Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibroblasts in immune responses, inflammatory diseases and therapeutic implications

Abstract

Once regarded as passive bystander cells of the tissue stroma, fibroblasts have emerged as active orchestrators of tissue homeostasis and disease. From regulating immunity and controlling tissue remodelling to governing cell growth and differentiation, fibroblasts assume myriad roles in guiding normal tissue development, maintenance and repair. By comparison, in chronic inflammatory diseases such as rheumatoid arthritis, fibroblasts recruit and sustain inflammatory leukocytes, become dominant producers of pro-inflammatory factors and catalyse tissue destruction. In other disease contexts, fibroblasts promote fibrosis and impair host control of cancer. Single-cell studies have uncovered striking transcriptional and functional heterogeneity exhibited by fibroblasts in both normal tissues and diseased tissues. In particular, advances in the understanding of fibroblast pathology in rheumatoid arthritis have shed light on pathogenic fibroblast states in other chronic diseases. The differentiation and activation of these fibroblast states is driven by diverse physical and chemical cues within the tissue microenvironment and by cell-intrinsic signalling and epigenetic mechanisms. These insights into fibroblast behaviour and regulation have illuminated therapeutic opportunities for the targeted deletion or modulation of pathogenic fibroblasts across many diseases.

Key points

  • Fibroblasts assume multifaceted roles in regulating immunity, guiding tissue architecture and remodelling and defining the functional organization of tissues.

  • During disease, fibroblasts can acquire inflammatory, fibrogenic, tissue degradative or hyperplastic phenotypes that promote pathology and predominate in treatment resistance.

  • Although long implicated in fibrotic disease, fibroblasts have emerged as important drivers and regulators of chronic inflammatory and malignant diseases.

  • Single-cell profiling of diseased tissues has uncovered transcriptionally and functionally distinct fibroblast subpopulations, some of which are tissue specific or disease specific and others of which are shared across multiple tissues and diseases.

  • Morphogen gradients, synergistic and autocrine cytokine signalling, adhesion molecules, mechanotransducers and epigenetic regulators are some of the key factors that promote the differentiation and activation of pathogenic fibroblast states.

  • Insights into fibroblast pathogenicity are spurring the development of therapeutics to deplete, deactivate, neutralize or reprogram fibroblasts in fibrosis, cancer and chronic inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fibroblasts regulate immunity and tissue remodelling.
Fig. 2: Fibroblasts organize tissue niches and undergo regulated proliferation.
Fig. 3: Fibroblast populations in rheumatoid arthritis and chronic inflammatory disease.
Fig. 4: Mechanisms driving fibroblast heterogeneity and pathogenicity.
Fig. 5: Fibroblast-targeting therapeutic strategies.

Similar content being viewed by others

References

  1. Virchow, R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre: Pionierarbeit der Zellpathologie und Gewebelehre im 19. Jahrhundert. (Good Press, 1858).

  2. Dulbecco, R., Allen, R., Okada, S. & Bowman, M. Functional changes of intermediate filaments in fibroblastic cells revealed by a monoclonal antibody. Proc. Natl Acad. Sci. USA 80, 1915–1918 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mor-Vaknin, N., Punturieri, A., Sitwala, K. & Markovitz, D. M. Vimentin is secreted by activated macrophages. Nat. Cell Biol. 5, 59–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Li, R. et al. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 7, e36865 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chandrakanthan, V. et al. Mesoderm-derived PDGFRA+ cells regulate the emergence of hematopoietic stem cells in the dorsal aorta. Nat. Cell Biol. 24, 1211–1225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan, D., Takawale, A., Lee, J. & Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5, 15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedrich, M. et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rivellese, F. et al. Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat. Med. 28, 1256–1268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelly, T., Huang, Y., Simms, A. E. & Mazur, A. Fibroblast activation protein-ɑ: a key modulator of the microenvironment in multiple pathologies. Int. Rev. Cell Mol. Biol. 297, 83–116 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kiener, H. P. et al. Cadherin-11 promotes invasive behavior of fibroblast-like synoviocytes. Arthritis Rheum. 60, 1305–1310 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gravallese, E. M. & Firestein, G. S. Rheumatoid arthritis — common origins, divergent mechanisms. N. Engl. J. Med. 388, 529–542 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).

    Article  PubMed  Google Scholar 

  21. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    Article  PubMed  Google Scholar 

  22. Smith, M. D. The normal synovium. Open Rheumatol. J. 5, 100–106 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hochberg, M. C. et al. Rheumatology (Elsevier, 2023).

  24. Fletcher, A. L., Acton, S. E. & Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat. Rev. Immunol. 15, 350–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perez-Shibayama, C., Gil-Cruz, C. & Ludewig, B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol. Rev. 289, 31–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, L., Wu, J., Abdi, R., Jewell, C. M. & Bromberg, J. S. Lymph node fibroblastic reticular cells steer immune responses. Trends Immunol. 42, 723–734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Onder, L. & Ludewig, B. A fresh view on lymph node organogenesis. Trends Immunol. 39, 775–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    Article  PubMed  Google Scholar 

  29. Katakai, T. et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol. 181, 6189–6200 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cremasco, V. et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat. Immunol. 15, 973–981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tew, J. G. et al. Follicular dendritic cells and presentation of antigen and costimulatory signals to B cells. Immunol. Rev. 156, 39–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Qin, D. et al. Fcγ receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164, 6268–6275 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Acton, SophieE. et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37, 276–289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, J.-W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Magnusson, F. C. et al. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. Gastroenterology 134, 1028–1037 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baptista, A. P. et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. eLife 3, e04433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lukacs-Kornek, V. et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 12, 1096–1104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Siegert, S. et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS ONE 6, e27618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pinchuk, I. V. et al. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology 135, 1228–1237 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Owens, B. M. et al. CD90+ stromal cells are non-professional innate immune effectors of the human colonic mucosa. Front. Immunol. 4, 307 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Das, A. et al. Follicular dendritic cell activation by TLR ligands promotes autoreactive B cell responses. Immunity 46, 106–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng, Q. et al. Spleen fibroblastic reticular cell-derived acetylcholine promotes lipid metabolism to drive autoreactive B cell responses. Cell Metab. 35, 837–854 e838 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Karouzakis, E. et al. Molecular characterization of human lymph node stromal cells during the earliest phases of rheumatoid arthritis. Front. Immunol. 10, 1863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mellors, R. C., Heimer, R., Corcos, J. & Korngold, L. Cellular origin of rheumatoid factor. J. Exp. Med. 110, 875–886 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nosanchuk, J. S. & Schintzier, B. Follicular hyperplasia in lymph nodes from patients with rheumatoid arthritis. A clinicopathologic study. Cancer 24, 343–354 (1969).

    Article  Google Scholar 

  49. Shapira, Y., Weinberger, A. & Wysenbeek, A. J. Lymphadenopathy in systemic lupus erythematosus. Prevalence and relation to disease manifestations. Clin. Rheumatol. 15, 335–338 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Cook, M. The size and histological appearances of mesenteric lymph nodes in Crohn’s disease. Gut 13, 970 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nguyen, H. N. et al. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity 46, 220–232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. West, N. R. et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 23, 579–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ivashkiv, L. B. Cytokine expression and cell activation in inflammatory arthritis. Adv. Immunol. 63, 337–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Sponheim, J. et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am. J. Pathol. 177, 2804–2815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boots, A. M., Wimmers-Bertens, A. J. & Rijnders, A. W. Antigen-presenting capacity of rheumatoid synovial fibroblasts. Immunology 82, 268–274 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tran, C. N. et al. Presentation of arthritogenic peptide to antigen-specific T cells by fibroblast-like synoviocytes. Arthritis Rheum. 56, 1497–1506 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Friedman, G. et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of 100A4+ and PDPN+ CAFs to clinical outcome. Nat. Cancer 1, 692–708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kerdidani, D. et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 219, e20210815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. DeLeon-Pennell, K. Y., Barker, T. H. & Lindsey, M. L. Fibroblasts: the arbiters of extracellular matrix remodeling. Matrix Biol. 91–92, 1–7 (2020).

    Article  PubMed  Google Scholar 

  64. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Valencia, X. et al. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J. Exp. Med. 200, 1673–1679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eckes, B. et al. Mechanical tension and integrin ɑ2β1 regulate fibroblast functions. J. Investig. Dermatol. Symp. Proc. 11, 66–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Li, B. & Wang, J. H. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J. Tissue Viability 20, 108–120 (2011).

    Article  PubMed  Google Scholar 

  68. Levick, J. R. & McDonald, J. N. Fluid movement across synovium in healthy joints: role of synovial fluid macromolecules. Ann. Rheum. Dis. 54, 417–423 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Astarita, J. L. et al. The CLEC-2–podoplanin axis controls fibroblastic reticular cell contractility and lymph node microarchitecture. Nat. Immunol. 16, 75–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Desmouliere, A., Chaponnier, C. & Gabbiani, G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 13, 7–12 (2005).

    Article  PubMed  Google Scholar 

  72. Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Zeisberg, M. & Kalluri, R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304, C216–C225 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Tolboom, T. C. et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann. Rheum. Dis. 61, 975–980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tunyogi-Csapo, M. et al. Cytokine-controlled RANKL and osteoprotegerin expression by human and mouse synovial fibroblasts: fibroblast-mediated pathologic bone resorption. Arthritis Rheum. 58, 2397–2408 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. McCarthy, N. et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402.e395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brugger, M. D., Valenta, T., Fazilaty, H., Hausmann, G. & Basler, K. Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biol. 18, e3001032 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, Y. et al. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Dev. Cell 57, 1758–1775.e1757 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rinn, J. L. et al. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 22, 303–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Knosp, W. M., Scott, V., Bachinger, H. P. & Stadler, H. S. HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis. Development 131, 4581–4592 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Dieu-Nosjean, M. C., Goc, J., Giraldo, N. A., Sautes-Fridman, C. & Fridman, W. H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35, 571–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Barone, F. et al. Stromal fibroblasts in tertiary lymphoid structures: a novel target in chronic inflammation. Front. Immunol. 7, 477 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nayar, S. et al. Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proc. Natl Acad. Sci. USA 116, 13490–13497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Manzo, A. et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur. J. Immunol. 35, 1347–1359 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Kobayashi, I. & Ziff, M. Electron microscopic studies of the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum. 18, 475–483 (1975).

    Article  CAS  PubMed  Google Scholar 

  90. Kuhn, C. & McDonald, J. A. The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am. J. Pathol. 138, 1257–1265 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rodriguez, A. B. et al. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep. 36, 109422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, Y. et al. CCL19-producing fibroblasts promote tertiary lymphoid structure formation enhancing anti-tumor IgG response in colorectal cancer liver metastasis. Cancer Cell 42, 1370–1385.e9 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, C. Y. et al. Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc. Natl Acad. Sci. USA 111, E109–E118 (2014).

    CAS  PubMed  Google Scholar 

  94. Hecker, L., Jagirdar, R., Jin, T. & Thannickal, V. J. Reversible differentiation of myofibroblasts by MyoD. Exp. Cell Res. 317, 1914–1921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garrison, G. et al. Reversal of myofibroblast differentiation by prostaglandin E2. Am. J. Respir. Cell Mol. Biol. 48, 550–558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Filer, A. & Buckley, C. D. et al. in Rheumatology (ed. Hochberg, M. C.) 1–7 (Elsevier, 2023).

  98. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donlin, L. T. et al. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Armaka, M. et al. Single-cell multimodal analysis identifies common regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med. 14, 78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mueller, A. A. et al. Wnt signaling drives stromal inflammation in inflammatory arthritis. Preprint at bioRxiv https://doi.org/10.1101/2025.01.06.631510 (2025).

  104. MacLauchlan, S. et al. Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis. Arthritis Res. Ther. 19, 166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e2455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Faust, H. J. et al. Adipocyte associated glucocorticoid signaling regulates normal fibroblast function which is lost in inflammatory arthritis. Nat. Commun. 15, 9859 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rauber, S. et al. CD200+ fibroblasts form a pro-resolving mesenchymal network in arthritis. Nat. Immunol. 25, 682–692 (2024).

    Article  CAS  PubMed  Google Scholar 

  108. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 41, 773–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu, H. et al. High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing. Nat. Commun. 15, 1396 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Madissoon, E. et al. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat. Genet. 55, 66–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Vannan, A. et al. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat. Genet. 57, 647–658 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826.e823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Reis Nisa, P. et al. Spatial programming of fibroblasts promotes resolution of tissue inflammation through immune cell exclusion. Preprint at bioRxiv https://doi.org/10.1101/2024.09.20.614064 (2024).

  117. Periyakoil, P. K. et al. Deep topic modeling of spatial transcriptomics in the rheumatoid arthritis synovium identifies distinct classes of ectopic lymphoid structures. Preprint at bioRxiv https://doi.org/10.1101/2025.01.08.631928 (2025).

  118. Bhamidipati, K. et al. Spatial patterning of fibroblast TGFβ signaling underlies treatment resistance in rheumatoid arthritis. Preprint at bioRxiv https://doi.org/10.1101/2025.03.14.642821 (2025).

  119. Vickovic, S. et al. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun. Biol. 5, 129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Smith, M. H. et al. Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis. Nat. Immunol. 24, 1200–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zheng, L. et al. ITGA5+ synovial fibroblasts orchestrate proinflammatory niche formation by remodelling the local immune microenvironment in rheumatoid arthritis. Ann. Rheum. Dis. 84, 232–252 (2025).

    Article  CAS  PubMed  Google Scholar 

  122. Zhao, S. et al. Effect of JAK inhibition on the induction of proinflammatory HLA–DR+CD90+ rheumatoid arthritis synovial fibroblasts by interferon-γ. Arthritis Rheumatol. 74, 441–452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Seibl, R. et al. Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am. J. Pathol. 162, 1221–1227 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, K. W. et al. Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol. Lett. 110, 54–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Goh, F. G. & Midwood, K. S. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology 51, 7–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Chabaud, M., Fossiez, F., Taupin, J. L. & Miossec, P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J. Immunol. 161, 409–414 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Zrioual, S. et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112–3120 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Slowikowski, K. et al. CUX1 and IκBζ (NFKBIZ) mediate the synergistic inflammatory response to TNF and IL-17A in stromal fibroblasts. Proc. Natl Acad. Sci. USA 117, 5532–5541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hartupee, J., Liu, C., Novotny, M., Li, X. & Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179, 4135–4141 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. MacNaul, K. L., Chartrain, N., Lark, M., Tocci, M. J. & Hutchinson, N. I. Discoordinate expression of stromelysin, collagenase, and tissue inhibitor of metalloproteinases-1 in rheumatoid human synovial fibroblasts. Synergistic effects of interleukin-1 and tumor necrosis factor-ɑ on stromelysin expression. J. Biol. Chem. 265, 17238–17245 (1990).

    Article  CAS  PubMed  Google Scholar 

  131. Ainola, M. M. et al. Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1β. Clin. Exp. Rheumatol. 23, 644–650 (2005).

    CAS  PubMed  Google Scholar 

  132. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yan, M. et al. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat. Immunol. 23, 1330–1341 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Nguyen, H. N. et al. Leukemia inhibitory factor (LIF) receptor amplifies pathogenic activation of fibroblasts in lung fibrosis. Proc. Natl Acad. Sci. USA 121, e2401899121 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Xiao, Y. & MacRae, I. J. Toward a comprehensive view of microRNA biology. Mol. Cell 75, 666–668 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Trenkmann, M. et al. Tumor necrosis factor α-induced microRNA-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-κB signaling. Arthritis Rheum. 65, 916–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).

    Article  PubMed  Google Scholar 

  139. Nakasa, T. et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58, 1284–1292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Long, L. et al. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis. J. Immunol. Res. 2013, 296139 (2013).

    Google Scholar 

  141. Saferding, V. et al. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J. Autoimmun. 82, 74–84 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Churov, A. V., Oleinik, E. K. & Knip, M. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun. Rev. 14, 1029–1037 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Iborra, M., Bernuzzi, F., Invernizzi, P. & Danese, S. MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun. Rev. 11, 305–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. O’Reilly, S. MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res. Ther. 18, 11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Aprelikova, O. & Green, J. E. MicroRNA regulation in cancer-associated fibroblasts. Cancer Immunol. Immunother. 61, 231–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Eckes, B. et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol. 19, 325–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Janmey, P. A., Fletcher, D. A. & Reinhart-King, C. A. Stiffness sensing by cells. Physiol. Rev. 100, 695–724 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Lee, D. M. et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 315, 1006–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Chang, S. K. et al. Cadherin-11 regulates fibroblast inflammation. Proc. Natl Acad. Sci. USA 108, 8402–8407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vandooren, B. et al. Tumor necrosis factor ɑ drives cadherin 11 expression in rheumatoid inflammation. Arthritis Rheum. 58, 3051–3062 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Schneider, D. J. et al. Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-β production and epithelial to mesenchymal transition. FASEB J. 26, 503–512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu, M. et al. Identification of cadherin 11 as a mediator of dermal fibrosis and possible role in systemic sclerosis. Arthritis Rheumatol. 66, 1010–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schroer, A. K. et al. Cadherin-11 blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction. JCI Insight 4, e131545 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stanford, S. M. et al. Receptor protein tyrosine phosphatase α–mediated enhancement of rheumatoid synovial fibroblast signaling and promotion of arthritis in mice. Arthritis Rheumatol. 68, 359–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sendo, S. et al. Clustering of phosphatase RPTPɑ promotes Src signaling and the arthritogenic action of synovial fibroblasts. Sci. Signal. 16, eabn8668 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lo, C.-M., Wang, H.-B., Dembo, M. & Wang, Y.-l. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gu, Z. et al. Soft matrix is a natural stimulator for cellular invasiveness. Mol. Biol. Cell 25, 457–469 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Liu, F. et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344–L357 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Southern, B. D. et al. Matrix-driven myosin II mediates the pro-fibrotic fibroblast phenotype. J. Biol. Chem. 291, 6083–6095 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Müller-Ladner, U. et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 149, 1607–1615 (1996).

    PubMed  PubMed Central  Google Scholar 

  162. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Whitaker, J. W. et al. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med. 5, 40 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nile, C. J., Read, R. C., Akil, M., Duff, G. W. & Wilson, A. G. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 58, 2686–2693 (2008).

    Article  PubMed  Google Scholar 

  167. Karouzakis, E. et al. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes. Immun. 12, 643–652 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. de la Rica, L. et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J. Autoimmun. 41, 6–16 (2013).

    Article  PubMed  Google Scholar 

  170. Araki, Y. et al. Histone methylation and STAT-3 differentially regulate interleukin-6-induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 68, 1111–1123 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Lee, A. et al. Tumor necrosis factor ɑ induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 65, 928–938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Loh, C. et al. TNF-induced inflammatory genes escape repression in fibroblast-like synoviocytes: transcriptomic and epigenomic analysis. Ann. Rheum. Dis. 78, 1205–1214 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Sohn, C. et al. Prolonged tumor necrosis factor alpha primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol. 67, 86–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Friščić, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021).

    Article  PubMed  Google Scholar 

  175. Weinand, K. et al. The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis. Nat. Commun. 15, 4650 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Karouzakis, E. et al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep. 8, 7370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hammaker, D. et al. Joint location–specific JAK-STAT signaling in rheumatoid arthritis fibroblast-like synoviocytes. ACR Open Rheumatol. 1, 640–648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Carter, P. J. & Lazar, G. A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit. Nat. Rev. Drug. Discov. 17, 197–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van de Donk, N. & Zweegman, S. T-cell-engaging bispecific antibodies in cancer. Lancet 402, 142–158 (2023).

    Article  PubMed  Google Scholar 

  184. Fenis, A., Demaria, O., Gauthier, L., Vivier, E. & Narni-Mancinelli, E. New immune cell engagers for cancer immunotherapy. Nat. Rev. Immunol. 24, 471–486 (2024).

    Article  CAS  PubMed  Google Scholar 

  185. Busek, P., Mateu, R., Zubal, M., Kotackova, L. & Sedo, A. Targeting fibroblast activation protein in cancer — prospects and caveats. Front. Biosci. 23, 1933–1968 (2018).

    Article  CAS  Google Scholar 

  186. Xin, L. et al. Fibroblast activation protein-ɑ as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front. Oncol. 11, 648187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Scott, A. M. et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 9, 1639–1647 (2003).

    CAS  PubMed  Google Scholar 

  188. McConathy, J. et al. 671P LuMIERE: a phase I/II study evaluating safety, dosimetry, and preliminary activity of [177Lu]Lu-FAP-2286 in patients with advanced solid tumors. Ann. Oncol. 35, S526 (2024).

    Article  Google Scholar 

  189. Shahvali, S., Rahiman, N., Jaafari, M. R. & Arabi, L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug. Deliv. Transl. Res. 13, 2041–2056 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Chai, X. P. et al. Tumor-targeting efficacy of a BF211 prodrug through hydrolysis by fibroblast activation protein-ɑ. Acta Pharmacol. Sin. 39, 415–424 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Cui, X. Y. et al. Covalent targeted radioligands potentiate radionuclide therapy. Nature 630, 206–213 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Loureiro, L. R. et al. Immunotheranostic target modules for imaging and navigation of UniCAR T-cells to strike FAP-expressing cells and the tumor microenvironment. J. Exp. Clin. Cancer Res. 42, 341 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. de Sostoa, J. et al. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J. Immunother. Cancer 7, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Hiltbrunner, S. et al. Local delivery of CAR T cells targeting fibroblast activation protein is safe in patients with pleural mesothelioma: first report of FAPME, a phase I clinical trial. Ann. Oncol. 32, 120–121 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Bocci, M. et al. In vivo activation of FAP-cleavable small molecule-drug conjugates for the targeted delivery of camptothecins and tubulin poisons to the tumor microenvironment. J. Control. Rel. 367, 779–790 (2024).

    Article  CAS  Google Scholar 

  196. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Dorst, D. N. et al. Targeting of fibroblast activation protein in rheumatoid arthritis patients: imaging and ex vivo photodynamic therapy. Rheumatology 61, 2999–3009 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Mori, Y. et al. FAPI PET: fibroblast activation protein inhibitor use in oncologic and nononcologic disease. Radiology 306, e220749 (2023).

    Article  PubMed  Google Scholar 

  200. Chavula, T., To, S. & Agarwal, S. K. Cadherin-11 and its role in tissue fibrosis. Cell Tissues Organs 212, 293–303 (2023).

    CAS  Google Scholar 

  201. Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article  PubMed  Google Scholar 

  202. Chung, J. B., Brudno, J. N., Borie, D. & Kochenderfer, J. N. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat. Rev. Immunol. 24, 830–845 (2024).

    Article  CAS  PubMed  Google Scholar 

  203. Michaelson, J. S. & Baeuerle, P. A. CD19-directed T cell-engaging antibodies for the treatment of autoimmune disease. J. Exp. Med. 221, e20240499 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Shah, K. et al. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin. Exp. Immunol. 217, 15–30 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhao, Y. et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70, 9053–9061 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bucci, L. et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 30, 1593–1601 (2024).

    Article  CAS  PubMed  Google Scholar 

  208. Hagen, M. et al. BCMA-targeted T-cell-engager therapy for autoimmune disease. N. Engl. J. Med. 391, 867–869 (2024).

    Article  PubMed  Google Scholar 

  209. Alexander, T., Kronke, J., Cheng, Q., Keller, U. & Kronke, G. Teclistamab-induced remission in refractory systemic lupus erythematosus. N. Engl. J. Med. 391, 864–866 (2024).

    Article  PubMed  Google Scholar 

  210. Heipertz, E. L. et al. Current perspectives on “off-the-shelf” allogeneic NK and CAR-NK cell therapies. Front. Immunol. 12, 732135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

    Article  CAS  PubMed  Google Scholar 

  212. Bhattacharya, M. & Ramachandran, P. Immunology of human fibrosis. Nat. Immunol. 24, 1423–1433 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Zhao, M. et al. Targeting fibrosis, mechanisms and clinical trials. Signal. Transduct. Target. Ther. 7, 206 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Klein, K. et al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 75, 422–429 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Neidhart, M., Karouzakis, E., Jungel, A., Gay, R. E. & Gay, S. Inhibition of spermidine/spermine N1-acetyltransferase activity: a new therapeutic concept in rheumatoid arthritis. Arthritis Rheumatol. 66, 1723–1733 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Kehrberg, R. J., Bhyravbhatla, N., Batra, S. K. & Kumar, S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim. Biophys. Acta Rev. Cancer 1878, 188901 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ulukan, B., Sila Ozkaya, Y. & Zeybel, M. Advances in the epigenetics of fibroblast biology and fibrotic diseases. Curr. Opin. Pharmacol. 49, 102–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Liu, Y. et al. Epigenetics as a versatile regulator of fibrosis. J. Transl. Med. 21, 164 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fearon, U., Hanlon, M. M., Wade, S. M. & Fletcher, J. M. Altered metabolic pathways regulate synovial inflammation in rheumatoid arthritis. Clin. Exp. Immunol. 197, 170–180 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Hu, Z. et al. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front. Immunol. 15, 1250884 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhang, F. et al. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J. Hematol. Oncol. 17, 80 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Hamanaka, R. B. & Mutlu, G. M. Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J. 288, 6331–6352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, S., Liang, Y. & Dai, C. Metabolic regulation of fibroblast activation and proliferation during organ fibrosis. Kidney Dis. 8, 115–125 (2022).

    Article  Google Scholar 

  225. Noom, A., Sawitzki, B., Knaus, P. & Duda, G. N. A two-way street — cellular metabolism and myofibroblast contraction. NPJ Regen. Med. 9, 15 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Takahashi, S. et al. Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 19, 76 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Song, G. et al. Inhibition of hexokinases holds potential as treatment strategy for rheumatoid arthritis. Arthritis Res. Ther. 21, 87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Ahmed, S. et al. Dual inhibition of glycolysis and glutaminolysis for synergistic therapy of rheumatoid arthritis. Arthritis Res. Ther. 25, 176 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Garcia-Carbonell, R. et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 68, 1614–1626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Koedderitzsch, K., Zezina, E., Li, L., Herrmann, M. & Biesemann, N. TNF induces glycolytic shift in fibroblast like synoviocytes via GLUT1 and HIF1A. Sci. Rep. 11, 19385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Becker, L. M. et al. Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31, 107701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Broz, M. T. et al. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat. Commun. 15, 2498 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cho, S. J., Moon, J. S., Lee, C. M., Choi, A. M. & Stout-Delgado, H. W. Glucose transporter 1-dependent glycolysis is increased during aging-related lung fibrosis, and phloretin inhibits lung fibrosis. Am. J. Respir. Cell Mol. Biol. 56, 521–531 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yin, X. et al. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci. Signal. 12, eaax4067 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Huynh, N. C.-N. et al. Oncostatin M-driven macrophage-fibroblast circuits as a drug target in autoimmune arthritis. Inflamm. Regen. 44, 36 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Tsaltskan, V. & Firestein, G. S. Targeting fibroblast-like synoviocytes in rheumatoid arthritis. Curr. Opin. Pharmacol. 67, 102304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Finch, R. et al. Op0224 results of a phase 2 study of Rg6125, an anti-cadherin-11 monoclonal antibody, in rheumatoid arthritis patients with an inadequate response to anti-TNFalpha therapy. Ann. Rheum. Dis. 78, 189–189 (2019).

    Article  Google Scholar 

  239. Scheller, J., Grötzinger, J. & Rose‐John, S. Updating interleukin‐6 classic‐and trans‐signaling. Signal. Transduct. 6, 240–259 (2006).

    Article  CAS  Google Scholar 

  240. Choy, E. H. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 16, 335–345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Rose-John, S., Jenkins, B. J., Garbers, C., Moll, J. M. & Scheller, J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat. Rev. Immunol. 23, 666–681 (2023).

    Article  CAS  PubMed  Google Scholar 

  242. Ruderman, E. M. Rheumatoid arthritis: IL-6 inhibition in RA-deja vu all over again? Nat. Rev. Rheumatol. 11, 321–322 (2015).

    Article  CAS  PubMed  Google Scholar 

  243. Danese, S. et al. Randomised trial and open-label extension study of an anti-interleukin-6 antibody in Crohn’s disease (ANDANTE I and II). Gut 68, 40–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Haringman, J. J. et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 54, 2387–2392 (2006).

    Article  CAS  PubMed  Google Scholar 

  245. Vergunst, C. E. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58, 1931–1939 (2008).

    Article  CAS  PubMed  Google Scholar 

  246. Szekanecz, Z. & Koch, A. E. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 5–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Cambier, S., Gouwy, M. & Proost, P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol. Immunol. 20, 217–251 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat. Rev. Rheumatol. 18, 384–397 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Hitchon, C. A. & El-Gabalawy, H. S. The synovium in rheumatoid arthritis. Open Rheumatol. J. 5, 107–114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  252. Firestein, G. S. & McInnes, I. B. Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Snir, O. et al. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheum. 63, 2873–2883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Moon, J. S. et al. Cytotoxic CD8+ T cells target citrullinated antigens in rheumatoid arthritis. Nat. Commun. 14, 319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Donado, C. A. et al. Granzyme K activates the entire complement cascade. Nature https://doi.org/10.1038/s41586-025-08713-9 (2025).

    Article  PubMed  Google Scholar 

  257. Kongpachith, S. et al. Affinity maturation of the anti-citrullinated protein antibody paratope drives epitope spreading and polyreactivity in rheumatoid arthritis. Arthritis Rheumatol. 71, 507–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Brenner laboratory for helpful discussions. A.E.Z. received grant support from the US National Institutes of Health (NIH) (F30AI174699, T32GM007753 and T32GM144273). A.A.M. received grant support from the NIH (K08AR083513, T32AR007530 and P30AR070253) and the Rheumatology Research Foundation. M.B.B. received grant support from the NIH (R01AR0637039 and P01AI148102).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael B. Brenner.

Ethics declarations

Competing interests

M.B.B. is on the scientific advisory board of GSK and Moderna, is a consultant to 4F0 Ventures and is a founder of Mestag Therapeutics. However, this Review does not discuss any of the therapeutics of their pipelines.

Peer review

Peer review information

Nature Reviews Rheumatology thanks George Kalliolias, Samuel Kemble and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody-dependent cellular cytotoxicity

An immune response whereby antibodies tag a target cell, allowing immune cells, such as natural killer cells, to bind via their Fc receptors and release toxins to destroy the target cells.

Chimeric antigen receptor T cells

(CAR T cells). Genetically engineered T cells that are designed to recognize unique surface targets on diseased cells, which enables precise identification and elimination of target cells.

Cytokine release syndrome

A systemic inflammatory response caused by excessive cytokine release, which can be an adverse effect of CAR T cell therapy.

FAPα inhibitor–drug conjugates

(FAPI–drug conjugates). Small molecules or small peptides with an affinity for fibroblast activation protein α that are conjugated with drug payloads or with imaging agents such as radioisotopes.

Lymphodepletion

A chemotherapy or radiation-based regimen that reduces the number of circulating lymphocytes prior to CAR T cell and other adoptive cell therapies to improve the survival and persistence of the infused cells.

T cell engagers

(TCEs). Therapeutic molecules that simultaneously bind T cells via CD3 and target cells to more readily induce T cell-mediated cytotoxicity, using formats that range from small bispecific proteins (such as BiTEs) to larger immunoglobulin-like constructs.

Tolerance

A safeguarding property that prevents the immune system from mounting responses to self-derived antigens, which is achieved through mechanisms that inactivate or eliminate autoreactive T cells and B cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, A.E., Kongthong, S., Mueller, A.A. et al. Fibroblasts in immune responses, inflammatory diseases and therapeutic implications. Nat Rev Rheumatol 21, 336–354 (2025). https://doi.org/10.1038/s41584-025-01259-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01259-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing