Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the treatment of ANCA-associated vasculitis

Abstract

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) consists of a group of small-vessel vasculitides that often present with organ-threatening or life-threatening manifestations. Current immunosuppressive treatments have improved survival and rates of remission, but are not curative, have frequent toxicities, and do not effectively prevent relapse. Clinical trials have established the role of rituximab, an anti-CD20 B cell-depleting monoclonal antibody, in both the remission-induction and maintenance phases of the disease and demonstrated that glucocorticoid doses can be substantially reduced from historical dosing levels without affecting treatment efficacy. Therapies that have the potential to be more effective and safer have become available or are under investigation. Avacopan, an oral C5a receptor antagonist, was approved as an adjunctive treatment for AAV and use of this drug in combination with rituximab or cyclophosphamide and markedly reduced glucocorticoid dosing demonstrated superior efficacy and potentially greater kidney recovery than prior standard of care. Other agents under study for treatment of AAV include next-generation anti-CD20 monoclonal antibodies, anti-CD19 chimeric antigen receptor T cells, novel complement inhibitors and agents that can target fibrosis. Alongside traditional randomized controlled trials with clinical endpoints, experimental medicine studies are focusing on mechanistic endpoints and disease biomarkers. This Review discusses current treatments and the advances in the management of AAV.

Key points

  • The main regimen of remission induction in antineutrophil cytoplasmic antibody-associated vasculitis is based on high-dose glucocorticoids combined with rituximab or cyclophosphamide.

  • The initial approach to treatment induces remission of vasculitis in most patients but does not prevent relapse in a substantial number of people and has multiple toxicities.

  • Clinical trial data show that reduced-dose regimens of glucocorticoids are non-inferior to standard-dose regimens and have a lower risk of serious infections; rituximab is superior to azathioprine in maintaining disease remission.

  • B cell-targeting therapies under evaluation for antineutrophil cytoplasmic antibody-associated vasculitis treatment include anti-CD20 monoclonal antibodies with increased B cell depletion capacity compared with rituximab, chimeric antigen receptor T cells and B cell-inhibiting antibodies.

  • Avacopan in combination with rituximab or cyclophosphamide and markedly reduced glucocorticoids has superior efficacy, kidney function recovery and improvement in quality of life to regimens based on standard glucocorticoid dose.

  • Novel targets include pathways involved in antineutrophil cytoplasmic antibody-induced inflammation and fibrosis, which could be combined with immunosuppressive therapies. Strategies to reduce cardiovascular risk and improve response to vaccines are being tested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B cell-targeting and T cell-targeting therapies for AAV.
Fig. 2: Innovative therapies targeting mechanisms of ANCA-induced inflammation.

Similar content being viewed by others

References

  1. Kitching, A. R. et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 6, 71 (2020).

    Article  PubMed  Google Scholar 

  2. Jennette, J. C. et al. 2012 Revised international Chapel Hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Comarmond, C. et al. Eosinophilic granulomatosis with polyangiitis (Churg‐Strauss): clinical characteristics and long‐term followup of the 383 patients enrolled in the French Vasculitis Study Group cohort. Arthritis Rheum. 65, 270–281 (2013).

    Article  PubMed  Google Scholar 

  4. Lyons, P. A. et al. Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status. Nat. Commun. 10, 5120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Emmi, G. et al. Evidence-based guideline for the diagnosis and management of eosinophilic granulomatosis with polyangiitis. Nat. Rev. Rheumatol. 19, 378–393 (2023).

    Article  PubMed  Google Scholar 

  6. Franssen, C. F. M. et al. Antiproteinase 3- and antimyeloperoxidase-associated vasculitis. Kidney Int 57, 2195–2206 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Franssen, C., Gans, R., Kallenberg, C., Hageluken, C. & Hoorntje, S. Disease spectrum of patients with antineutrophil cytoplasmic autoantibodies of defined specificity: distinct differences between patients with anti‐proteinase 3 and anti‐myeloperoxidase autoantibodies. J. Intern. Med. 244, 209–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Lionaki, S. et al. Classification of antineutrophil cytoplasmic autoantibody vasculitides: the role of antineutrophil cytoplasmic autoantibody specificity for myeloperoxidase or proteinase 3 in disease recognition and prognosis. Arthritis Rheum. 64, 3452–3462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weiner, M. et al. Proteinase-3 and myeloperoxidase serotype in relation to demographic factors and geographic distribution in anti-neutrophil cytoplasmic antibody-associated glomerulonephritis. Nephrol. Dial. Transplant. 34, 301–308 (2018).

    PubMed Central  Google Scholar 

  10. Quintana, L. F. et al. ANCA serotype and histopathological classification for the prediction of renal outcome in ANCA-associated glomerulonephritis. Nephrol. Dial. Transplant. 29, 1764–1769 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Suppiah, R. et al. A model to predict cardiovascular events in patients with newly diagnosed Wegener’s granulomatosis and microscopic polyangiitis. Arthritis Care Res. 63, 588–596 (2011).

    Article  Google Scholar 

  12. Lyons, P. A. et al. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367, 214–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merkel, P. A. et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol. 69, 1054–1066 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trivioli, G. et al. Genetics of ANCA-associated vasculitis: role in pathogenesis, classification and management. Nat. Rev. Rheumatol. 18, 559–574 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Cornec, D., Cornec-Le Gall, E., Fervenza, F. C. & Specks, U. ANCA-associated vasculitis — clinical utility of using ANCA specificity to classify patients. Nat. Rev. Rheumatol. 12, 570–579 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Miloslavsky, E. M. et al. Myeloperoxidase–antineutrophil cytoplasmic antibody (ANCA)-positive and ANCA‐negative patients with granulomatosis with polyangiitis (Wegener’s): distinct patient subsets. Arthritis Rheumatol. 68, 2945–2952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Comarmond, C. et al. Pulmonary fibrosis in antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis: a series of 49 patients and review of the literature. Medicine 93, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahr, A. et al. Revisiting the classification of clinical phenotypes of anti-neutrophil cytoplasmic antibody-associated vasculitis: a cluster analysis. Ann. Rheum. Dis. 72, 1003–1010 (2013).

    Article  PubMed  Google Scholar 

  19. Gisslander, K. et al. Data-driven subclassification of ANCA-associated vasculitis: model-based clustering of a federated international cohort. Lancet Rheumatol. 6, e762–e770 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Lindberg, H. et al. In-depth analysis of disease manifestations in antineutrophil cytoplasmic antibody-associated vasculitides identifies distinct clinical phenotypes. ACR Open Rheumatol. 7, e70009 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mahr, A., Specks, U. & Jayne, D. Subclassifying ANCA-associated vasculitis: a unifying view of disease spectrum. Rheumatology 58, 1707–1709 (2019).

    Article  PubMed  Google Scholar 

  22. Nakazawa, D., Masuda, S., Tomaru, U. & Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 15, 91–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Jennette, J. C., Falk, R. J., Hu, P. & Xiao, H. Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annu. Rev. Pathol. Mech. Dis. 8, 139–160 (2013).

    Article  CAS  Google Scholar 

  24. Mahler, M. et al. PR3-ANCA: a promising biomarker for ulcerative colitis with extensive disease. Clin. Chim. Acta 424, 267–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Roth, A. J. et al. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J. Clin. Invest. 123, 1773–1783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kain, R. et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 14, 1088–1096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walton, E. W. Giant-cell granuloma of the respiratory tract (Wegener’s granulomatosis). Br. Med. J. 2, 265–270 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sánchez Álamo, B. et al. Long-term outcomes and prognostic factors for survival of patients with ANCA-associated vasculitis. Nephrol. Dial. Transpl. 38, 1655–1665 (2023).

    Article  Google Scholar 

  29. Sanchez-Alamo, B. et al. Long-term outcome of kidney function in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant. 39, 1483–1493 (2024).

    Article  PubMed Central  Google Scholar 

  30. Tomasson, G. et al. Assessment of health‐related quality of life as an outcome measure in granulomatosis with polyangiitis (Wegener’s). Arthritis Care Res. 64, 273–279 (2012).

    Article  Google Scholar 

  31. Hellmich, B. et al. EULAR recommendations for conducting clinical studies and/or clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibody-associated vasculitis. Ann. Rheum. Dis. 66, 605–617 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jayne, D. R. W., Merkel, P. A., Schall, T. J. & Bekker, P. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Mukhtyar, C. et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann. Rheum. Dis. 68, 1827–1832 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Chung, S. A. et al. 2021 American College of Rheumatology/Vasculitis Foundation guideline for the management of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 73, 1366–1383 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Hellmich, B. et al. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. Ann. Rheum. Dis. 83, 30–47 (2024).

    Article  PubMed  Google Scholar 

  37. Floege, J., Jayne, D. R. W., Sanders, J.-S. F., Tesar, V. & Rovin, B. H. KDIGO 2024 clinical practice guideline for the management of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Kidney Int. 105, S71–S116 (2024).

    Article  Google Scholar 

  38. Casal Moura, M. et al. Management of antineutrophil cytoplasmic antibody-associated vasculitis with glomerulonephritis as proposed by the ACR 2021, EULAR 2022 and KDIGO 2021 guidelines/recommendations. Nephrol. Dial. Transplant. 38, 2637–2651 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jones, R. B. et al. Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: a randomised, non-inferiority trial. Ann. Rheum. Dis. 78, 399–405 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Tuin, J. et al. Mycophenolate mofetil versus cyclophosphamide for the induction of remission in nonlife-threatening relapses of antineutrophil cytoplasmic antibody-associated vasculitis: randomized, controlled trial. Clin. J. Am. Soc. Nephrol. 14, 1021–1028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Faurschou, M. et al. Brief Report: long-term outcome of a randomized clinical trial comparing methotrexate to cyclophosphamide for remission induction in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 64, 3472–3477 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. De Groot, K. et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 52, 2461–2469 (2005).

    Article  PubMed  Google Scholar 

  43. Pagnoux, C. et al. Predictors of treatment resistance and relapse in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis: comparison of two independent cohorts. Arthritis Rheum. 58, 2908–2918 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pendolino, A. L. et al. The role of ANCA in the management of cocaine-induced midline destructive lesions or ENT pseudo-granulomatosis with polyangiitis: a London multicentre case series. Laryngoscope 134, 2609–2616 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Walsh, M. et al. Plasma exchange and glucocorticoids in severe ANCA-associated vasculitis. N. Engl. J. Med. 382, 622–631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Furuta, S. et al. Effect of reduced-dose vs high-dose glucocorticoids added to rituximab on remission induction in ANCA-associated vasculitis: a randomized clinical trial. JAMA 325, 2178 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, R. M. et al. Rituximab as therapy to induce remission after relapse in ANCA-associated vasculitis. Ann. Rheum. Dis. 79, 1243–1249 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Jayne, D. R. W. et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J. Am. Soc. Nephrol. 18, 2180–2188 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Chanouzas, D. et al. Intravenous pulse methylprednisolone for induction of remission in severe ANCA associated vasculitis: a multi-center retrospective cohort study. BMC Nephrol. 20, 58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Waki, D. et al. Initial high-dose corticosteroids and renal impairment are risk factors for early severe infections in elderly patients with antineutrophil cytoplasmic autoantibody-associated vasculitis: a retrospective observational study. Medicine 99, e19173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Daalen, E. E. et al. Effect of rituximab on malignancy risk in patients with ANCA-associated vasculitis. Ann. Rheum. Dis. 76, 1064–1069 (2017).

    Article  PubMed  Google Scholar 

  52. Specks, U. et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N. Engl. J. Med. 369, 417–427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Geetha, D. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis with renal involvement. J. Am. Soc. Nephrol. 26, 976–985 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Casal Moura, M. et al. Efficacy of rituximab and plasma exchange in antineutrophil cytoplasmic antibody-associated vasculitis with severe kidney disease. J. Am. Soc. Nephrol. 31, 2688–2704 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Geetha, D. et al. Rituximab for treatment of severe renal disease in ANCA associated vasculitis. J. Nephrol. 29, 195–201 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Casal Moura, M. et al. Predictive factors of renal recovery and progression to end-stage kidney disease in patients with antineutrophil cytoplasmic autoantibody-associated vasculitis with severe kidney disease. Kidney Int. Rep. 9, 1284–1297 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cortazar, F. B. et al. Combination therapy with rituximab and cyclophosphamide for remission induction in ANCA vasculitis. Kidney Int. Rep. 3, 394–402 (2018).

    Article  PubMed  Google Scholar 

  58. Gulati, K. et al. Combination treatment with rituximab, low-dose cyclophosphamide and plasma exchange for severe antineutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 100, 1316–1324 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Jones, R. B., Luqmani, R., Savage, C. O., van Paassen, P. & Westman, K. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363, 211–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Pepper, R. J. et al. A novel glucocorticoid-free maintenance regimen for anti-neutrophil cytoplasm antibody-associated vasculitis. Rheumatology 58, 260–268 (2018).

    Google Scholar 

  61. Odler, B. et al. The effects of plasma exchange and glucocorticoids on early kidney function among patients with ANCA-associated vasculitis in the PEXIVAS trial. Kidney Int. 107, 558–567 (2025).

    Article  CAS  PubMed  Google Scholar 

  62. Trivioli, G. et al. Slowly progressive anti-neutrophil cytoplasmic antibody-associated renal vasculitis: clinico-pathological characterization and outcome. Clin. Kidney J. 14, 332–340 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. De Joode, A. A. E., Sanders, J. S. F. & Stegeman, C. A. Renal survival in proteinase 3 and myeloperoxidase ANCA-associated systemic vasculitis. Clin. J. Am. Soc. Nephrol. 8, 1709–1717 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Walsh, M. et al. The effects of plasma exchange in patients with ANCA-associated vasculitis: an updated systematic review and meta-analysis. BMJ 376, e064604 (2022).

    Article  PubMed  Google Scholar 

  65. Zeng, L. et al. Plasma exchange and glucocorticoid dosing for patients with ANCA-associated vasculitis: a clinical practice guideline. BMJ 376, e064597 (2022).

    Article  PubMed  Google Scholar 

  66. Tyrberg, L., Andersson, F., Uhlin, F., Hellmark, T. & Segelmark, M. Using imlifidase to elucidate the characteristics and importance of anti-GBM antibodies produced after start of treatment. Nephrol. Dial. Transplant. 39, 45–54 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. He, P. et al. Prevalence and risk factors of relapse in patients with ANCA-associated vasculitis receiving cyclophosphamide induction: a systematic review and meta-analysis of large observational studies. Rheumatology 60, 1067–1079 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. McClure, M. E. et al. Evaluation of PR3-ANCA status after rituximab for ANCA-associated vasculitis. J. Clin. Rheumatol. 25, 217–223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Merkel, P. et al. A multicenter, randomized, controlled trial to evaluate the effects of low-dose glucocorticoids compared to stopping glucocorticoids to maintain remission of granulomatosis with polyangiitis: The TAPIR trial. Arthritis Rheumatol. 76 (Suppl. 9), abstr. (2024).

  70. Guillevin, L. et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N. Engl. J. Med. 371, 1771–1780 (2014).

    Article  PubMed  Google Scholar 

  71. Smith, R. M. et al. Rituximab versus azathioprine for maintenance of remission for patients with ANCA-associated vasculitis and relapsing disease: an international randomised controlled trial. Ann. Rheum. Dis. 82, 937–944 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Charles, P. et al. Long-term rituximab use to maintain remission of antineutrophil cytoplasmic antibody-associated vasculitis: a randomized trial. Ann. Intern. Med. 173, 179–187 (2020).

    Article  PubMed  Google Scholar 

  73. Karras, A. et al. Randomised controlled trial of prolonged treatment in the remission phase of ANCA-associated vasculitis. Ann. Rheum. Dis. 76, 1662–1668 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Tieu, J. et al. Rituximab associated hypogammaglobulinemia in autoimmune disease. Front. Immunol. 12, 671503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Charles, P. et al. Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission: results of a multicentre, randomised controlled, phase III trial (MAINRITSAN2). Ann. Rheum. Dis. 77, 1143–1149 (2018).

    Article  PubMed  Google Scholar 

  76. Tomasson, G., Grayson, P. C., Mahr, A. D., LaValley, M. & Merkel, P. A. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis — a meta-analysis. Rheumatology 51, 100–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Casal Moura, M. et al. Maintenance of remission and risk of relapse in myeloperoxidase-positive ANCA-associated vasculitis with kidney involvement. Clin. J. Am. Soc. Nephrol. 18, 47–59 (2023).

    Article  PubMed  Google Scholar 

  78. Kemna, M. J. et al. ANCA as a predictor of relapse: useful in patients with renal involvement but not in patients with nonrenal disease. J. Am. Soc. Nephrol. 26, 537–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Alberici, F. et al. Long-term follow-up of patients who received repeat-dose rituximab as maintenance therapy for ANCA-associated vasculitis. Rheumatology 54, 1153–1160 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Mescia, F. et al. Sustained post-rituximab B-cell depletion is common in ANCA-associated vasculitis and is affected by sex and renal function. Nephrol. Dial. Transplant. 39, 683–693 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Zonozi, R. et al. Maintenance of remission of ANCA vasculitis by rituximab based on B cell repopulation versus serological flare: a randomised trial. Ann. Rheum. Dis. 83, 351–359 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Uchida, L. et al. Long-term surveillance study of rituximab originator treated patients with granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA). Rheumatol. Adv. Pract. 8, rkae090 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Voswinkel, J. et al. B lymphocyte maturation in Wegener’s granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann. Rheum. Dis. 65, 859–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Popa, E. R., Stegeman, C. A., Bos, N. A., Kallenberg, C. G. M. & Tervaert, J. W. C. Differential B- and T-cell activation in Wegener’s granulomatosis. J. Allergy Clin. Immunol. 103, 885–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Moller, B. et al. Class-switched B cells display response to therapeutic B cell depletion in rheumatoid arthritis. Arthritis Res. Ther. 11, R62 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nakou, M. et al. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res. Ther. 11, R131 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ramwadhdoebe, T. H. et al. Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology 58, 1075–1085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kavanaugh, A. et al. Assessment of rituximab’s immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann. Rheum. Dis. 67, 402–408 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Thiel, J. et al. Defects in B-lymphopoiesis and B-cell maturation underlie prolonged B-cell depletion in ANCA-associated vasculitis. Ann. Rheum. Dis. 83, 1536–1548 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Wilde, B. et al. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res. Ther. 12, 204 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schmitt, W. H., Heesen, C., Csernok, E., Rautmann, A. & Gross, W. L. Elevated serum levels of soluble interleukin-2 receptor in patients with Wegener’s granulomatosis. association with disease activity. Arthritis Rheum. 35, 1088–1096 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. McKinney, E. F. et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat. Med. 16, 586–591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nogueira, E. et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant. 25, 2209–2217 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Gan, P.-Y. et al. Biologicals targeting T helper cell subset differentiating cytokines are effective in the treatment of murine anti-myeloperoxidase glomerulonephritis. Kidney Int. 96, 1121–1133 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug. Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Hartinger, J. M., Kratky, V., Hruskova, Z., Slanar, O. & Tesar, V. Implications of rituximab pharmacokinetic and pharmacodynamic alterations in various immune-mediated glomerulopathies and potential anti-CD20 therapy alternatives. Front. Immunol. 13, 1024068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McAdoo, S. P. et al. Ofatumumab for B cell depletion therapy in ANCA-associated vasculitis: a single-centre case series. Rheumatology 55, 1437–1442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Amudala, N. A. et al. Obinutuzumab as treatment for ANCA-associated vasculitis. Rheumatology 61, 3814–3817 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. McGovern, D. P. et al. Study protocol for a randomised, phase II, double-blind, experimental medicine study of obinutuzumab versus rituximab in ANCA-associated vasculitis: ObiVas. BMJ Open. 14, e083277 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Furie, R. A. et al. Efficacy and safety of obinutuzumab in active lupus nephritis. N. Engl. J. Med. 392, 1471–1483 (2025).

    Article  CAS  PubMed  Google Scholar 

  101. Hu, X. et al. Comparison of obinutuzumab and rituximab for treating primary membranous nephropathy. Clin. J. Am. Soc. Nephrol. CJASN 19, 1594–1602 (2024).

    Article  PubMed  Google Scholar 

  102. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet Lond. Engl. 394, 1352–1363 (2019).

    Article  CAS  Google Scholar 

  103. Flanagan, E. P. et al. Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum study. Mult. Scler. Relat. Disord. 57, 103352 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Holzer, M.-T. et al. Daratumumab for autoimmune diseases: a systematic review. RMD Open. 9, e003604 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ostendorf, L. et al. Daratumumab for the treatment of refractory ANCA-associated vasculitis. RMD Open. 9, e002742 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rixecker, T. M. et al. Daratumumab for a patient with refractory antineutrophil cytoplasmatic antibody-associated vasculitis. JAMA Intern. Med. 183, 615–618 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Angeletti, A. et al. Combined rituximab and daratumumab treatment in difficult-to-treat nephrotic syndrome cases. Kidney Int. Rep. 9, 1892–1896 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chiarenza, D. S. et al. Case report: single infusion of combined anti-CD20 and anti-CD38 monoclonal antibodies in pediatric refractory lupus nephritis. Front. Immunol. 16, 1525892 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stohl, W. & Hilbert, D. M. The discovery and development of belimumab: the anti-BLyS-lupus connection. Nat. Biotechnol. 30, 69–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Ota, M. et al. Regulation of the B cell receptor repertoire and self-reactivity by BAFF. J. Immunol. 185, 4128–4136 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Cheema, G. S., Roschke, V., Hilbert, D. M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Bader, L., Koldingsnes, W. & Nossent, J. B-lymphocyte activating factor levels are increased in patients with Wegener’s granulomatosis and inversely correlated with ANCA titer. Clin. Rheumatol. 29, 1031–1035 (2010).

    Article  PubMed  Google Scholar 

  114. Holden, N. J. et al. ANCA-stimulated neutrophils release BLyS and promote B cell survival: a clinically relevant cellular process. Ann. Rheum. Dis. 70, 2229–2233 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Jayne, D. et al. Efficacy and safety of belimumab and azathioprine for maintenance of remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled study. Arthritis Rheumatol. 71, 952–963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McClure, M. E. et al. A randomised study of rituximab and belimumab sequential therapy in PR3 ANCA-associated vasculitis (COMBIVAS): design of the study protocol. Trials 24, 180 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Carter, L. M., Isenberg, D. A. & Ehrenstein, M. R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 65, 2672–2679 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Shipa, M. et al. Effectiveness of belimumab after rituximab in systemic lupus erythematosus: a randomized controlled trial. Ann. Intern. Med. 174, 1647–1657 (2021).

    Article  PubMed  Google Scholar 

  119. Aranow, C. et al. Efficacy and safety of sequential therapy with subcutaneous belimumab and one cycle of rituximab in patients with systemic lupus erythematosus: the phase 3, randomised, placebo-controlled BLISS-BELIEVE study. Ann. Rheum. Dis. 83, 1502–1512 (2024). 

    Article  CAS  PubMed  Google Scholar 

  120. Shimojima, Y. et al. Features of BAFF and APRIL receptors on circulating B cells in antineutrophil cytoplasmic antibody-associated vasculitis. Clin. Exp. Immunol. 213, 125–137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article  PubMed  Google Scholar 

  122. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — A case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  124. Lodka, D. et al. CD19-targeting CAR T cells protect from ANCA-induced acute kidney injury. Ann. Rheum. Dis. 83, 499–507 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Minopoulou, I. et al. Anti-CD19 CAR T cell therapy induces antibody seroconversion and complete B cell depletion in the bone marrow of a therapy-refractory patient with ANCA-associated vasculitis. Ann. Rheum. Dis. 84, e4–e7 (2025).

    Article  PubMed  Google Scholar 

  126. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug. Discov. 19, 185–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, J. et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J. Clin. Invest. 130, 6317–6324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bucci, L. et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 30, 1593–1601 (2024).

    Article  CAS  PubMed  Google Scholar 

  130. Szpirt, W. M., Heaf, J. G. & Petersen, J. Plasma exchange for induction and cyclosporine A for maintenance of remission in Wegener’s granulomatosis — a clinical randomized controlled trial. Nephrol. Dial. Transplant. 26, 206–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Berden, A. E. et al. Tubular lesions predict renal outcome in antineutrophil cytoplasmic antibody-associated glomerulonephritis after rituximab therapy. J. Am. Soc. Nephrol. 23, 313–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Gopaluni, S. et al. Alemtuzumab for refractory primary systemic vasculitis — a randomised controlled dose ranging clinical trial of efficacy and safety (ALEVIATE). Arthritis Res. Ther. 24, 81 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Langford, C. A. et al. An open-label trial of abatacept (CTLA4-IG) in non-severe relapsing granulomatosis with polyangiitis (Wegener’s). Ann. Rheum. Dis. 73, 1376–1379 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Langford, C. et al. A randomized, double-blind, placebo-controlled trial of Abatacept for the treatment of relapsing, non-severe, granulomatosis with polyangiitis. Arthritis Rheumatol. 76 (Suppl. 9), abstr. (2024).

  135. Engesser, J. et al. Immune profiling-based targeting of pathogenic T cells with ustekinumab in ANCA-associated glomerulonephritis. Nat. Commun. 15, 8220 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jayne, D. Complement inhibition in ANCA vasculitis. Nephrol. Ther. 15, 409–412 (2019).

    Article  PubMed  Google Scholar 

  137. Gou, S.-J., Yuan, J., Wang, C., Zhao, M.-H. & Chen, M. Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin. J. Am. Soc. Nephrol. 8, 1884–1891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hilhorst, M. et al. Complement in ANCA-associated glomerulonephritis. Nephrol. Dial. Transplant. 32, 1302–1313 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Gou, S.-J., Yuan, J., Chen, M., Yu, F. & Zhao, M.-H. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 83, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Xiao, H., Schreiber, A., Heeringa, P., Falk, R. J. & Jennette, J. C. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170, 52–64 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huugen, D. et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 71, 646–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xiao, H. et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J. Am. Soc. Nephrol. 25, 225–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Jayne, D. R. W. et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J. Am. Soc. Nephrol. 28, 2756–2767 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Merkel, P. A. et al. Adjunctive treatment with avacopan, an oral C5a receptor inhibitor, in patients with antineutrophil cytoplasmic antibody-associated vasculitis. ACR Open. Rheumatol. 2, 662–671 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Strand, V. et al. The impact of treatment with avacopan on health-related quality of life in antineutrophil cytoplasmic antibody-associated vasculitis: a post-hoc analysis of data from the ADVOCATE trial. Lancet Rheumatol. 5, e451–e460 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Cortazar, F. B. et al. Renal recovery for patients with ANCA-associated vasculitis and low EGFR in the ADVOCATE trial of avacopan. Kidney Int. Rep. 8, 860–870 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jayne, D. R. W. et al. AB1241 design of Avacostar: a real-world study of avacopan in ANCA-associated vasculitis (AAV). in Scientific Abstracts 1960.2-1960, https://doi.org/10.1136/annrheumdis-2024-eular.442 (BMJ Publishing Group and European League Against Rheumatism, 2024).

  149. Chalkia, A. et al. Avacopan for ANCA-associated vasculitis with hypoxic pulmonary haemorrhage. Nephrol. Dial. Transplant. 39, 1473–1482 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zonozi, R. et al. Real-world experience with avacopan in antineutrophil cytoplasmic autoantibody-associated vasculitis. Kidney Int. Rep. 9, 1783–1791 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zimmermann, J. et al. Avacopan in anti-neutrophil cytoplasmic autoantibodies-associated vasculitis in a real-world setting. Kidney Int. Rep. 9, 2803–2808 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bamberg, C. E. et al. The C5a receptor (C5aR) C5L2 Is a modulator of C5aR-mediated signal transduction. J. Biol. Chem. 285, 7633–7644 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Merkel, P. et al. A randomized, double-blind, phase II study of glucocorticoid replacement by vilobelimab, an anti-C5a monoclonal antibody, in ANCA-associated vasculitis. Arthritis Rheumatol. 74 (Suppl. 9), abstr. (2022).

  154. Kitamura, F. et al. Anti-neutrophil cytoplasmic antibody-associated vasculitis complicated by thrombotic microangiopathy with posterior reversible encephalopathy syndrome successfully treated with eculizumab: a case report. Mod. Rheumatol. Case Rep. 6, 254–259 (2022).

    Article  PubMed  Google Scholar 

  155. Manenti, L., Urban, M. L., Maritati, F., Galetti, M. & Vaglio, A. Complement blockade in ANCA-associated vasculitis: an index case, current concepts and future perspectives. Intern. Emerg. Med. 12, 727–731 (2017).

    Article  PubMed  Google Scholar 

  156. Ribes, D., Belliere, J., Piedrafita, A. & Faguer, S. Glucocorticoid-free induction regimen in severe ANCA-associated vasculitis using a combination of rituximab and eculizumab. Rheumatology 58, 2335–2337 (2019).

    Article  PubMed  Google Scholar 

  157. Lucientes-Continente, L. et al. Complement alternative pathway determines disease susceptibility and severity in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Kidney Int. 105, 177–188 (2024).

    Article  CAS  PubMed  Google Scholar 

  158. Manenti, L. et al. Association of serum C3 concentration and histologic signs of thrombotic microangiopathy with outcomes among patients with ANCA-associated renal vasculitis. Clin. J. Am. Soc. Nephrol. 10, 2143–2151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Moiseev, S. et al. The alternative complement pathway in ANCA-associated vasculitis: further evidence and a meta-analysis. Clin. Exp. Immunol. 202, 394–402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Uhlin, F. et al. Endopeptidase cleavage of anti-glomerular basement membrane antibodies in vivo in severe kidney disease: an open-label phase 2a study. J. Am. Soc. Nephrol. 33, 829–838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Enghard, P. et al. Imlifidase as novel treatment strategy in anti-neutrophil cytoplasmic antibody-induced pulmonary-renal syndrome. Kidney Int. 100, 1344–1345 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Seren, S. et al. Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis. J. Biol. Chem. 293, 12415–12428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jerke, U. et al. Targeting cathepsin C in PR3-ANCA vasculitis. J. Am. Soc. Nephrol. 33, 936–947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chalmers, J. D. et al. Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis. N. Engl. J. Med. 383, 2127–2137 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. O’Sullivan, K. M. et al. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int. 88, 1030–1046 (2015).

    Article  PubMed  Google Scholar 

  166. Antonelou, M. et al. Therapeutic myeloperoxidase inhibition attenuates neutrophil activation, ANCA-mediated endothelial damage, and crescentic GN. J. Am. Soc. Nephrol. 31, 350–364 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Lam, C. S. P. et al. Myeloperoxidase inhibition in heart failure with preserved or mildly reduced ejection fraction: SATELLITE trial results. J. Card. Fail. 30, 104–110 (2024).

    Article  PubMed  Google Scholar 

  168. Prendecki, M. et al. Syk activation in circulating and tissue innate immune cells in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 75, 84–97 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. McAdoo, S. P. et al. Correlation of disease activity in proliferative glomerulonephritis with glomerular spleen tyrosine kinase expression. Kidney Int. 88, 52–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McAdoo, S. P. et al. Spleen tyrosine kinase inhibition is an effective treatment for established vasculitis in a pre-clinical model. Kidney Int. 97, 1196–1207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kusunoki, Y. et al. Peptidylarginine deiminase inhibitor suppresses neutrophil extracellular trap formation and MPO-ANCA production. Front. Immunol. 7, 227 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Shiratori-Aso, S. & Nakazawa, D. The involvement of NETs in ANCA-associated vasculitis. Front. Immunol. 14, 1261151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. O’Sullivan, K. M., Gan, P. Y., Kitching, A. R. & Holdsworth, S. SAT-012 Peptidyl arginase deiminase 4 inhibition attenuates inflammation in murine experimental myeloperoxidase cytoplasmic antibody associated glomerulonephritis. Kidney Int. Rep. 4, S6 (2019).

    Article  Google Scholar 

  175. Roehlen, N. et al. A monoclonal antibody targeting nonjunctional claudin-1 inhibits fibrosis in patient-derived models by modulating cell plasticity. Sci. Transl. Med. 14, eabj4221 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Cerullo, D. et al. Characterization of a rat model of myeloperoxidase-anti-neutrophil cytoplasmic antibody-associated crescentic glomerulonephritis. Nephron 145, 428–444 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Teixeira, G. et al. Claudin-1 is a therapeutic target for crescentic glomerulonephritis: TH-PO531. J. Am. Soc. Nephrol. 34, 238–238 (2023).

    Article  Google Scholar 

  178. Maillet, T. et al. Usual interstitial pneumonia in ANCA-associated vasculitis: a poor prognostic factor. J. Autoimmun. 106, 102338 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Shoda, T. et al. SAT0548 Prognostic factors for interstitial lung disease with microscopic polyangiitis. Ann. Rheum. Dis. 77, 1128 (2018).

    Article  Google Scholar 

  180. Watanabe, T. et al. Prognosis of pulmonary fibrosis presenting with a usual interstitial pneumonia pattern on computed tomography in patients with myeloperoxidase anti-neutrophil cytoplasmic antibody-related nephritis: a retrospective single-center study. BMC Pulm. Med. 19, 194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Song, M. J. et al. Effectiveness of pirfenidone in idiopathic pulmonary fibrosis according to the autoantibody status: a retrospective cohort study. BMC Pulm. Med. 21, 145 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. O’Reilly, V. P. et al. Urinary soluble CD163 in active renal vasculitis. J. Am. Soc. Nephrol. 27, 2906–2916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Moran, S. M. et al. Urinary soluble CD163 and monocyte chemoattractant protein-1 in the identification of subtle renal flare in anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol. Dial. Transplant. 35, 283–291 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Moran, S. M. et al. The clinical application of urine soluble CD163 in ANCA-associated vasculitis. J. Am. Soc. Nephrol. 32, 2920–2932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Endo, N. et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol. Dial. Transplant. 31, 2023–2033 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Gamerith, G. et al. Association of baseline soluble immune checkpoints with the risk of relapse in PR3-ANCA vasculitis following induction of remission. Ann. Rheum. Dis. 82, 253–261 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Barnes, E. et al. SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease. Nat. Med. 29, 1760–1774 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pearce, F. A. et al. Antibody prevalence after three or more COVID-19 vaccine doses in individuals who are immunosuppressed in the UK: a cross-sectional study from MELODY. Lancet Rheumatol. 5, e461–e473 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Ammitzbøll, C. et al. Rituximab-treated rheumatic patients: B cells predict seroconversion after COVID-19 boost or revaccination in initial vaccine non-responders. Rheumatology 62, 2544–2549 (2023).

    Article  PubMed  Google Scholar 

  190. Marty, P. K. et al. Antigen specific humoral and cellular immunity following SARS-CoV-2 vaccination in ANCA-associated vasculitis patients receiving B-cell depleting therapy. Front. Immunol. 13, 834981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zonozi, R. et al. T cell responses to SARS-CoV-2 infection and vaccination are elevated in B cell deficiency and reduce risk of severe COVID-19. Sci. Transl. Med. 15, eadh4529 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Terrier, B. et al. Innovative anti-pneumococcal vaccine strategies versus standard vaccination regimen in patients with ANCA-associated vasculitides receiving rituximab therapy: a multicenter randomized controlled trial (PNEUMOVAS). Abstract Number: L16 Innovative Anti-pneumococcal Vaccine Strategies versus Standard Vaccination Regimen in Patients with ANCA-associated Vasculitides Receiving Rituximab Therapy: A Multicenter Randomized Controlled Trial (PNEUMOVAS) (2022).

  193. Flossmann, O. et al. Long-term patient survival in ANCA-associated vasculitis. Ann. Rheum. Dis. 70, 488–494 (2011).

    Article  PubMed  Google Scholar 

  194. Moiseev, S. et al. Traditional and disease-specific risk factors for cardiovascular events in antineutrophil cytoplasmic antibody-associated vasculitis: a multinational retrospective study. J. Rheumatol. 50, 1145–1151 (2023).

    Article  PubMed  Google Scholar 

  195. Morgan, M. D. et al. Increased incidence of cardiovascular events in patients with antineutrophil cytoplasmic antibody-associated vasculitides: a matched-pair cohort study. Arthritis Rheum. 60, 3493–3500 (2009).

    Article  PubMed  Google Scholar 

  196. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  Google Scholar 

  198. Heerspink, H. J. L. et al. Design and baseline characteristics of the finerenone, in addition to standard of care, on the progression of kidney disease in patients with non-diabetic chronic kidney disease (FIND-CKD) randomized trial. Nephrol. Dial. Transplant. 40, 308–319 (2025).

    Article  PubMed  Google Scholar 

  199. Farrah, T. E. et al. Arterial stiffness, endothelial dysfunction and impaired fibrinolysis are pathogenic mechanisms contributing to cardiovascular risk in ANCA-associated vasculitis. Kidney Int. 102, 1115–1126 (2022).

    Article  CAS  PubMed  Google Scholar 

  200. Harper, L. et al. Pulse versus daily oral cyclophosphamide for induction of remission in ANCA-associated vasculitis: long-term follow-up. Ann. Rheum. Dis. 71, 955–960 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. de Groot, K. et al. Pulse versus daily oral cyclophosphamide for induction of remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized trial. Ann. Intern. Med. 150, 670–680 (2009).

    Article  PubMed  Google Scholar 

  202. Jayne, D. R. et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM 93, 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. Furuta, S. et al. Reduced-dose versus high-dose glucocorticoids added to rituximab on remission induction in ANCA-associated vasculitis: predefined 2-year follow-up study. Ann. Rheum. Dis. 83, 96–102 (2024).

    Article  CAS  PubMed  Google Scholar 

  204. Jayne, D. et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N. Engl. J. Med. 349, 36–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Hiemstra, T. F. et al. Mycophenolate mofetil vs azathioprine for remission maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled trial. JAMA 304, 2381 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. Pagnoux, C. et al. Azathioprine or methotrexate maintenance for ANCA-associated vasculitis. N. Engl. J. Med. 359, 2790–2803 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Wegener's Granulomatosis Etanercept Trial (WGET) Research Group. Etanercept plus standard therapy for Wegener’s granulomatosis. N. Engl. J. Med. 352, 351–361 (2005).

  208. Metzler, C. et al. Elevated relapse rate under oral methotrexate versus leflunomide for maintenance of remission in Wegener’s granulomatosis. Rheumatology 46, 1087–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Henderson, S. R. et al. Proteinase 3 promotes formation of multinucleated giant cells and granuloma-like structures in patients with granulomatosis with polyangiitis. Ann. Rheum. Dis. 82, 848–856 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Lim, B. et al. The effect of intranasal niclosamide on nasal symptoms in patients with ENT manifestations of ANCA-associated vasculitis (AAV): post hoc analysis of subset of patients recruited to the PROTECT-V trial. Arthritis Rheumatol. 76 (Suppl. 9), abstr. (2024).

  211. Learoyd, A. E. et al. The HAVEN study-hydroxychloroquine in ANCA vasculitis evaluation — a multicentre, randomised, double-blind, placebo-controlled trial: study protocol and statistical analysis plan. Trials 24, 261 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all our colleagues and members of the European Vasculitis Society and the patients who participated in the studies discussed.

Author information

Authors and Affiliations

Authors

Contributions

G.T., M.C.M., A.K. and S.M. researched data for the article. G.T., A.K., R.M.S., R.B.J., P.A.M. and D.J. contributed substantially to the discussion of the content. G.T., M.C.M., A.K., S.P.M. and D.R.W.J. wrote the article. G.T., R.M.S., B.T., S.M., R.B.J., P.A.M. and D.R.W.J. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Giorgio Trivioli or David R. W. Jayne.

Ethics declarations

Competing interests

A.K. has received grant support from CSL Vifor and Otsuka and consultancy and speaking fees from Amgen, AstraZeneca, Boehringer Ingelheim, CSL Vifor, Delta4, GlaxoSmithKline, Miltenyi Biotec, Novartis, Novo Nordisk, Otsuka, Roche, Sobi and Walden Biosciences. B.T. has received consulting fees from AstraZeneca, GlaxoSmithKline, CSL Vifor, Novartis, LFB, Boehringer Ingelheim. R.M.S. has received research grants from GlaxoSmithKline and Union Therapeutics and speaking fees from Vifor. R.B.J. has received research funding from GSK, CSL Vifor, advisory board fees from CSL Vifor and GSK and honoraria from Roche. P.A.M. has received funds for the following activities in the past 2 years: consulting for AbbVie, Alpine, Amgen, ArGenx, AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, CSL Behring, GlaxoSmithKline, iCell, Interius, Kinevant, Kyverna, Metagenomia, Neutrolis, Novartis, NS Pharma, Q32, Quell, Regeneron, Sanofi, Sparrow, Takeda, Vistera; research support from AbbVie, Amgen, AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, Eicos, Electra, GlaxoSmithKline, Neutrolis, Takeda and stock options from Kyverna, Q32, Sparrow; royalties from UpToDate. D.R.W.J. has received research grants from Roche/Genentech and CSL Vifor, and consulting fees from Amgen, Alentis, Astra-Zeneca, Aurinia, BMS, Boehringer, GSK, Novartis, Roche, Takeda and CSL Vifor.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Alternative complement pathway

This pathway does not require a trigger, such as immune complexes, but is instead constitutively activated through the ‘tick over’ of C3 and regulatory factors, such as factor H, which are required to prevent widespread activation in the absence of pathogenic stimuli.

Anaphylatoxin

A cytokine that mediates the recruitment and activation of innate immune cells.

Chimeric antigen receptor

(CAR). An engineered receptor that contains an antibody fragment that recognizes unprocessed antigen, such as CD19, and transmembrane and intracellular signalling domains of the T cell receptor complex, which provide activation and co-stimulatory signals in response to antigen binding.

Chimeric autoantigen receptor

(CAAR). An engineered receptor that contains a portion of an autoantigen, potentially PR3, which can be recognized by autoreactive cells, and transmembrane and intracellular domains of the T cell receptor complex.

Cytokine release syndrome

A supraphysiologic inflammatory response (which can progress to multiorgan failure) that can occur following treatment with any immune therapy that activates or engages endogenous or infused T cells and/or other immune effector cells.

Granulomatous inflammation

A form of tissue inflammation that is characterized by the presence of granulomas, structures in which palisading macrophages, including multinucleated giant cells and epithelioid cells and lymphocytes aggregate to surround a core of material, such as apoptotic neutrophils, that cannot be eliminated.

Immune effector cell-associated neurotoxicity syndrome

Neurological symptoms (ranging from mild confusion to seizures and cerebral oedema) that can occur after treatment with any immune therapies that activate or engage endogenous or infused T cells and/or other immune effector cells, leading to damage of the blood–brain barrier.

Immune checkpoints

Molecules that provide co-stimulatory or co-inhibitory signals to T cells that can support or inhibit their activation.

Membrane attack complex

A structure that occurs when the components of the terminal complement pathway assemble and form pores in the cell membrane that can lead to cell lysis.

Neutrophil extracellular traps

(NETs). Net-like structures composed of decondensed chromatin and granule proteins, such as MPO and PR3, that are released as a form of programmed cell death by neutrophils.

T cell tubulitis

Inflammation in the tubule-interstitial compartment of the kidney predominantly driven by T cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivioli, G., Casal Moura, M., Kronbichler, A. et al. Advances in the treatment of ANCA-associated vasculitis. Nat Rev Rheumatol 21, 396–413 (2025). https://doi.org/10.1038/s41584-025-01266-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01266-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing