Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

CAR T cell therapy for children with rheumatic disease: the time is now

Abstract

Initial success with B cell-targeted chimeric antigen receptor (CAR) T cells for the treatment of systemic lupus erythematosus and other rheumatic diseases has generated enthusiasm for the broad application of this technology outside of the field of oncology. Paediatric patients with severe rheumatic diseases require lifelong therapy with a substantial toxicity burden and a high cost of care. Paradigm-shifting treatments, including CAR T cells, are desperately needed. Although CAR T cell therapy shows promise for paediatric rheumatic diseases, there are unique aspects of care compared with adults, which require careful consideration and expertise. In response, we established the Integrated Multidisciplinary Paediatric Autoimmunity and Cell Therapy (IMPACT) working group, comprising international experts in the fields of paediatric rheumatology, oncology and cellular therapy, immunology and nephrology, to address the challenges of introducing cell therapies to patients with paediatric-onset autoimmune diseases. Given the possible benefits, we advocate for the study of CAR T cells in paediatric patients with rheumatic diseases who carry a lifelong risk of morbidity and mortality from chronic illness and medication toxicity. As this patient population is relatively small, consensus around definitions of success, robust study of predictors of response and uniform assessment and reporting of toxicities are critical to advancing the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Integrated Multidisciplinary Paediatric Autoimmunity and Cell Therapy (IMPACT) working group.
Fig. 2: Paediatric-onset systemic lupus erythematosus as an example of the burden of paediatric-onset rheumatic disease.

Similar content being viewed by others

References

  1. Pasquini, M. C. et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 4, 5414–5424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boardman, A. P. & Salles, G. CAR T-cell therapy in large B cell lymphoma. Hematol. Oncol. 41, 112–118 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haghikia, A. et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Auth, J. et al. CD19-targeting CAR T-cell therapy in patients with diffuse systemic sclerosis: a case series. Lancet Rheumatol. 7, e83–e93 (2024).

    Article  PubMed  Google Scholar 

  7. Qin, C. et al. Single-cell analysis of refractory anti-SRP necrotizing myopathy treated with anti-BCMA CAR-T cell therapy. Proc. Natl Acad. Sci. USA 121, e2315990121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lodka, D. et al. CD19-targeting CAR T cells protect from ANCA-induced acute kidney injury. Ann. Rheum. Dis. 83, 499–507 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, J. et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J. Clin. Invest. 130, 6317–6324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadun, R. E. & Foster, M. H. Deja vu but new: using T cells to deplete B cells to treat lupus. Am. J. Kidney Dis. 74, 708–710 (2019).

    Article  PubMed  Google Scholar 

  11. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  13. Wilkinson, M. G. L. & Rosser, E. C. B cells as a therapeutic target in paediatric rheumatic disease. Front. Immunol. 10, 214 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu, T. et al. Spatial transcriptomics identifies cellular and molecular characteristics of scleroderma skin lesions: pilot study in juvenile scleroderma. Int. J. Mol. Sci. 25, 9182 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Torok, K. S. Updates in systemic sclerosis treatment and applicability to pediatric scleroderma. Rheum. Dis. Clin. North. Am. 47, 757–780 (2021).

    Article  PubMed  Google Scholar 

  16. Bloom, J. L. & Wu, E. Y. Update on antineutrophil cytoplasmic autoantibody vasculitis in children. Curr. Opin. Rheumatol. 36, 336–343 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Mahmoud, I. et al. Efficacy and safety of rituximab in the management of pediatric systemic lupus erythematosus: a systematic review. J. Pediatr. 187, 213–219.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Balevic, S. J. et al. Extrapolation of adult efficacy data to pediatric systemic lupus erythematosus: evaluating similarities in exposure-response. J. Clin. Pharmacol. 63, 105–118 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Sherman, M. A. et al. Treatment escalation patterns to start biologics in refractory moderate juvenile dermatomyositis among members of the Childhood Arthritis and Rheumatology Research Alliance. Pediatr. Rheumatol. Online J. 21, 3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 65, 314–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aggarwal, R. et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. Arthritis Rheumatol. 66, 740–749 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gagne, S. J. et al. Comparing rituximab and cyclophosphamide in induction therapy for childhood-onset anti-neutrophil cytoplasmic antibody-associated vasculitis: an ARChiVe registry cohort study. Arthritis Care Res. 77, 504–512 (2025).

    Article  CAS  Google Scholar 

  23. Jamois, C. et al. Rituximab pediatric drug development: pharmacokinetic and pharmacodynamic modeling to inform regulatory approval for rituximab treatment in patients with granulomatosis with polyangiitis or microscopic polyangiitis. Clin. Transl. Sci. 15, 2172–2183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Md Yusof, M. Y. et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1829–1836 (2017).

    Article  PubMed  Google Scholar 

  25. Wobma, H., Chang, J. C. & Prockop, S. E. Releasing our model T — chimeric antigen receptor (CAR) T-cells for autoimmune indications. Curr. Opin. Rheumatol. 37, 128–135 (2025).

    Article  CAS  PubMed  Google Scholar 

  26. Tur, C. et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 84, 106–114 (2025).

    Article  CAS  PubMed  Google Scholar 

  27. Krickau, T. et al. CAR T-cell therapy rescues adolescent with rapidly progressive lupus nephritis from haemodialysis. Lancet 403, 1627–1630 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. He, X. et al. Treatment of two pediatric patients with refractory systemic lupus erythematosus using CD19-targeted CAR T-cells. Autoimmun. Rev. 24, 103692 (2025).

    Article  CAS  PubMed  Google Scholar 

  29. Nicolai, R. et al. Autologous CD19-targeting CAR T cells in a patient with refractory juvenile dermatomyositis. Arthritis Rheumatol. 76, 1560–1565 (2024).

    CAS  PubMed  Google Scholar 

  30. Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article  PubMed  Google Scholar 

  31. Chung, J. B., Brudno, J. N., Borie, D. & Kochenderfer, J. N. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat. Rev. Immunol. 24, 830–845 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stojkic, I. et al. CAR T cell therapy for refractory pediatric systemic lupus erythematosus: a new era of hope? Pediatr. Rheumatol. Online J. 22, 72 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bernatsky, S. et al. Mortality in systemic lupus erythematosus. Arthritis Rheum. 54, 2550–2557 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Ambrose, N. et al. Differences in disease phenotype and severity in SLE across age groups. Lupus 25, 1542–1550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brunner, H. I., Gladman, D. D., Ibanez, D., Urowitz, M. D. & Silverman, E. D. Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum. 58, 556–562 (2008).

    Article  PubMed  Google Scholar 

  36. Hersh, A. O. et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 61, 13–20 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tucker, L. B. et al. Adolescent onset of lupus results in more aggressive disease and worse outcomes: results of a nested matched case-control study within LUMINA, a multiethnic US cohort (LUMINA LVII). Lupus 17, 314–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson, A. B. & Reed, A. M. Clinical features, pathogenesis and treatment of juvenile and adult dermatomyositis. Nat. Rev. Rheumatol. 7, 664–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Papadopoulou, C. & McCann, L. J. The vasculopathy of juvenile dermatomyositis. Front. Pediatr. 6, 284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Boros, C. et al. Juvenile dermatomyositis: what comes next? Long-term outcomes in childhood myositis from a patient perspective. Pediatr. Rheumatol. Online J. 20, 102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iudici, M. et al. Childhood- versus adult-onset ANCA-associated vasculitides: a nested, matched case-control study from the French vasculitis study group registry. Autoimmun. Rev. 17, 108–114 (2018).

    Article  PubMed  Google Scholar 

  42. Foeldvari, I. et al. Are diffuse and limited juvenile systemic sclerosis different in clinical presentation? Clinical characteristics of a juvenile systemic sclerosis cohort. J. Scleroderma Relat. Disord. 4, 49–61 (2019).

    Article  PubMed  Google Scholar 

  43. Foeldvari, I. et al. Differences sustained between diffuse and limited forms of juvenile systemic sclerosis in an expanded international cohort. Arthritis Care Res. 74, 1575–1584 (2022).

    Article  CAS  Google Scholar 

  44. Stevens, B. E. et al. Clinical characteristics and factors associated with disability and impaired quality of life in children with juvenile systemic sclerosis: results from the Childhood Arthritis and Rheumatology Research Alliance legacy registry. Arthritis Care Res. 70, 1806–1813 (2018).

    Article  Google Scholar 

  45. Mirguet, A. et al. Long-term outcomes of childhood-onset systemic lupus erythematosus. Rheumatology 64, 2209–2213 (2024).

    Article  Google Scholar 

  46. Bitencourt, N. et al. “You just have to keep going, you can’t give up”: coping mechanisms among young adults with lupus transferring to adult care. Lupus 30, 2221–2229 (2021).

    Article  PubMed  Google Scholar 

  47. Tsaltskan, V. et al. Long-term outcomes in juvenile myositis patients. Semin. Arthritis Rheum. 50, 149–155 (2020).

    Article  PubMed  Google Scholar 

  48. Sanner, H. et al. Long-term muscular outcome and predisposing and prognostic factors in juvenile dermatomyositis: a case-control study. Arthritis Care Res. 62, 1103–1111 (2010).

    Article  Google Scholar 

  49. Foeldvari, I., Nihtyanova, S. I., Wierk, A. & Denton, C. P. Characteristics of patients with juvenile onset systemic sclerosis in an adult single-center cohort. J. Rheumatol. 37, 2422–2426 (2010).

    Article  PubMed  Google Scholar 

  50. Arulkumaran, N. et al. Long- term outcome of paediatric patients with ANCA vasculitis. Pediatr. Rheumatol. Online J. 9, 12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hiraki, L. T. et al. End-stage renal disease due to lupus nephritis among children in the US, 1995–2006. Arthritis Rheum. 63, 1988–1997 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ward, L. M. et al. Osteoporotic fractures and vertebral body reshaping in children with glucocorticoid-treated rheumatic disorders. J. Clin. Endocrinol. Metab. 106, e5195–e5207 (2021).

    PubMed  Google Scholar 

  53. Silva, C. A. & Brunner, H. I. Gonadal functioning and preservation of reproductive fitness with juvenile systemic lupus erythematosus. Lupus 16, 593–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Silva, M. F. et al. A multicenter study of invasive fungal infections in patients with childhood-onset systemic lupus erythematosus. J. Rheumatol. 42, 2296–2303 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Schanberg, L. E. et al. Premature atherosclerosis in pediatric systemic lupus erythematosus: risk factors for increased carotid intima-media thickness in the atherosclerosis prevention in pediatric lupus erythematosus cohort. Arthritis Rheum. 60, 1496–1507 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sabbagh, S. E. et al. Risk factors associated with Pneumocystis jirovecii pneumonia in juvenile myositis in North America. Rheumatology 60, 829–836 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Fisler, R. E., Liang, M. G., Fuhlbrigge, R. C., Yalcindag, A. & Sundel, R. P. Aggressive management of juvenile dermatomyositis results in improved outcome and decreased incidence of calcinosis. J. Am. Acad. Dermatol. 47, 505–511 (2002).

    Article  PubMed  Google Scholar 

  58. Yang, Y., Kumar, S., Lim, L. S., Silverman, E. D. & Levy, D. M. Risk factors for symptomatic avascular necrosis in childhood-onset systemic lupus erythematosus. J. Rheumatol. 42, 2304–2309 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Ren, Z., Laumann, A. E. & Silverberg, J. I. Association of dermatomyositis with systemic and opportunistic infections in the United States. Arch. Dermatol. Res. 311, 377–387 (2019).

    Article  PubMed  Google Scholar 

  60. Restrepo-Escobar, M., N, A. R., Hernandez-Zapata, L. J., Velasquez, M. & Eraso, R. Factors associated with infection amongst paediatric patients with systemic lupus erythematosus treated in the intensive care unit. Lupus 28, 1141–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Ardalan, K., Lloyd-Jones, D. M. & Schanberg, L. E. Cardiovascular health in pediatric rheumatologic diseases. Rheum. Dis. Clin. North. Am. 48, 157–181 (2022).

    Article  PubMed  Google Scholar 

  62. Nordal, E. et al. Growth and puberty in juvenile dermatomyositis: a longitudinal cohort study. Arthritis Care Res. 72, 265–273 (2020).

    Article  Google Scholar 

  63. Shiff, N. J. et al. Glucocorticoid-related changes in body mass index among children and adolescents with rheumatic diseases. Arthritis Care Res. 65, 113–121 (2013).

    Article  Google Scholar 

  64. Santiago, R. A., Silva, C. A., Caparbo, V. F., Sallum, A. M. & Pereira, R. M. Bone mineral apparent density in juvenile dermatomyositis: the role of lean body mass and glucocorticoid use. Scand. J. Rheumatol. 37, 40–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Khojah, A., Liu, V., Morgan, G., Shore, R. M. & Pachman, L. M. Changes in total body fat and body mass index among children with juvenile dermatomyositis treated with high-dose glucocorticoids. Pediatr. Rheumatol. Online J. 19, 118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Knight, A. M., Trupin, L., Katz, P., Yelin, E. & Lawson, E. F. Depression risk in young adults with juvenile- and adult-onset lupus: twelve years of followup. Arthritis Care Res. 70, 475–480 (2018).

    Article  Google Scholar 

  67. Livermore, P. et al. Being on the juvenile dermatomyositis rollercoaster: a qualitative study. Pediatr. Rheumatol. Online J. 17, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ardalan, K. et al. Parent perspectives on addressing emotional health for children and young adults with juvenile myositis. Arthritis Care Res. 73, 18–29 (2021).

    Article  Google Scholar 

  69. Fawole, O. A. et al. Engaging patients and parents to improve mental health intervention for youth with rheumatological disease. Pediatr. Rheumatol. Online J. 19, 19 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Treemarcki, E. B., Danguecan, A. N., Cunningham, N. R. & Knight, A. M. Mental health in pediatric rheumatology: an opportunity to improve outcomes. Rheum. Dis. Clin. North. Am. 48, 67–90 (2022).

    Article  PubMed  Google Scholar 

  71. Donnelly, C. et al. Fatigue and depression predict reduced health-related quality of life in childhood-onset lupus. Lupus 27, 124–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Ruperto, N. et al. Health-related quality of life in juvenile-onset systemic lupus erythematosus and its relationship to disease activity and damage. Arthritis Rheum. 51, 458–464 (2004).

    Article  PubMed  Google Scholar 

  73. Moorthy, L. N. et al. Relationship between health-related quality of life, disease activity and disease damage in a prospective international multicenter cohort of childhood onset systemic lupus erythematosus patients. Lupus 26, 255–265 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Apaz, M. T. et al. Health-related quality of life of patients with juvenile dermatomyositis: results from the Pediatric Rheumatology International Trials Organisation multinational quality of life cohort study. Arthritis Rheum. 61, 509–517 (2009).

    Article  PubMed  Google Scholar 

  75. Tollisen, A., Sanner, H., Flato, B. & Wahl, A. K. Quality of life in adults with juvenile-onset dermatomyositis: a case-control study. Arthritis Care Res. 64, 1020–1027 (2012).

    Article  Google Scholar 

  76. Neely, J. et al. Baseline characteristics of children with juvenile dermatomyositis enrolled in the first year of the new Childhood Arthritis and Rheumatology Research Alliance registry. Pediatr. Rheumatol. Online J. 20, 50 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Groot, N. et al. Effects of childhood-onset systemic lupus erythematosus on academic achievements and employment in adult life. J. Rheumatol. 48, 915–923 (2021).

    Article  PubMed  Google Scholar 

  78. Zelko, F. et al. Academic outcomes in childhood-onset systemic lupus erythematosus. Arthritis Care Res. 64, 1167–1174 (2012).

    Article  Google Scholar 

  79. Lim, L. S. H. et al. A population-based study of grade 12 academic performance in adolescents with childhood-onset chronic rheumatic diseases. J. Rheumatol. 49, 299–306 (2022).

    Article  PubMed  Google Scholar 

  80. Moorthy, L. N., Peterson, M. G., Hassett, A., Baratelli, M. & Lehman, T. J. Impact of lupus on school attendance and performance. Lupus 19, 620–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Brunner, H. I., Sherrard, T. M. & Klein-Gitelman, M. S. Cost of treatment of childhood-onset systemic lupus erythematosus. Arthritis Rheum. 55, 184–188 (2006).

    Article  PubMed  Google Scholar 

  82. Kwa, M. C., Silverberg, J. I. & Ardalan, K. Inpatient burden of juvenile dermatomyositis among children in the United States. Pediatr. Rheumatol. Online J. 16, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Maus, M. V. & Nikiforow, S. The why, what, and how of the new FACT standards for immune effector cells. J. Immunother. Cancer 5, 36 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Food and Drug Administration. Long term follow-up after administration of human gene therapy products — guidance for industry https://www.fda.gov/regulatory-information/search-fda-guidance-documents/long-term-follow-after-administration-human-gene-therapy-products (2020).

  85. Fern, L. A. et al. Available, accessible, aware, appropriate, and acceptable: a strategy to improve participation of teenagers and young adults in cancer trials. Lancet Oncol. 15, e341–e350 (2014).

    Article  PubMed  Google Scholar 

  86. Correll, C. K. et al. 2015 American College of Rheumatology workforce study and demand projections of pediatric rheumatology workforce, 2015-2030. Arthritis Care Res. 74, 340–348 (2022).

    Article  Google Scholar 

  87. Orr, C. J. et al. Projecting the future pediatric subspecialty workforce: summary and recommendations. Pediatrics 153, e2023063678T (2024).

    Article  PubMed  Google Scholar 

  88. Hall, A. G. et al. Access to chimeric antigen receptor T cell clinical trials in underrepresented populations: a multicenter cohort study of pediatric and young adult acute lymphoblastic leukemia patients. Transpl. Cell Ther. 29, 356.e1–356.e7 (2023).

    Article  CAS  Google Scholar 

  89. Auletta, J. J. et al. Assessing Medicaid coverage for hematopoietic cell transplantation and chimeric antigen receptor T cell therapy: a project from the American Society for Transplantation and Cellular Therapy and the National Marrow Donor Program ACCESS initiative. Transpl. Cell Ther. 29, 713–720 (2023).

    Article  CAS  Google Scholar 

  90. Steineck, A. et al. Access to CARe: a narrative of real-world medical decision-making to access chimeric antigen receptor (CAR) T-cell therapy in children, adolescents, and young adults. Pediatr. Blood Cancer 72, e31516 (2025).

    Article  PubMed  Google Scholar 

  91. Sainatham, C. et al. The current socioeconomic and regulatory landscape of immune effector cell therapies. Front. Med. 11, 1462307 (2024).

    Article  Google Scholar 

  92. Islam, N., Budvytyte, L., Khera, N. & Hilal, T. Disparities in clinical trial enrollment — focus on CAR-T and bispecific antibody therapies. Curr. Hematol. Malig. Rep. 20, 1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Newman, H. et al. Impact of poverty and neighborhood opportunity on outcomes for children treated with CD19-directed CAR T-cell therapy. Blood 141, 609–619 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Ahmed, N. et al. Socioeconomic and racial disparity in chimeric antigen receptor T cell therapy access. Transpl. Cell Ther. 28, 358–364 (2022).

    Article  Google Scholar 

  95. Karmali, R. et al. Impact of race and social determinants of health on outcomes in patients with aggressive B-cell NHL treated with CAR-T therapy. Blood Adv. 8, 2592–2599 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sureda, A. et al. Logistical challenges of CAR T-cell therapy in non-Hodgkin lymphoma: a survey of healthcare professionals. Future Oncol. 20, 2855–2868 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vara, E., Gilbert, M. & Ruth, N. M. Health disparities in outcomes of pediatric systemic lupus erythematosus. Front. Pediatr. 10, 879208 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Akinsete, A. M., Woo, J. M. P. & Rubinstein, T. B. Disparities in pediatric rheumatic diseases. Rheum. Dis. Clin. North. Am. 48, 183–198 (2022).

    Article  PubMed  Google Scholar 

  99. Rubinstein, T. B. & Knight, A. M. Disparities in childhood-onset lupus. Rheum. Dis. Clin. North Am. 46, 661–672 (2020).

    Article  PubMed  Google Scholar 

  100. Phillippi, K. et al. Race, income, and disease outcomes in juvenile dermatomyositis. J. Pediatr. 184, 38–44.e1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Deng, Y. & Tsao, B. P. Updates in lupus genetics. Curr. Rheumatol. Rep. 19, 68 (2017).

    Article  PubMed  Google Scholar 

  102. Qin, Y., Ma, J. & Vinuesa, C. G. Monogenic lupus: insights into disease pathogenesis and therapeutic opportunities. Curr. Opin. Rheumatol. 36, 191–200 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Costa-Reis, P. & Sullivan, K. E. Monogenic lupus: it’s all new! Curr. Opin. Immunol. 49, 87–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Demirkaya, E., Sahin, S., Romano, M., Zhou, Q. & Aksentijevich, I. New horizons in the genetic etiology of systemic lupus erythematosus and lupus-like disease: monogenic lupus and beyond. J. Clin. Med. 9, 712 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Webb, R. et al. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann. Rheum. Dis. 70, 151–156 (2011).

    Article  PubMed  Google Scholar 

  106. Tirosh, I. et al. Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatr. Rheumatol. Online J. 17, 52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Misztal, M. C. et al. Genome-wide sequencing identified rare genetic variants for childhood-onset monogenic lupus. J. Rheumatol. 50, 671–675 (2023).

    Article  PubMed  Google Scholar 

  108. Belot, A. et al. Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatol. 2, e99–e109 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article  PubMed  Google Scholar 

  111. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Chellapandian, D., Chitty-Lopez, M. & Leiding, J. W. Precision therapy for the treatment of primary immunodysregulatory diseases. Immunol. Allergy Clin. North. Am. 40, 511–526 (2020).

    Article  PubMed  Google Scholar 

  113. Leiding, J. W. et al. Monogenic early-onset lymphoproliferation and autoimmunity: natural history of STAT3 gain-of-function syndrome. J. Allergy Clin. Immunol. 151, 1081–1095 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Chan, A. Y. et al. Hematopoietic cell transplantation in patients with primary immune regulatory disorders (PIRD): a primary immune deficiency treatment consortium (PIDTC) survey. Front. Immunol. 11, 239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tao, Z. et al. Impact of T cell characteristics on CAR-T cell therapy in hematological malignancies. Blood Cancer J. 14, 213 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Baguet, C., Larghero, J. & Mebarki, M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv. 8, 337–342 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Arcangeli, S. et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest. 132, e150807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Robinson, G. A. et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. Lancet Rheumatol. 2, e485–e496 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wat, J. & Barmettler, S. Hypogammaglobulinemia after chimeric antigen receptor (CAR) T-cell therapy: characteristics, management, and future directions. J. Allergy Clin. Immunol. Pract. 10, 460–466 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Angelidakis, G. et al. Humoral immunity and antibody responses against diphtheria, tetanus, and pneumococcus after immune effector cell therapies: a prospective study. Vaccines 12, 1070 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abdel Rahman, Z. et al. Impact of anti-CD19 CAR-T axicabtagene ciloleucel on vaccine titers of DTaP and MMR. Blood 134, 5610–5610 (2019).

    Article  Google Scholar 

  122. Bansal, R. et al. Vaccine titers in lymphoma patients receiving chimeric antigen receptor T cell therapy. Blood 138, 3857–3857 (2021).

    Article  Google Scholar 

  123. Reynolds, G., Hall, V. G. & Teh, B. W. Vaccine schedule recommendations and updates for patients with hematologic malignancy post-hematopoietic cell transplant or CAR T-cell therapy. Transpl. Infect. Dis. 25, e14109 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Walti, C. S. et al. Antibodies against vaccine-preventable infections after CAR-T cell therapy for B cell malignancies. JCI Insight 6, e146743 (2021).

    PubMed  PubMed Central  Google Scholar 

  125. Bass, A. R. et al. 2022 American College of Rheumatology guideline for vaccinations in patients with rheumatic and musculoskeletal diseases. Arthritis Care Res. 75, 449–464 (2023).

    Article  Google Scholar 

  126. Hill, J. A. & Seo, S. K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 136, 925–935 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Los-Arcos, I. et al. Recommendations for screening, monitoring, prevention, and prophylaxis of infections in adult and pediatric patients receiving CAR T-cell therapy: a position paper. Infection 49, 215–231 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Hayden, P. J. et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the joint accreditation committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 33, 259–275 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Khawaja, F. et al. ASH-ASTCT COVID-19 vaccination for HCT and CAR T cell recipients: frequently asked questions. hematology.org https://www.hematology.org/covid-19/ash-astct-covid-19-vaccination-for-hct-and-car-t-cell-recipients (2022).

  130. Hill, J. A. et al. SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T-cell therapy: a prospective, multicenter, observational study. Clin. Infect. Dis. 79, 542–554 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kinoshita, H. et al. T cell immune response to influenza vaccination when administered prior to and following autologous chimeric antigen receptor-modified T cell therapy. Transpl. Cell Ther. 31, 327–338 (2025).

    Article  Google Scholar 

  132. Walti, C. S. et al. Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy: a prospective observational study. J. Immunother. Cancer 9, e003428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Summary of risk-based pneumococcal vaccination recommendations. cdc.gov https://www.cdc.gov/pneumococcal/hcp/vaccine-recommendations/risk-indications.html (2025).

  134. Abid, M. A. & Abid, M. B. SARS-CoV-2 vaccine response in CAR T-cell therapy recipients: a systematic review and preliminary observations. Hematol. Oncol. 40, 287–291 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Gossi, S. et al. Humoral responses to repetitive doses of COVID-19 mRNA vaccines in patients with CAR-T-cell therapy. Cancers 14, 3527 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Meir, J., Abid, M. A. & Abid, M. B. State of the CAR-T: risk of infections with chimeric antigen receptor T-cell therapy and determinants of SARS-CoV-2 vaccine responses. Transpl. Cell Ther. 27, 973–987 (2021).

    Article  CAS  Google Scholar 

  137. Lee, D. et al. Pneumococcal conjugate vaccine does not induce humoral response when administrated within the six months after CD19 CAR T-cell therapy. Transpl. Cell Ther. 29, 277.e1–277.e9 (2023).

    Article  CAS  Google Scholar 

  138. Baden, L. R. et al. Prevention and treatment of cancer-related infections, version 3.2024, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 22, 617–644 (2024).

    Article  PubMed  Google Scholar 

  139. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Brudno, J. N. & Kochenderfer, J. N. Current understanding and management of CAR T cell-associated toxicities. Nat. Rev. Clin. Oncol. 21, 501–521 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Hines, M. R. et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transpl. Cell Ther. 29, 438.e1–438.e16 (2023).

    Article  Google Scholar 

  144. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gardner, R. A. et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood 134, 2149–2158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kadauke, S. et al. Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-cell acute lymphoblastic leukemia: a prospective clinical trial. J. Clin. Oncol. 39, 920–930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Duncan, B. B., Dunbar, C. E. & Ishii, K. Applying a clinical lens to animal models of CAR-T cell therapies. Mol. Ther. Methods Clin. Dev. 27, 17–31 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130, 2295–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Velasco, R., Mussetti, A., Villagran-Garcia, M. & Sureda, A. CAR T-cell-associated neurotoxicity in central nervous system hematologic disease: is it still a concern? Front. Neurol. 14, 1144414 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bachy, E. et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat. Med. 28, 2145–2154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Myers, R. M. et al. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J. Clin. Oncol. 40, 932–944 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Ravich, J. W. et al. Impact of high disease burden on survival in pediatric patients with B-ALL treated with tisagenlecleucel. Transpl. Cell Ther. 28, 73.e1–73.e9 (2022).

    Article  CAS  Google Scholar 

  153. Schwingen, N. R. et al. Distinct safety and toxicity profile of CD19-directed CAR T-cell therapy in systemic lupus erythematosus versus B-cell lymphoma — a single-center experience. Blood 144, 4835–4835 (2024).

    Article  Google Scholar 

  154. Vora, S. B. et al. Infectious complications following CD19 chimeric antigen receptor T-cell therapy for children, adolescents, and young adults. Open. Forum Infect. Dis. 7, ofaa121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Livingston, B., Bonner, A. & Pope, J. Differences in clinical manifestations between childhood-onset lupus and adult-onset lupus: a meta-analysis. Lupus 20, 1345–1355 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Perna, F. et al. CAR T-cell toxicities: from bedside to bench, how novel toxicities inform laboratory investigations. Blood Adv. 8, 4348–4358 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hagen, M. et al. Local immune effector cell-associated toxicity syndrome in CAR T-cell treated patients with autoimmune disease: an observational study. Lancet Rheumatol. 7, e424–e433 (2025).

    Article  CAS  PubMed  Google Scholar 

  158. Murugesan, V. et al. Comparison of histomorphological indices between adult and pediatric patients in response to induction therapy. Cureus 16, e66673 (2024).

    PubMed  PubMed Central  Google Scholar 

  159. Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  160. Elsallab, M. et al. Second primary malignancies after commercial CAR T-cell therapy: analysis of the FDA adverse events reporting system. Blood 143, 2099–2105 (2024).

    Article  CAS  PubMed  Google Scholar 

  161. Lamble, A. J. et al. Risk of T-cell malignancy after CAR T-cell therapy in children, adolescents, and young adults. Blood Adv. 8, 3544–3548 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jadlowsky, J. K. et al. Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies. Nat. Med 31, 1134–1144 (2025).

    Article  CAS  PubMed  Google Scholar 

  163. Edens, C. The impact of pediatric rheumatic diseases on sexual health, family planning, and pregnancy. Rheum. Dis. Clin. North. Am. 48, 113–140 (2022).

    Article  PubMed  Google Scholar 

  164. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Anderson, N. D. et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat. Med. 29, 1700–1709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ligon, J. A. et al. Fertility and CAR T-cells: current practice and future directions. Transpl. Cell Ther. 28, 605 e1–605 e8 (2022).

    Article  Google Scholar 

  167. Oktay, K. et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J. Clin. Oncol. 36, 1994–2001 (2018).

    Article  PubMed  Google Scholar 

  168. Nahata, L., Sivaraman, V. & Quinn, G. P. Fertility counseling and preservation practices in youth with lupus and vasculitis undergoing gonadotoxic therapy. Fertil. Steril. 106, 1470–1474 (2016).

    Article  PubMed  Google Scholar 

  169. Leavitt, M., Adeleye, A. & Edens, C. Preserving fertility in people with rheumatic diseases. J. Clin. Rheumatol. 30, S13–S24 (2024).

    Article  PubMed  Google Scholar 

  170. O’Leary, M. C. et al. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin. Cancer Res. 25, 1142–1146 (2019).

    Article  PubMed  Google Scholar 

  171. Ringold, S., Consolaro, A. & Ardoin, S. P. Outcome measures in pediatric rheumatic disease. Rheum. Dis. Clin. North Am. 47, 655–668 (2021).

    Article  PubMed  Google Scholar 

  172. Kim, H. et al. Performance of the 2016 ACR-EULAR myositis response criteria in juvenile dermatomyositis therapeutic trials and consensus profiles. Rheumatology 62, 3680–3689 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Foeldvari, I. et al. Proposed response parameters for twelve-month drug trial in juvenile systemic sclerosis: results of the Hamburg international consensus meetings.Arthritis Care Res. 75, 2453–2462 (2023).

    Article  Google Scholar 

  174. Brunner, H. I. et al. American College of Rheumatology provisional criteria for clinically relevant improvement in children and adolescents with childhood-onset systemic lupus erythematosus. Arthritis Care Res. 71, 579–590 (2019).

    Article  Google Scholar 

  175. Smith, E. M. D. et al. Defining remission in childhood-onset lupus: PReS-endorsed consensus definitions by an international task force. Clin. Immunol. 263, 110214 (2024).

    Article  CAS  PubMed  Google Scholar 

  176. Lazarevic, D. et al. The PRINTO criteria for clinically inactive disease in juvenile dermatomyositis. Ann. Rheum. Dis. 72, 686–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Del Gaizo, V. & Kohlheim, M. Patient engagement in pediatric rheumatology research. Rheum. Dis. Clin. North Am. 48, 1–13 (2022).

    Article  PubMed  Google Scholar 

  178. Weitzman, E. R. et al. Adding patient-reported outcomes to a multisite registry to quantify quality of life and experiences of disease and treatment for youth with juvenile idiopathic arthritis. J. Patient Rep. Outcomes 2, 1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Gonzalez Sepulveda, J. M. et al. Preferences for potential benefits and risks for gene therapy in the treatment of sickle cell disease. Blood Adv. 7, 7371–7381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rotte, A. et al. Dose-response correlation for CAR-T cells: a systematic review of clinical studies. J. Immunother. Cancer 10, e005678 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Stefanski, H. E. et al. Higher doses of tisagenlecleucel are associated with improved outcomes: a report from the pediatric real-world CAR consortium. Blood Adv. 7, 541–548 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137, 323–335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Holland, E. M. et al. Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. J. Immunother. Cancer 10, e004483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hill, J. A. et al. Durable preservation of antiviral antibodies after CD19-directed chimeric antigen receptor T-cell immunotherapy. Blood Adv. 3, 3590–3601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Bodansky, A. et al. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity. J. Clin. Invest. 134, e180012 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hill, J. A. et al. Anti-HLA antibodies in recipients of CD19 versus BCMA-targeted CAR T-cell therapy. Am. J. Transpl. 23, 416–422 (2023).

    Article  CAS  Google Scholar 

  189. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 25, 625–638 (2019).

    Article  CAS  Google Scholar 

  190. Rejeski, K. et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 142, 865–877 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Costenbader, K. H. et al. Development and initial validation of a self-assessed lupus organ damage instrument. Arthritis Care Res. 62, 559–568 (2010).

    Article  Google Scholar 

  192. Rider, L. G. et al. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index. Arthritis Rheum. 60, 3425–3435 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Reeve, B. B. et al. Validity and reliability of the pediatric patient-reported outcomes version of the common terminology criteria for adverse events. J. Natl Cancer Inst. 112, 1143–1152 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. McNerney, K. O. et al. INSPIRED symposium part 3: prevention and management of pediatric chimeric antigen receptor T cell-associated emergent toxicities. Transpl. Cell Ther. 30, 38–55 (2024).

    Article  CAS  Google Scholar 

  195. Pennisi, M. et al. Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 5, 3397–3406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hashmi, H. et al. Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma. Blood Adv. 4, 4086–4090 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kammeyer, R. et al. Cognitive dysfunction in pediatric systemic lupus erythematosus: current knowledge and future directions. Child. Neuropsychol. 30, 818–846 (2024).

    Article  PubMed  Google Scholar 

  198. Samuels, S. et al. Pediatric efficacy extrapolation in drug development submitted to the US Food and Drug Administration 2015–2020. J. Clin. Pharmacol. 63, 307–313 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Food and Drug Administration. Pediatric extrapolation guidance for industry https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e11a-pediatric-extrapolation (2024).

  200. Food and Drug Administration. Risk evaluation and mitigation strategies (REMS) for autologous chimeric antigen receptor (CAR) T cell immunotherapies modified to minimize burden on healthcare delivery system https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/risk-evaluation-and-mitigation-strategies-rems-autologous-chimeric-antigen-receptor-car-t-cell (2024).

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.P., K.A., H.K., S.W.J., J.C.C., S.P.A., H.W., C.L.B, N.N.S. and M.L. researched data for the article and wrote the manuscript. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Margaret Lamb.

Ethics declarations

Competing interests

H.W. has stock ownership in Regatta Bio and has pending patent applications related to cellular therapies. C.L.B. has awarded and pending patent applications describing the use of engineered cells as therapeutics and has received research support from Merck, Sharp and Dohme, Bristol-Myers Squibb and Kiadis Pharma. J.C.C. is a consultant at Sana Biotechnology and Synthekine and is a Paediatric SLE Advisory Board Member for Bristol-Myers Squibb. H.K. is supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Arthritis and Musculoskeletal and Skin diseases (NIAMS) (AR041215), is a juvenile myositis expert panel member for Cabaletta Bio and is part of NIAMS CRADA with provision of a drug (deucravacitinib) with Bristol-Myers Squibb, and previously part of NIAMS CRADA, with study support and the drug (baricitinib) with Eli Lilly and Company. L.L is supported by ZIA AR04121404. M.K. receives author royalties from Wolter-Kluwer (UpToDate) and is a consultant for Chiesi Pharmaceuticals and M3 Global Research. R.A.C. is supported by ZIAAR041184. C.E. is a site PI of the Cabaletta Bio-sponsored RESET-SLE CAR T cell trial for SLE. S.W.J. is a consultant for Merck, IgM BioSciences and Sail BioMedicines and previously served as a consultant for Bristol-Myers Squib, Variant Bio and ChemoCentryx. S.W.J. has funding provided by the National Institutes of Health (1R01DK136980 and 1K24AR085177) and Lupus Research Alliance (Lupus Mechanisms and Targets Award and Global Team Science Award). S.P. receives support for the conducting of clinical trials through Boston Children’s Hospital from Atara and Jasper, is the inventor of IP related to development of third-party viral specific T cells programme with all rights assigned to Memorial Sloan Kettering Cancer Center, has received honoraria from Pierre Fabre, has engaged in consulting with Atara Biotherapeutics, Ensomo, HEOR, Pierre Fabre and VOR, is a DSMB member for Stanford University and NYBC and has equity interest in Regatta Biotherapies. N.N.S. receives research funding from Lentigen, VOR Bio and CARGO Therapeutics, has attended advisory board meetings (no honoraria) for VOR, ImmunoACT, and Sobi, receives royalties from CARGO and funding that supports this work was provided in part by the Intramural Research Program, Center of Cancer Research, National Cancer Institute and NIH Clinical Center, National Institutes of Health (ZIA BC 011823, N.N.S). K.A. has served on a scientific advisory board of Cabaletta Bio, completed paid consulting for Cabaletta Bio, serves as site PI of the Cabaletta Bio sponsored RESET-Myositis trial, serves as the Vice Chair of the Juvenile Dermatomyositis Committee for the Childhood Arthritis & Rheumatology Research Alliance (paid consultant position), has received honoraria/travel reimbursement from the Rheumatology Research Foundation and the American College of Rheumatology and receives research funding from the Rheumatology Research Foundation, Childhood Arthritis & Rheumatology Research Alliance/Arthritis Foundation, Chan Zuckerberg Initiative, Cure JM Foundation, Patient-Centered Outcomes Research Institute, and National Institutes of Health/Technical Resources International. M.L. participates in sponsored research funded by Luminary Biotherapeutics. The Integrated Multidisciplinary Paediatric Autoimmunity and Cell Therapy (IMPACT) Working Group has no competing interests to disclose. The remaining authors do not have any competing interests to disclose. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services or the National Institutes of Health, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Terry Fry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wobma, H., Ardoin, S.P., Bonifant, C.L. et al. CAR T cell therapy for children with rheumatic disease: the time is now. Nat Rev Rheumatol 21, 494–506 (2025). https://doi.org/10.1038/s41584-025-01272-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01272-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing