19–33 (2019).

    Article  Google Scholar 

  157. Wirihana, R. & Smith, C. Historical trauma, healing and well-being in Māori communities. MAI J. 3, 197–210 (2014).

    Google Scholar 

  158. Pool, I. & Kukutai, T. Taupori Māori — Māori population change, Te Ara — the Encyclopedia of New Zealand. http://www.TeAra.govt.nz/en/taupori-maori-maori-population-change/print (2025).

  159. Ministry of Health. Tatau Kahukura Māori Health Chart Book 2015, 3rd edn (Ministry of Health, 2015).

  160. Reid, P., Cormack, D. & Paine, S.-J. Colonial histories, racism and health — the experience of Māori and Indigenous peoples. Public Health 172, 119–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Yokose, C. et al. Nationwide racial/ethnic disparities in US emergency department visits and hospitalizations for gout. Rheumatology 62, 2247–2251 (2023).

    Article  PubMed  Google Scholar 

  162. McCormick, N., Yokose, C. & Choi, H. K. What drives the contemporary black–white racial disparities in gout in the US? Impact of social determinants of health. Gout Urate Cryst. Depos. Dis. 1, 99–114 (2023).

    Article  Google Scholar 

  163. Daniels, S.-A. P., Kauahikaua, L., Kaio, C., Casson-Fisher, J. N. & Ku, T. Conceptualizing a new system of care in Hawai’i for native Hawaiians and substance use. Hawaii. J. Health Soc. Welf. 81, 43–51 (2022).

    PubMed  PubMed Central  Google Scholar 

  164. Smith, L. T., Maxwell, T. K., Puke, H. & Temara, P. Indigenous knowledge, methodology and mayhem: what is the role of methodology in producing indigenous insights? A discussion from mātauranga Maori. Knowl. Cult. 4, 131–156 (2016).

    Google Scholar 

  165. Chung-Do, J. J. et al. Waimānalo pono research hui: a community-academic partnership to promote native Hawaiian wellness through culturally grounded and community-driven research and programming. Am. J. Community Psychol. 64, 107–117 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Tristan Pascart.

Ethics declarations

Competing interests

N.D. has received consulting fees, speaker fees or grants from Aristea, Arthrosi, AstraZeneca, Avalo, Biomarin, Dexcel Pharma, Hikma, Horizon, JPI, JW Pharmaceutical Corporation, LG Chem, Novartis, PK Med, Protalix, PTC Therapeutics, Selecta, Shanton Pharma, Sobi and Unlocked Labs. T.R.M. has received research funding and consulting fees from Variant Bio. L.K.S. has received research funding from the New Zealand Health Research Council and consulting fees from Pharmac outside the submitted work. T.P. has received research funding from Variant Bio and honorary and consulting fees from Horizon Pharmaceuticals and Novartis, unrelated to this work. B.G., M.L., T.B., L.T.K., S.O., S.V., A.L. and E.O. declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Mats Dehlin, Youssef Roman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, B., Leask, M., Merriman, T.R. et al. Hyperuricaemia and gout in the Pacific. Nat Rev Rheumatol 21, 197–210 (2025). https://doi.org/10.1038/s41584-025-01228-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01228-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing